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Fig. 1. An efficient coarse-to-fine architectural design using our method. A coarse control cage (left) is edited by the green handles, and optimized for Möbius
regularity (top-center ; front and rear perspectives) using the optimization of [Vaxman et al. 2017], producing a mesh that is as spherical as possible (taking 1.0
seconds). The mesh is subdivided (0.5 seconds) into a fine polygonal pattern, retaining the spherical features (bottom-center ; front and rear perspectives). Right:
A zoom-in. A similar result by direct optimization on the fine mesh would take more than a minute.

We present a novel framework for creating Möbius-invariant subdivision

operators with a simple conversion of existing linear subdivision operators.

By doing so, we create a wide variety of subdivision surfaces that have

properties derived from Möbius geometry; namely, reproducing spheres,

circular arcs, and Möbius regularity. Our method is based on establishing

a canonical form for each 1-ring in the mesh, representing the class of all

1-rings that are Möbius equivalent to that 1-ring. We perform a chosen linear

subdivision operation on these canonical forms, and blend the positions

contributed from adjacent 1-rings, using two novel Möbius-invariant oper-

ators, into new face and edge points. The generality of the method allows

for easy coarse-to-fine mesh editing with diverse polygonal patterns, and

with exact reproduction of circular and spherical features. Our operators are

in closed-form and their computation is as local as the computation of the

linear operators they correspond to, allowing for efficient subdivision mesh

editing and optimization.
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1 INTRODUCTION
Two crucial measures of mesh design are the quality of the result-

ing shape and the efficiency of the design process. The quality of

the shape can be measured by its overall smoothness, and by the

properties of individual mesh elements, such as their symmetry and

regularity. The design process should support the editing of the

shape in several levels of detail. It should adhere to user-specified

constraints, and should be interactive. Finally, the designer would

like to work with a diverse set of possible shapes and mesh patterns,

to get a creative edge to her work.

A popular design paradigm is coarse-to-fine editing with subdivi-
sion surfaces. This comprises working with a coarse mesh (serving

as a control mesh), and obtaining smoother meshes by the process of

recursive subdivision of mesh elements. The nested representation

makes it also possible to encode high-frequency details in each level.

The most commonly used methods for creating the subdivision hi-

erarchy are linear, as they are optimally efficient to compute and

with theoretical guarantees of smoothness.

Many applications require extra properties from the result. For

instance, adherence to user constraints or reproduction of geome-

tries like spheres or planes. The straightforward solution for this

is “subdivide-and-optimize”, where the method interleaves linear

subdivision with nonlinear costly optimization.

An alternative is creating nonlinear methods that reproduce de-

sired geometric features by construction. We offer a general method

to modify linear subdivision methods locally, such that the subdi-

vision would be invariant to Möbius transformations. As such, the

ACM Trans. Graph., Vol. 37, No. 6, Article 227. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275007
https://doi.org/10.1145/3272127.3275007


227:2 • Amir Vaxman, Christian Müller, and Ofir Weber

Fig. 2. The designed and subdivided mesh from Fig. 1 presented in an
architectural context, as a cover for a metro station.

subdivision reproduces spheres and circular arcs and, in general,

produces surfaces with relatively low Willmore energy with unique

aesthetic features. The modification is done by transforming each

1-ring to a canonical form on which we apply a linear subdivision

operator. The points shared by several 1-rings are then transformed

back to the original mesh and blended with Möbius-invariant op-

erators. With this, we are able to convert any linear subdivision

scheme into a Möbius-invariant one, including operators that create

unconventional polygonal patterns. Since our conversion is closed-

form and local, its asymptotic computational complexity is linear in

the number of mesh elements, just like linear subdivision methods,

making it suitable for interactive multiresolution editing and design.

2 RELATED WORK

2.1 Subdivision surfaces
Linear and stationary methods. The “classic” subdivision schemes

in both computer-aided design and geometry processing are both

linear (described as a matrix multiplication operator), and stationary

(the subdivision stencil is constant). Popular schemes are Catmull -

Clark [Catmull and Clark 1978] and Kobbelt [Kobbelt 1996] for

quadrilateral meshes, and Loop [Loop 1987] and Butterly [Dyn et al.

1990] for triangle meshes. In addition, Akleman et al. [2005] pre-

sented methods for creating more general polygonal patterns from

simple subdivision operators. It is beyond the scope of this paper

to discuss the plethora of such methods and their properties, and

we refer the interested reader to dedicated texts such as [Cashman

2012] and [Cavaretta et al. 1991].

The advantage of linear subdivision schemes is that in addition

to being relatively smooth, they are simple and efficient to evaluate

and have good convergence properties. As such, we choose them

as the basic ingredients from which we build our Möbius-invariant

subdivision operators.

Nonlinear subdivisions. In recent years, a few works presented

nonlinear schemes as extensions to (or conversions of) the linear

approaches, often for non-trivial geometries. By doing so, they could

inherit many of the smoothness and convergence properties in a

provable way. Notable examples are the log-exp scheme [Rahman

et al. 2005] for manifold-valued data, and geodesic averages [Wallner

and Dyn 2005]. Some schemes are build to reproduce specific geome-

tries and functions. For example, exponentials of linear functions

are reproduced in [Micchelli 1996], and convex functions are repro-

duced with the harmonic mean for interpolatory schemes in [Floater

and Micchelli 1998].

Two nonlinear methods are of particular relation to our method.

The first is the method of [Sabin and Dodgson 2005] which re-

produces circles with the four point scheme construction. Our F4
operator (Section 4.4.1) is conceptually similar, replacing the four-

point scheme in a way that allows us to generalize the construction

to surfaces lying on spheres, and it is Möbius-invariant. The second

related method is that of [Schaefer et al. 2008]. They show that

one can reproduce diverse geometric properties by conjugating a

linear operator with a nonlinear transformation. For instance, a

circle can be reproduced by locally transforming points to a line by

a Möbius transformation. As such, they share the idea of subdivision

in a canonical form (albeit only for curves). However, the Möbius

transformation needs to be specified to create the rule, and only the

specific choice that brings a circle to a line would reproduce a circle

by refinement. In contrast, we devise the canonical form by Möbius

invariants such as the cross-ratio, and therefore always reproduce

spheres and circles by construction.

2.2 Discrete Möbius geometry processing
Architectural geometry. Objects of Möbius geometry, namely gen-

eralized spheres and circles, gained popularity in geometric design

propelled by applications in architectural geometry [Pottmann et al.

2015]. For instance, circular meshes, where every face is circum-

scribed by a circle, have vertex offsets [Pottmann et al. 2007], al-

lowing them to be realized with nodes without torsion. Circular

arc structures [Bo et al. 2011] use parts of circles in lieu of straight

edges, and are also Möbius-invariant. However, we do not know

of any algorithm that targets exact reproduction of spheres in ar-

chitectural design, such as ours. We note that there are algorithms

that are capable of handling generic geometric constraints, such

as sphere reproduction, by projection. As such, one can apply the

“subdivide-and-optimize” metaphor for level-of-detail sphere and

circle reproduction, by interleaving subdivision with nonlinear pro-

jection. Some methods provide a general framework for such projec-

tions; for instance, Shape-up [Bouaziz et al. 2012] and quadratic con-

straint projection [Tang et al. 2014]. However, they rely on nonlinear

global optimization, which doesn’t scale well to finely-subdivided

meshes. Our method specifically targets Möbius-invariant proper-

ties of meshes, and therefore is not as generic. However, it is local

and in closed-form and therefore far more efficient to compute.

Willmore and regular meshes. The smooth Willmore energy of a

surface is given by

∫
S (κ1 − κ2)2dA, where κ1,κ2 are the principal

curvatures. It is a measure of how much a given surface S deviates

from a sphere, and it is known to be invariant to Möbius transforma-

tions. Willmore meshes have been studied in geometry processing

recently. They are obtained as critical points of a discrete analogue
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of the Willmore energy. Crane et al. [2013] define a discrete Will-

more flow, within the framework of conformal spin transformations,

for the purpose of surface fairing. In [Bobenko and Schröder 2005],

a discrete Willmore energy is devised by looking at the intersection

angles of circumscribed circles of the triangles of a mesh. This defi-

nition preserves the Möbius invariance of the continuous Willmore

energy. Our method uses the latter definition, and modifies subdivi-

sion operators to favor meshes with low Willmore energy, due to

its Möbius-invariant nature.

Vaxman et al. [2017] introduce the definition ofMöbius-regularity.
Amesh isMöbius-regular if every 1-ring is equivalent to a symmetric

1-ring whose faces are regular polygons by a Möbius transformation.

This definition is closely related to that of Willmore meshes, since

both definitions advocate embedding of local neighborhoods in

spheres. Nevertheless, as demonstrated in [Vaxman et al. 2017],

Möbius-regularity enforces additional structure. Our subdivision

operator is designed to preserve Möbius-regularity, i.e., given a Mö-

bius-regular mesh as input, it will produce a finer mesh which is

also Möbius-regular.

Polygonal patterns. There is a recent interest in polygonal pat-

terns [Akleman et al. 2005; Jiang et al. 2017, 2015; Peng et al. 2018].

Like circular meshes, it is motivated by applications in design, try-

ing to mimic beautiful geometric patterns found in Arabesques and

modern art, or for the purpose of efficient topological optimizations.

Given the linear subdivision operators by [Akleman et al. 2005],

our algorithm naturally works with spherical and near-spherical

pattern design; see Figures 1 and 2 for an example.

3 MÖBIUS GEOMETRY PROCESSING
The subdivision setting that we present uses notions related to dis-

crete conformal geometry and Möbius transformations as recently

used in [Vaxman et al. 2017]. This work is based on definitions and

methods from discrete differential geometry such as circle patterns

[Bobenko and Springborn 2004; Kharevych et al. 2006], discrete

conformality [Springborn et al. 2008] and the discrete Willmore

energy [Bobenko and Schröder 2005]. For brevity, we only provide

the necessary details needed for this paper, and refer the reader to

the aforementioned sources for a more in-depth treatment.

3.1 Preliminaries and notation
We apply our subdivision to 2-manifold meshes M = (V, E,F ),
with or without boundaries, in R3. We support pure triangular

meshes (where all faces are triangles), pure quadmeshes, and general

polygonal meshes. A vertex star vu1, . . . ,vun consists of all vertices

u1, . . . ,un that are connected along an edge to a central vertex v .
The vertices u1, . . . ,un are assumed to be in cyclic order. We call

the n-gon that connects the vertices ui the boundary polygon and

denote it by Bv . Note that if the mesh is not triangular, the boundary

polygon Bv is different from the boundary of the 1-ring as the 1-ring
consists of all the faces around the vertex v . We illustrate this in

Figure 3.

Quaternions for geometry in R3. It is convenient to represent ob-

jects and transformations in three-dimensional Möbius geometry
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Fig. 3. A vertex star vui with boundary polygon Bv . For triangle meshes
(left), the boundary polygon Bv = u1, . . . , u6 consists of actual edges of the
mesh. For polygonal meshes (right), the boundary polygon Bv = u1, u2, u3,
is the boundary of the vertex star (red dashed lines). The polygon r1, . . . , r9
is the boundary of the 1-ring (green lines). The boundary of the 1-ring and
the boundary polygon are different in this case.

using quaternions. Quaternions q ∈ H are “four-dimensional num-

bers” q = [r ,v] with a one-dimensional real part r = Re(q) ∈ R and

a three-dimensional imaginary part v = Im(q) ∈ ImH � R3. We

represent vertex positions (x ,y, z) in R3 by imaginary quaternions

[0, (x ,y, z)] and the edge vector between two points qi ,qj ∈ ImH is

denoted by qi j = qj −qi . Quaternions can be added [r ,v]+ [s,w] =
[r+s,v+w] andmultiplied [r ,v]·[s,w] = [rs−⟨v,w⟩, rw+sv+v×w]
(⟨·, ·⟩ and × stand for Euclidean inner product and cross prod-

uct, respectively). The multiplication is commutative if and only

if (v,w) are linearly dependent. We denote the conjugate by a bar:

[r ,v] = [r ,−v] with the property p · q = q · p, which immediately

implies q = −q for all q ∈ ImH. A quaternion q has an absolute

value |q | =
√
qq ∈ R. It has an inverse q−1 = q/|q |2 if q , 0.

Any non-real quaternion q can be represented in its polar form

q = |q |[cosθ ,n sinθ ]with ∥n∥ = 1. To dispel ambiguity in the angle,

we always use the convention θ ∈ (−π ,π ]. As such, there is a well-
defined square root, given by

√
q =

√
|q |[cos θ

2
,n sin θ

2
]. Note that

the square root always has a non-negative real part by this choice.

Finally, for any quaternion q , 0, the transformation x 7→ q−1xq
produces a quaternion whose imaginary part is a Euclidean rotation

of the imaginary part of x , and whose real part equals that of x , i.e.
| Im(x)| = | Im(q−1xq)| and Re(x) = Re(q−1xq).

3.2 Möbius transformations and the cross-ratio
Möbius transformations in quaternions. We use the term gener-

alized sphere to denote an ordinary sphere or a plane (which can

be interpreted as a sphere centered at∞). Möbius transformations

in R3 are bijective maps from ImH ∪ {∞} to itself. They can be

represented concisely using quaternions:

q 7→ w = (aq + b)(cq + d)−1, (1)

with a suitable choice of coefficients a,b, c ,d ∈ H that guarantees

thatw ∈ R3 [Vaxman et al. 2015]. Any Möbius transformation can

be interpreted as a composition of rigid transformations, scaling,

and inversions in generalized spheres. As such, Möbius transfor-

mations transform generalized spheres into generalized spheres,

and generalized circles (circles and lines) into generalized circles.

Two sets of points are called Möbius equivalent if there is a Möbius

transformation that maps one set to the other.
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Cross-ratio. The quaternionic cross-ratio of four points, qi , qj , qk ,
ql ∈ ImH is defined by:

cr[qi ,qj ,qk ,ql ] = qi j q−1jk qkl q
−1
l i .

The quaternionic cross-ratio is real if and only if the four points are

cocircular [Bobenko and Pinkall 1996]. Unlike the complex cross-

ratio, which is fully invariant under Möbius transformations, the

quaternionic cross-ratio is not fully preserved. When we transform

four points using the Möbius transformation in Eq. (1), the quater-

nionic cross-ratio cr is transformed by a rotation:

cr[wi ,w j ,wk ,wl ] = (cqi + d) cr[qi ,qj ,qk ,ql ] (cqi + d)−1.
Hence, by the rotation property mentioned at the end of Section 3.1,

we have that Re(cr), | Im(cr)| are preserved by Möbius transfor-

mations but the direction of Im(cr) is not preserved in general.

qiqiqiqiqiqiqiqiqiqiqiqiqiqiqi
qiqi

qjqjqjqjqjqjqjqjqjqjqjqjqjqjqj
qjqj

qkqkqkqkqkqkqkqkqkqkqkqkqk
qkqkqkqk qlqlqlqlqlqlqlqlqlqlqlqlql

qlqlqlql
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The imaginary part of the cross-ratio has

a meaningful geometric interpretation: it

has the same direction as the 3D vector

that connects the center of the circum-

sphere of qi ,qj ,qk ,ql to the vertex qi
(see inset). As such, the two cross-ratios

cr[qi ,qj ,qk ,ql ] and cr[qk ,ql ,qi ,qj ] can
be parallel only when the radius of the

circumsphere is infinite (and then it is a

plane), or when qi and qk are antipodal points. We next use this

cross-ratio characterization of spheres and circles to define our

discrete Willmore energy and Möbius regularity.

3.3 Tangent polygons, Willmore energy, and Möbius
regularity

A fundamental element in our construction is the tangent polygon of
a vertex star. The tangent polygon is explored in [Vaxman et al. 2017],

where it is used to characterize cosphericality and regularity of mesh

elements. We repeat important concepts of the characterization

given by [Vaxman et al. 2017] for completeness, and extend them

with several novel insights.

Corner tangents and tangent polygons. The corner tangent of three
points qi ,qj ,qk ∈ ImH is defined as:

t[qi ,qj ,qk ] := q−1i j + q
−1
jk .

Geometrically, the corner tangent is a 3D vector that is tangent to

the circumcircle of the three points qi ,qj ,qk at the corner point qj
(as illustrated in Fig. 4 left). Given a vertex star vu1, . . . ,vun , we
can sum the corner tangents around it. The closedness of the star

then implies that the sum must vanish:∑
i
t[ui ,v,ui+1] =

∑
i
(v − ui )−1 + (ui+1 −v)−1 = 0.

Hence, we can interpret the corner tangent vectors associated with

vertex v as the edges of a closed abstract n-gon, which is denoted

as Tv . This is the so-called tangent polygon. In order to define Tv
uniquely avoiding translation ambiguity, we always refer in this

paper to one particular instance of Tv whose vertices are written in

the form Ti = (ui −v)−1, in which case we get that t[ui ,v,ui+1] =
Ti+1 −Ti (see Fig. 4 right). The following Lemma is one of our key

contributions, as it leads to several further insights. It can be used

to justify most of the properties of Tv that are explored in [Vaxman

et al. 2017] in an intuitive and concise manner.

Lemma 3.1. Let vu1, . . . ,vun be a vertex star. Then Bv and Tv are
Möbius equivalent.

Proof. The Möbius transformation q 7→ (q −v)−1 maps every

ui to (ui − v)−1 = Ti , and with that the boundary polygon Bv is

Möbius-equivalent to the tangent polygon Tv . □
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Fig. 4. A vertex star (left) with one corner tangent at v , and the complete
resulting closed tangent polygonTv (right). Note that the tangent polygon is
not necessarily planar. The imaginary part of the cross-ratio cr[v, u3, u4, u5]
is orthogonal to the two corresponding edges of the tangent polygon (right).

Given four points qi ,qj ,qk ,ql as before, it is possible [Vaxman

et al. 2017, Section 4.3] to express their cross-ratio cr[qi ,qj ,qk ,ql ]
in terms of corner tangents as follows:

cr[qi ,qj ,qk ,ql ] = t[qk ,qi ,qj ]−1 · t[qk ,qi ,ql ]. (2)

This immediately implies that the imaginary part of the cross-ratios

cr[v,ui−1,ui ,ui+1] is orthogonal to the edges Ti−1Ti and TiTi+1 of
the tangent polygon (see Fig. 4).

The Möbius transformation q 7→ w = (aq + b)(cq + d)−1 maps

the corner tangent t[ui ,v,ui+1] to:
t[wi ,w,wi+1] = (cv + d) t[ui ,v,ui+1] (cv + d),

which corresponds to a similarity. We thus obtain the following

result:

Lemma 3.2. The tangent polygons of Möbius equivalent vertex stars
are similar to each other (see Fig. 5).

DiscreteWillmore energy. Consider a vertex starvui as before, and
its tangent polygon Tv . Recall that the imaginary parts of the cross-

ratios cr[v,ui−1,ui ,ui+1] are codirectional with the vector between

the center of the circumsphere to these points and v . As such, if and
only if all Im(cr[v,ui−1,ui ,ui+1]) are codirectional, which means

that Tv is planar, the entire vertex star is cospherical.

Hence, one can measure local deviation of a 1-ring from being

cospherical by measuring the planarity of the tangent polygon in-

stead, which is often easier. This serves as a discreteWillmore energy
for the vertex star. [Bobenko and Schröder 2005] used an equiva-

lent measure of the angle defect of the tangent polygon for that

purpose. We note that this notion of discrete Willmore energy is

rather weak compared to the continuous one. Consider for instance
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a mesh with random vertex positions, and then project each vertex

onto a unit sphere by normalization:vi → vi/|vi |. Such a mesh will

have zero discrete Willmore energy despite its lack of regularity and

smoothness; all the tangent polygons would be planar, but severely

distorted and self intersecting.

Möbius regularity and regular canonical forms. In the case where

the tangent polygon of a vertex star is regular, i.e., a perfectly Eu-

clidean regular n-gon, we call the original vertex starMöbius regular
(see Fig. 5). This means that this vertex star is Möbius equivalent to

a Euclidean regular vertex star, i.e., a central vertex connected to

the vertices of a regular n-gon. This perfect star is called the regular
canonical form. Möbius regular faces on the other hand are Möbius

equivalent to Euclidean regular n-gons. A Möbius regular mesh is

then consequently a mesh where all faces and all vertex stars are

Möbius regular. We note that in the case where a 1-ring is mixed,
adjacent to polygonal faces of different valences, a Möbius-regular

vertex star is Möbius equivalent to a canonical form which is not

perfectly regular, but still cocircular, and where the edge lengths

depend on the valences of the respective faces.

Our paper generalizes the definition of canonical forms to all 1-
rings, not just Möbius-regular 1-rings with regular canonical forms.

We rely on the relation between vertex stars and their tangent

polygons for our subdivision method (Section 4). By working on the

canonical forms instead of on the original vertex stars, and using

linear schemes that preserve planarity and Euclidean regularity,

we preserve the cosphericality and the Möbius-regularity of the

original meshes in the respective elements.

BvBvBvBvBvBvBvBvBvBvBvBvBvBvBvBvBv

TvTvTvTvTvTvTvTvTvTvTvTvTvTvTvTvTv

t
a
n
g
e
n
t
p
o
l
y
g
o
n

TvTvTvTvTvTvTvTvTvTvTvTvTvTvTvTvTv

BvBvBvBvBvBvBvBvBvBvBvBvBvBvBvBvBv

vvvvvvvvvvvvvvvvv

Möbius trans.

tangent polygon

similarity

Fig. 5. Left : a Euclidean-regular vertex star (green) with its tangent polygon
(red). Right : a Möbius-regular vertex star (green) with its Euclidean regular
tangent polygon (red). The two tangent polygons of Möbius equivalent
vertex stars are related by a similarity.

4 CANONICAL MÖBIUS SUBDIVISION
In the following, we describe a general method to convert linear

subdivision methods into new subdivision methods that commute

with Möbius transformations. That is, subdividing two coarse Mö-

bius equivalent meshes leads to two fine meshes which are related

by the same Möbius transformation. An effect of this is that linear

methods that preserve planarity (basically all of them) are converted

intomethods that preserve cosphericality andmethods that preserve

Euclidean regularity in the plane (all the methods we use) into

methods that preserve Möbius regularity.

4.1 The subdivision algorithm
Our subdivision algorithm proceeds in the following steps:

• For each vertex v , compute a canonical form Cv and a Möbius

transformationmv from the original star to the canonical form.

Transform the entire 1-ring by this transformation (Sec. 4.2).

• Create new candidate edge, face, and vertex points with chosen

linear stencils in the canonical form Cv (Sec. 4.3).

• Transform the new candidate points back to the original mesh

via the inverse transformationm−1
v .

• Blend candidate points that are computed from all adjacent vertex

1-rings with Möbius invariant blending operators into final edge

and face points (Sec. 4.4).

Because of the use of a canonical form, we denote this as canonical
Möbius subdivision. The generality of this scheme allows us to use

any linear scheme that can be described by blending points from

individual vertex stars. The process is illustrated in Figure 6.

original mesh
vertex stars

new face pointnew face pointnew face pointnew face pointnew face pointnew face pointnew face pointnew face pointnew face pointnew face pointnew face pointnew face pointnew face pointnew face pointnew face pointnew face pointnew face point canonical formscanonical formscanonical formscanonical formscanonical formscanonical formscanonical formscanonical formscanonical formscanonical formscanonical formscanonical formscanonical formscanonical formscanonical formscanonical formscanonical forms

vkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvk vjvjvjvjvjvjvjvjvjvjvjvjvjvjvjvjvj

CkCkCkCkCkCkCkCkCkCkCkCkCkCkCkCkCk CjCjCjCjCjCjCjCjCjCjCjCjCjCjCjCjCj
vf , jvf , jvf , jvf , jvf , jvf , jvf , jvf , jvf , jvf , jvf , jvf , jvf , jvf , jvf , jvf , jvf , j

vf ,kvf ,kvf ,kvf ,kvf ,kvf ,kvf ,kvf ,kvf ,kvf ,kvf ,kvf ,kvf ,kvf ,kvf ,kvf ,kvf ,k

mkmkmkmkmkmkmkmkmkmkmkmkmkmkmkmkmk mjmjmjmjmjmjmjmjmjmjmjmjmjmjmjmjmj

Fig. 6. Illustrating the canonical subdivision process: we transform the
vertex stars of an original mesh into canonical forms Cj and Ck , where we
compute new face candidate points in face f , namely vf , j and vf ,k , with
a linear subdivision scheme. Then, we transform the points back, and blend
them across stars into the final face point vf (red).

4.2 Canonical forms
The first step of our algorithm is to transform each 1-ring to a canon-

ical form, on which the linear subdivision operators would perform.

As such, a canonical form should be a 1-ring of the same connectiv-

ity as the original, and it should be invariant up to similarities when

applying a Möbius transformation to the original. Furthermore, we

need to construct a Möbius transformation (and consequently its

inverse) between the two 1-rings.

A similar construction to what we call canonical forms has been in-
troduced as canonical embedding for Möbius-regular meshes in [Vax-

man et al. 2017] (see Section 3.3). The canonical embeddings serve

as representatives of the equivalence class of Möbius-regular vertex

stars. However, our definition extends this to a canonical form for

equivalence classes of every type of vertex stars, not just Möbius-

regular ones.

Consider a vertex star vu1, . . . ,vun around central vertex v with

boundary polygon Bv = u1, . . . ,un as before, for which we compute

the canonical form Cv (see Figure 7). The natural candidate for the
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boundary of the canonical form is based on the tangent polygon

Tv , which is Möbius equivalent to Bv (Lemma 3.1), and which is

the same up to similarities for all Möbius-equivalent vertex stars

(Lemma 3.2).

vvvvvvvvvvvvvvvvv

BvBvBvBvBvBvBvBvBvBvBvBvBvBvBvBvBv TvTvTvTvTvTvTvTvTvTvTvTvTvTvTvTvTv

c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )

CvCvCvCvCvCvCvCvCvCvCvCvCvCvCvCvCv

c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )c(Tv )

Fig. 7. Constructing the canonical form. Left: a given vertex star with central
vertex v and boundary polygon Bv = u1, . . . , un . Center: the tangent
polygon Tv with vertices Ti =mBv→Tv (ui ) and its approximate best-fit
circle with barycenter c(Tv ). The central vertex v gets mapped to infinity:
mBv→Tv (v) = ∞. Right: inversion in the best-fit circle gives the canonical
form Cv =mTv→Cv (Tv ) with c(Tv ) =mTv→Cv (∞).

However, the Möbius transformation mBv→Tv (q) = (q − v)−1
sends v to ∞. That means that it is not sufficient for constructing a

canonical form. To complete our construction, we composemBv→Tv
with another transformationmTv→Cv (q) that brings∞ into a point

c(Tv ) that we consider as the center of Tv . There are two nested

requirements on c(Tv ): if Tv is planar, then c(Tv ) needs to be in the

plane containing Tv . This will guarantee spherical reproduction. If
Tv is in addition a regularn-gon, c(Tv ) needs to be exactly the center
of its circumscribing circle. This will guarantee Möbius-regularity

reproduction. To adhere to these requirements, it is possible to

compute a best-fit circle to the projection of Tv to a 2D plane, and

use the center of the circle as c(Tv ). We denote the radius of the

circle as r (Tv ); then, to complete the computation of the canonical

form, we definemTv→Cv (q) = r2(c − q)−1 + c . In words,mTv→Cv
is an inversion of Tv in (the sphere whose equator is) its own best-

fit circle, which brings∞ to c(Tv ), and preserves Tv if it is indeed

regular (or just cocircular).

Nevertheless, in practice we avoid a costly nonlinear (albeit local)

computation of best-fit circle, and instead approximate c(Tv ) by
simply using the barycenter ofTv , and r (Tv ) as the average distance
of c(Tv ) from the points of Tv . The barycenter coincides with the

exact c(Tv ) for regularn-gons, so we do not harm the desiredMöbius

regularity reproduction.

Finally, the complete transformation from the vertex star to its

canonical form is the Möbius transformation:

mBv→Cv :=mTv→Cv ◦mBv→Tv .

Boundary canonical forms. In the general case, boundary vertices

also have a tangent polygon, which is an open polygon. For Mö-

bius-regular boundary vertices, it is part of a regular polygon. To

generalize the construction above, we need to compute c(Tv ) differ-
ently. In practice, we found that a good choice is simply the average

of the two neighboring boundary vertices. Note it still reproduces

regularity when the boundary has a regular valence (i.e., 3 edges

for quad meshes and 4 edges for triangle meshes).

A special case is boundary “ear” vertices of valence 2. Ear vertices

are adjacent to a single face. As such, we use all the vertices of the

0 1 2 3

4 5 6

Fig. 8. Polygonal pattern subdivision with our method. Note how the tip of
the cone subdivides into a near-spherical pattern, even with unconventional
pattern subdivision.

face for the construction of Bv of the ear vertex. This reproduces

our desired properties as well.

4.3 Linear subdivision schemes
We work with a broad range of linear subdivision schemes designed

for triangle, quad and general polygonal patterns. In each such

scheme, the subdivision creates a hierarchy of meshes, from the

coarse level M0 = (V0, E0,F 0), which we get as input, to some

fine levelMk = (Vk , Ek ,F k ). The vertices of level k + 1 comprise

new edge or face points (or both), and the original vertices of level

k are either the same in level in k + 1 in interpolatory schemes, or

averaged in approximating schemes. To fit our methodology, we

categorize the linear subdivision schemes we use into two groups:

• 1-ring subdivision schemes, where the stencil of every point

at level k + 1 is contained in one or more 1-rings completely.

• 2-ring subdivision schemes, where the stencil is not contained
in any single 1-ring, but rather contained in the union of two

adjacent 2-rings.

The purpose of this categorization is as follows: in the second

step of our algorithm, we compute candidate points within each

ring individually. In the fourth step, we blend the candidate points

contributed from the different rings into the final new vertex posi-

tions.

Due to this, for 1-ring schemes, we blend points that are computed

using the same stencil, but through different canonical forms. In 2-

ring schemes, we need to break the stencils to partial contributions

from the independent rings. We next describe these procedures.

1-ring subdivision schemes. A linear stationary subdivision scheme

is defined by a constant local (averaging) matrix Sk that describes

the positions of new face, edge, and vertex points at level k +1, from

the vertices of level k . Each row Sk (p, .) encodes the stencil of the
subdivision scheme for a single vertex p by its non-zero elements

NZ(Sk (p, .)). Then, we define a subdivision scheme to belong to

the “1-ring” categorization when for every 1-ring Rkv of vertex v at

level k , and every stencil NZ(Sk (p, .)) for any new point p at level

k + 1, we have either NZ(Sk (p, .)) ⊂ Rkv or NZ(Sk (p, .)) ∩ Rkv = �.
In words, the stencil of each point in level k + 1 is contained in one
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or more 1-rings completely. As such, when using the original linear

schemes (without our proposed Möbius modification steps), all the

candidate points are trivially equal, and do not require blending.

Examples of stencils that exhibit this property:

(i) A face point as an average of the vertices adjacent to the face.

(ii) An edge points at an edge ik where the stencil is supported by

the vertices of a flap ijk,kli .
(iii) Vertex points that are the weighted average of such face and

edge points, and other vertices in their 1-ring.

(iv) Boundary vertices and edges blended from adjacent boundary

vertices alone.

Most schemes, especially approximative schemes, belong to this

category: for instance, Loop, Catmull-Clark, corner-cutting and

Simplest subdivision [Peters and Reif 1997]. To these we include

subdivision-like operators like dual truncation, vertex insertion, and

dual meshes, presented in [Akleman et al. 2005].

0 1 2

0

W

5

0 1

2 3

Fig. 9. Triangle and quad pattern subdivision with our method. The color
figures show the Willmore energy (marked “W”) of every vertex, measured
by the planarity of the tangent polygon. The planarity itself is measured
as the RMSE of the planarity values of each four consecutive quads in
the tangent polygon. Individual quad planarity is measured in turn by the
percentage of the distance between the diagonals to the average diagonal
length. Note how the Willmore energy reduces with each refinement level.

2-ring subdivision schemes. The stencils of these schemes are

wider and are not contained in any single 1-ring. This is usually

a property of interpolatory schemes that require bigger stencils

to achieve smoothness. Specifically, we use Kobbelt quadrilateral

scheme [Kobbelt 1996] and the Modified Butterfly scheme [Dyn et al.

1990; Ling et al. 2006; Zorin et al. 1996] that exhibit this property.

Our modus operandi is to create “partial candidate points”. That

is, we break each stencil into the individual contributions from

each ring, compute them in their canonical form, and then blend

them on the original mesh. This is similar to the process for 1-ring

schemes, except that the stencil needs to be adapted. We do that for

the Kobbelt scheme and the Modified Butterfly scheme as follows:

0 1

2 3

0

W

5

0 1 2

3 4

Fig. 10. Our subdivision with the Butterfly scheme (the Epcot mesh, top),
and the Kobbelt scheme (Duck mesh, bottom). Note that for the Epcot mesh,
the small pyramids become spherical pockets, and that the dimple in the
Duck’s nose remains intact, rather than averaged out.
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Kobbelt scheme. A regular interior vertex in a quad mesh has

valence 4 whereas singularities in the interior are characterized by

a valence different from 4. On the boundary we have valences of 2

for corners, 3 for regular boundary vertices or any other number

for singular boundary vertices. The Kobbelt scheme creates an edge

point vjk with stencils comprising vertices vj and vk , respectively,
and with given respective virtual points vi and vl (see Figure 11
left). For regular vertices vj and vk , the virtual points are just the
next points along the parameter lines; otherwise, we compute them

with the Kobbelt linear stencil in the respective canonical forms Cj
and Ck .

The original linear Kobbelt scheme provides linear blending rules

for the edge points from the four points vi ,vj ,vk ,vl , and for the

face points as tensor products. We, on the other hand, blend the

four points to an edge points in a Möbius invariant way (with the

operator F4), and blend the face points with the operator F6, as
explained in Section 4.4.

vjk

vj
vk

vi

vl

vi

vl

CjCjCjCjCjCjCjCjCjCjCjCjCjCjCjCjCj

CkCkCkCkCkCkCkCkCkCkCkCkCkCkCkCkCk

vjkvjkvjkvjkvjkvjkvjkvjkvjkvjkvjkvjkvjkvjkvjkvjkvjkve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,k

ve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, j

ve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,kve,k

ve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, jve, j

Ck Cj

Fig. 11. Creating partial candidate edge points in 2-ring schemes. Left: In
the Kobbelt scheme we create virtual points vj and vl in the respective
canonical forms, and then blend them to vjk using F 4. Right: edge points
in the Butterfly scheme are created by breaking the 2-ring support into
individual 1-ring stencils, creating partial candidate edge points ve, j and
ve,k , computed on the canonical form. These points are then blended with
F 4 to form vjk .

Modified Butterfly scheme. The edge points of the Butterfly scheme

are computed by a symmetric stencil within two neighboring 1-rings,

as depicted in Figure 11 (right). Consider edge e = (vj ,vk ) on which

we would like to compute edge point vjk . In the case where one

of the rings is singular and the other one is not, new points are

computed only with regards to the singular ring, and it is like the

1-ring scheme. In case both rings are either singular or regular to-

gether, and as the scheme is symmetric, we first compute the partial

candidate points ve, j and ve,k as follows. Write the vertices of the

first 1-ring in a vector Ij , and of the second in Ik (the two vectors

contain mutual vertices as the 1-rings are overlapping). Then, the

new edge point vjk can be written as

vjk =Wj Ij +Wk Ik =
2Wj Ij + 2Wk Ik

2

,

whereWj andWk are the vectors of vertex weights in the Butterfly

scheme. In that formulation the new point vjk is the arithmetic

mean of

ve, j = 2Wj Ij , and ve,k = 2Wk Ik ,

which is just the linear blending of vjk from the partial candidate

points ve, j and ve,k of the two involved 1-rings. Our method con-

verts the Butterfly scheme into a Möbius-invariant scheme by com-

puting ve, j and ve,k in the individual canonical forms of j and k ,
and then blending them in a Möbius invariant way (with the F4-
operator), as explained in Section 4.4.

We depict the results of our subdivision for 1-ring schemes in

Figures 8 and 9, and for 2-ring schemes in Figure 10.

Boundary curves. In all methods, boundaries (and sharp features

in theory, though we do not enforce them in our examples) are

treated as independent curves that are subdivided using curve-based

rules. Thus, our Möbius subdivision follows the same paradigm, and

uses the (approximating and interpolating) Möbius-invariant curve

subdivision rules we present in Section 4.4.1 in lieu of linear curve

subdivision rules.

4.4 Möbius-invariant blending
In the fourth and last step of the algorithm, we take the candidate

points computed in the linear schemes on the individual canoni-

cal forms, after transforming them back to the original mesh, and

blend them to the final points of the subdivision. Our blending is

based on two novel Möbius-invariant operators that we detail in

the following.

4.4.1 Four-point blend F4. Consider four points in R3, given as

imaginary quaternions: a,b, c,d ∈ ImH. We construct a new point

p in a Möbius-invariant way: p is defined as the solution to

cr[c,a,b,p] = −
√
cr[c,a,b,d].

For the definition of the square root of a quaternion see Sec. 3.1.

The solution can be explicitly written as

p =
(
(a−b)(c−a)−1χ + 1

)−1 · ((a−b)(c−a)−1χc + b), (3)

where χ := −
√
cr[c,a,b,d].

This construction leads to a purely imaginary point p, which means

a valid point in R3. We provide a proof in Appendix A (Lemma A.1).

As the definition of p depends on cross-ratios only, the construction

is Möbius-invariant. We denote the resulting point of our four-

point insertion rule by F4(a,b, c,d) := p. The construction has the

following properties:

Cocircularity preserving. Recall that a,b, c,d are cocircular if and

only if their cross-ratio ρ = cr[c,a,b,d] is real. A well-known fact

for cross-ratios [Coxeter 1993] is that ρ > 0 if and only if we can

travel from a to d along the circle without passing through b or c
(see Fig. 12 left). As

√
ρ is positive as well in that case, p must be

arranged between b and c . Note that when b = c we get p = b = c .
If ρ < 0, there are infinitely many quaternionic square roots,

corresponding to the case where the pair (b, c) separates the pair
(a,d) on the circle like the vertices of the letter “Z” (see Fig. 12

center). In this case, there is no good cocircularity preserving choice;

it is instead practical to choose χ =
√
|ρ |

[
0,

(a−b)×(c−b)
∥(a−b)×(c−b) ∥

]
. Then

the new point p does not lie on the same circle but is still in the

same plane. We describe this case for completeness, but it is rather

contrived and never happens in any of our examples.
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Fig. 12. Three examples of the four-point insertion rule. The new point
p = F 4(a, b, c, d ) from concyclic points lies on the same circle iff one can
travel form a to d on the circle without meeting either c or d , as in the left,
rather than the center case.

Cosphericality preserving. Next assume that the four points a,b,
c ,d are not cocircular, i.e., assuming general position. However, the

direction of the imaginary part of cr[c,a,b,p] is the same as that

of χ (again since it is the square root). Consequently, Lemma A.1

immediately implies that the new point p lies on the circumsphere

of a,b, c,d (or on the same plane if the four points are coplanar).

Symmetry. Since the construction F4 only involves cross-ratios

of cospherical points, to compute F4(a,b, c,d) we could also apply

a Möbius transformation that maps the circumsphere of a,b, c,d to

the complex plane and make our computations there. The tedious

part here would be determining the right Möbius transformation.

However, this idea gives us the important insight of the symmetry

of F4, i.e., F4(a,b, c,d) = F4(d, c,b,a), as the complex cross-ratio

obeys cr[a,b, c,d] = cr[d, c,b,a]. Practically, that means it doesn’t

matter from which direction we blend the points.

Summarizing the above properties we get:

Lemma 4.1. The four-point insertion rule F4(a,b, c,d) is circle pre-
serving (iff the pair (a,d) is not separated by (c,b)), sphere preserving,
and symmetric, i.e., F4(a,b, c,d) = F4(d, c,b,a).

Curve subdivision. A beneficial application of F4 is the ability to

subdivide curves in space with exact sphere and circle reproduction.

One can build an interpolating scheme by repeatedly applying F4 to
every consecutive set of four vertices. It is also possible to build an

approximative scheme by further applying F4 to the even vertices

as well (with the two original even neighbors and the two new odd

edge points). We show two examples in Figure 13, and use these

operators for boundary-curve subdivision in all our schemes.

a

b

c

d

e

f

p

4.4.2 Six-point blend F6. We consider six points

a,b, c,d, e, f ∈ ImH partitioned into two chains:

a,b, c as one chain, and d, e, f as another (see in-

set). We create a point p that interpolates between

them. To this end, we use the following construc-

tion where we solve forp in cr[e,a,b,p] = χ , with
χ defined as below. In a similar manner to F4, we
can write p explicitly as

p =
(
(a − b)(e − a)−1χ + 1

)−1 · ((a − b)(e − a)−1χe + b
)
,

where χ := −
√
cr[e,a,b,d] ·

√
r ,

with r :=
√
cr[e,a,b,d]

−1
· cr[e,a,b, f ] ·

√
cr[e, c,b, f ] −1.

While this construction of p seems convoluted, note that all cross-

ratios begin with e: in the case where all points are on the same

sphere, we then have a blend of cross-ratios with co-directional

0
1

7

0 1 7

Fig. 13. Our algorithm for point insertion with p = F 4(a, b, c, d ) results
in circle- and sphere-reproducing curves. Top: interpolatory circular curve.
Bottom: approximating spherical curve. Control polygon in brown.

imaginary parts (since the inverse, square root, and product of

quaternions do not change this direction). p, constructed this way,

is always imaginary. For a proof again apply Lemma A.1 (see Ap-

pendix A). In the case where the six points are not cospherical

we observed that p is still imaginary in all present cases of our

examples and in numerical experiments. However, we do not yet

have a rigorous proof for that case. We denote this construction by

F6(a,b, c,d, e, f ) := p and for the same reason as in the four-point

insertion rule and as detailed in Appendix A we obtain:

Lemma 4.2. For six cospherical points the six-point insertion rule
F6(a,b, c,d, e, f ) is sphere preserving, i.e., the new point lies on the
same sphere. If b = e , we get p = b = e .

4.4.3 Blending edge and face points. As the final step of our algo-

rithm we apply the blending operators F4 and F6 to candidate edge

and face points computed in the canonical forms and transformed

back to the original mesh. We explain the rules for blending edge

and face points for 1-ring schemes as follows.

Blending edge points. In 1-ring schemes, for each two neighboring

1-rings with central verticesvj andvk , and the edge e between them,

we obtained two candidate edge pointsve, j andve,k computed from

the two canonical forms and transformed back. The final edge point

is computed as:

vjk = F4(vj ,ve, j ,ve,k ,vk ).
Note that if the mesh is Möbius regular, it is Möbius equivalent to a

regular grid (at least locally). In that case, we get ve, j = ve,k = vjk ,
where in both canonical forms this is merely the mid-edge point

in all the subdivision schemes we use. For instance, a perfect grid

is subdivided into a perfect grid in Catmull-Clark subdivision (see

Figure 15), and our scheme reproduces this naturally under a Möbius

transformation.

In both the Kobbelt and the Butterfly scheme (Figure 11) we have

a similar construction for edge points: for the Kobbelt scheme, we

blend two edge points vj and vk with the virtual points vi and vl
as vjk = F4(vi ,vj ,vk ,vl ), and in the Butterfly scheme we have the

same construction as in 1-ring methods, except that the candidate
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edge points are not equal in general, as they are partial candidate

points computed each with a parted linear stencil.

w1

w2

w3

w4

w1234

w5

w6

w7

w8

w5678

p

Fig. 14. Computing the face point in the Kobbelt scheme. Having computed
edge points w1. . .8 (yellow), we compute candidate face points w1234 =

F 4(w1, w2, w3, w4) and w5678 = F 4(w5, w6, w7, w8) (light blue). Then we
compute the final face point p = F 6(w2, w1234, w3, w6, w5678, w7).

Blending face points. In the linear Kobbelt scheme, the virtual

points are designed in such a way that the face point can be com-

puted in either direction of the quad mesh, horizontally or vertically

(i.e., as tensor product of the 4-point scheme). Unfortunately, this

is not guaranteed in our scheme unless the mesh is perfectly Mö-

bius regular; as such, for any face, we compute two candidate face

points, one blended with the vertical edge points, and one with the

horizontal edge points, and compute them as illustrated in Figure 14.

Next consider face points for faces of valence d in 1-ring schemes.

We get a candidate face pointvf ,i from transforming back the candi-

date points computed in the canonical formsCi of the 1-rings around
each vertex vi . We perform the following algorithm to compute the

final single new face point vf :
(i) Pair every vertex vi with opposite vertex vi+ d

2

. Create set A of

quadruplets vi ,vf ,i ,vf ,i+ d
2

,vi+ d
2

.

(ii) SortA according to the ascending noncircularity or the quadru-

plets, measured as 1 − | Re(cr)|/|cr| (difference of cross ratio of

quadruplet from a real number).

(iii) For each quadruplet (al ,bl , cl ,dl ) ∈ A, compute the new point

pl = F4(al ,bl , cl ,dl ).
(iv) Assign vf = p1, where p1 is the p of the first quadruplet in A.
(v) For l = 2, . . . ,d compute vf := F6(al−1,vf , cl−1,al ,pl , cl ).

We use all indices modulo d , and if d is odd, we round down
d
2
.

In words, the algorithm blends the candidate face points one by one,

where the ones that are already on a circle blend before others, as

they are less “noisy”. Note that the sorting is cross-ratio based and

thus doesn’t break the Möbius invariance. However, the algorithm is

not symmetric with regards to the points in the face; we found that

this has little impact in practice. Note that in this case as well, if the

1-rings around the mesh are all Möbius regular, all candidate points

are equal to the final result vf ,i = vf . As the face is Möbius-regular

in that case as well, consider the regular n-gon to which the face is

Möbius-equivalent, and its center c ; then, vf is the image of Möbius

transformation of that center.

4.5 Properties of canonical Möbius subdivision
The stencil of new edge and face points, and deformed vertex points,

is limited to a 2-ring environment of the coarsest control cage. As

such, we can provide some theoretical guarantees on spherical and

regularity reproduction of elements in the refined mesh.

Spherical reproduction. If a vertex of level k and the support of its

stencil are on a generalized sphere (i.e., sphere or plane), then it is

on the same sphere for all levelsm ≥ k . To see that, take a Möbius

transformation that takes the entire support to a plane, which is

possible due to cosphericality. Then, every linear subdivision, shar-

ing the same support, would preserve the plane, and the Möbius

transformation back would reproduce the original sphere. As an

interesting consequence, even when we use approximative subdivi-

sions, locally cospherical environments often interpolate or nearly

interpolate the coarse points, just because the sphere is reproduced.

See such examples in Figures 8, 16, and 18.

Möbius-regularity reproduction. By a similar logic, if the support of

a vertex at levelk is Möbius equivalent to a Euclidean regular pattern

in the plane (see Fig. 15 bottom), and the chosen underlying linear

scheme preserves Euclidean regularity, then the vertex is Möbius-

regular for all levelsm ≥k . Note that this a stronger requirement

than just having every vertex in the support be Möbius regular on

its own, as they do not necessarily have a mutual single Möbius

transformation to the plane. See Fig. 15 top for a counterexample.

0 1 4

0.5

MR

0

Fig. 15. Möbius regularity under Möbius subdiv. Top: the octahedron is Mö-
bius regular, and the stencil for vertex points is as well, but not the stencil
for edge points, and thus the subdivision loses regularity at the latters. Note
that the irregualrity diffuses under refinement. MR measures the squared
sum of differences between cross-ratios on each tangent polygon (0 = Möbi-
us regular). Bottom: the Möbius subdiv. of a perfect grid under a Möbius
transformation preserves the regularity perfectly.
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0

4

0

4

Fig. 16. The impulse responses for Catmull-Clark (left) and Loop (right)
Möbius subdivision.

Bijectivity. Consider a (generalized) spherical 1-ring in a mesh

with central vertexv . We say it is non-flipping if the boundary poly-

gon Bv is a non-self-intersecting curve that divides the sphere into

“outside” and “inside” regions by the orientation of Bv , and where

v is inside. A subdivision is bijective if it preserves this property
under refinement. By empirical evidence on all our examples, we

conjecture that if a vertex is Delaunay, which is defined as having

a convex tangent polygon, and so are all its neighbors, then the

subdivision is locally bijective. We cannot provide a formal proof

and leave this to future work; nevertheless, the intuition behind this

is that the chosen center c(Tv ) for themBv→Cv is inside the tangent

polygon, and therefore the transformation does not have a pole

inside Tv , and thus avoids flipping triangles. See further evidence

in Sections 6.4 and 7.

5 ANALYSIS
Impulse response. We show the “impulse response” (the non-linear

analogue of a basis function) for the Catmull-Clark and Loop Mö-

bius subdivisions in Figure 16. They are made by subdividing a

perfect Euclidean regular grid at z = 0 with one vertex at z = 1.

This highlights the spherical nature of the subdivision. Note that

Loop is interpolating in this case; that is because the created cone

is cospherical.

Spherical reproduction. We subdivide several distorted and un-

even, yet perfectly spherical meshes with both Möbius subdivision

and linear subdivision in Figure 17. This demonstrates our guaran-

teed property of perfect spherical reproduction.We also demonstrate

it in the same figure on polyhedral pattern subdivision.

Linear and Möbius subdivisions. In Figure 18, we analyze the be-

haviour of Möbius subdivision with relation to benchmark subdi-

vision meshes. The star mesh is subdivided by Butterfly and Loop

schemes, both linear and Möbius. The star has cones (spikes) with

low Willmore energy, and adjacent hyperbolic junctions between

them that are far from spherical (see Willmore energy plots). As

a consequence, Möbius subdivision tends to turn these cones into

approximate parts of spheres considerably more than the linear

subdivisions. Another consequence is that Möbius Loop subdivision

almost interpolates the cones, while the linear subdivision naturally

shrinks the features as a result of averaging.

In the case of the T mesh, we see a similar behavior: the corners

of the T are cospherical with their 1-rings (but their neighbors

are not), and therefore Möbius Catmull-Clark subdivision almost

interpolates these nodes. Möbius subdivision creates meshes that

orig.

linear subdivision

Möbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivisionMöbius subdivision

orig.

linear subdivision

Möbius subdivision

orig.

Fig. 17. Sphere reproduction. Top left is subdivided using Möbius and linear
Kobbelt subdivision. Top right using Butterfly. Bottom row is subdivided
using dual truncation, Loop, dualization, and Catmull-Clark. All results have
vertices with perfect norm 1 on the unit sphere.

0 W 5

original Butterfly lin. Butterfly Möb. Loop lin. Loop Möb.

linear Möbius
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Fig. 18. Top left: Butterfly linear and Möbius Butterfly subdivision of the
star. Top right: the same for Loop subdivision. Middle row: Catmull-Clark
linear and Möbius subdivisions. Bottom row: Kobbelt subdivision.

look like a blend of spheres for this mesh, while the linear Catmull-

Clark shrinks as the result of averaging, and the Kobbelt subdivision

creates sharp corners.

Nevertheless, while our algorithm is as parallel and computation-

ally efficient in the asymptotic sense as the linear method it modifies,

it bears some overhead locally. This is because linear methods only
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Duck Epcot Star T-mesh

(Kobbelt) (Butterfly) (Loop) (CC)

# coarse 334 1536 24 18

# fine 342016 393216 393216 294912

Linear 0.48 1.4 0.22 0.32

Möbius 1.59 3.46 0.59 1.8

Ratio 3.3 2.47 2.68 5.6

Table 1. Time overhead of Möbius subdivision vs. linear subdivision stress
test. The numbers # coarse and # fine indicate face counts, and the times
“linear” and “Möbius” are in seconds, measuring total subdivision time from
coarse to fine. “Ratio” is the overhead of Möbius vs. linear. Note that quad
mesh methods are in general more expensive because of the computation
of face points.

Level Duck Epcot Star T-mesh

(Kobbelt) (Butterfly) (Loop) (CC)

0 0.305 0.303 3.317 2.062

1 0.189 0.153 2.049 1.296

2 0.101 0.089 1.204 0.688

3 0.053 0.049 0.634 0.350

4 0.027 0.025 0.327 0.176

Rate 1.846 1.847 1.788 1.865

Table 2. Maximal edge length as a function of iteration. The convergence
rate is measured as 10−s , where s is the regression slope of the logarithm
of the data (larger s means more contractive).

require one matrix multiplication, and our method requires comput-

ing canonical forms, and several expensive quaternionic operations.

We show the difference in overhead by constructing a “stress test”

that measures the time of subdividing a mesh to a very fine level in

several methods, and show the results in Table 1.While the overhead

seems substantial, a vectorization of both methods would render

the total time difference negligible for any practical purpose.

Empirical convergence. While we don’t provide any formal con-

vergence proof for our subdivision scheme (except in the cases of

Möbius regularity and perfect spheres), in Table 2 we show that our

scheme is empirically contractive in terms of maximal edge length,

for the same examples as in the stress test. It is evident that there is

a consistent near-quadratic order of convergence.

6 APPLICATIONS
In the following, we show howMöbius subdivision and its properties

are useful for several existing applications in geometry processing.

6.1 Implementation Details
Our code is run on a 4GHz i7 iMac with 32GB memory. While our

subdivision overhead is easily parallelizable, in our implementation

the subdivision is run sequentially on each vertex in each level and

the code is therefore not optimized. However, the local nature of the

subdivision allows for even more substantial speedup with a future

parallel implementation on the GPU. We used libhedra [Vaxman

2016] for Möbius geometry on polygonal meshes. The spherical

orbifold optimization is run with code provided openly by the au-

thors [Aigerman et al. 2017], and our curve subdivision (Figure 13)

is coded in MATLAB.

6.2 Coarse-to-fine editing
Coarse-to-fine mesh editing proceeds by editing meshes in increas-

ing order of refinement, with the intend of adding coarse details

first, and fine details upon them. The editing is performed on the

chosen level-of-detail coarse cage, interactively subdivided into the

finest level. Our algorithm easily lends to coarse-to-fine mesh edit-

ing by subdivision surfaces: we pick and drag vertices of a control

polygon of level k , and alter all subsequent levels by Möbius subdi-

vision. The tendency of Möbius subdivision to result in smooth and

as-spherical-as-possible meshes is demonstrated in Figure 19. Our

subdivision does not add significant overhead to the linear subdivi-

sion schemes, and therefore this editing was interactive (≈ 1 second

lag for updating coarse-to-fine). See video for interaction.

Fig. 19. Coarse-to-fine editing. Left: original pattern in top view. Top right:
editing in level 0. Bottom right: further editing in level 1. The final mesh is
at level 4. The editing is done with Catmull-Clark Möbius subdivision, and
therefore the handles are in general not interpolating.

6.3 Efficient regular meshes
In addition to directly editing meshes, we can make the optimization

of [Vaxman et al. 2017] considerably more efficient by optimizing

a coarse level and subdividing to a fine level, as our subdivision

approximately preserves as-Möbius-regular-as-possible meshes. We

demonstrate the order of magnitude scale in efficiency in Figure 20,

which makes the costly nonlinear optimization of [Vaxman et al.

2017] reach interactive rates, without considerable difference in the

result. See video for an example as well.

6.4 Spherical Orbifolds
Aigerman et al. [2017] present a spherical parameterization method

that maps a closed genus-0mesh into a patch that tiles the sphere, as

a generator of an orbifold structure. The condition for perfect tiling

is enforced by having several boundaries be rigid transformations of

each other. The algorithm uses L-BFGS nonlinear optimization, and

therefore does not scale well to large meshes. Möbius subdivision is

useful for efficient spherical orbifold computation for the following

properties: first, spherical reproduction. Second, if a vertex star
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Fig. 20. Efficient regular meshes. Top: coarse bubble mesh (1076 faces), sub-
divided twice (for 17216) meshes. The coarse optimization with subdivision
takes 13.2+0.6 = 13.8 seconds, while direct optimization on the subdivided
mesh takes 68.7 seconds. The fine result is numerically more regular, but the
difference is mild. Bottom: metro mesh (coarse: 464 faces, fine: 7424 faces),
where optimization and the subdivision takes 2.2 + 0.5 = 2.7 seconds,
while fine-level optimization takes 19.1 seconds. Here again the difference
is apparent, but small.

has rotational symmetry, then by construction the canonical form

also maintains the same symmetry. As such, if we “glue” the tiles

together, subdivide the resulting spherical mesh, and segment them

again, the resulting subdivided patches are still an orbifold tiling. We

demonstrate this coarse-to-fine spherical orbifolds in Figure 21. Note

that as the original meshes are Delaunay, the result also preserves

bijectivity in the demonstrated examples; however, we cannot give

a theoretical guarantee that bijectivity is preserved as a rule (see

Section 4.5).

Since we commute with Möbius transformations, it is worth ex-

ploring whether we can create subdivision schemes that truly re-

produces conformal (or harmonic) transformations, and we leave

this for future work.

7 DISCUSSION

7.1 Limitations of canonical subdivision
Accentuating blobs. Spherical and regularity reproduction are

appealing properties in several contexts. Nevertheless, it might not

always be the case. Consider the Monster Frog case in Figure 22.

The “wavy” stomach is averaged out in linear subdivision schemes,

but our method accentuates the wave into blobs. Therefore, Möbius

subdivision is only good when such a result is expected.

1.4s 41.3s 0.9s

1.8s 175s 0.8s

Fig. 21. Subdividing spherical orbifolds. Each vertical half of the image is
for a different mesh. First row, left to right: coarse original mesh, subdivided
original mesh, coarse-computed orbifold, fine-computed orbifold (same
cones, but different cuts, to which the method is invariant), subdivided
coarse-computed orbifold. Third row : corresponding normal maps encoded
in RGB space for subdivided coarse-computer and fine-computed. Zoom-
ins are provided for all examples above them, focusing on a single cone.
Computed times are reported on the image. It is evident that coarse orbifold
+ subdivision scale much better than direct fine orbifold optimization, with
similar results, and that the seamless continuity is maintained.

Non-Delaunaymeshes. Asmentioned in Section 4.5, we conjecture

that the the transformationmB→C is not guaranteed to result in

bijective refinement when the vertex star is non-Delaunay. In such

cases, our algorithm can create artifacts in the subdivision in some

extreme cases. We exemplify this in Figure 23, where some 1-rings

in the Bimba mesh fold over in Möbius subdivision. Remeshing then

alleviates this problem.

7.2 Future Work
It is possible to use our subdivision as a full-blown multiresolu-

tion framework, by defining detail functions encoded linearly in

the canonical forms. In addition, it is interesting to see if Möbius
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Fig. 22. Blobby behaviour. The wavy stomach of the Monster Frog (left)
is averaged out in linear subdivision (center), but accentuated in Möbius
subdivision (right).

0

ER

5

Fig. 23. non-Delaunay subdivision can create artifacts in some vertex stars.
Left to right: original Non-Delaunay Bimba, subdivided mesh with flipped
lower-left shoulder, remeshing, and then subdivision which preserves the
shape well. Here, we show the Euclidean regularity of the faces as mea-
sured by [Vaxman et al. 2017]: RMSE of sum of squared differences of the
quaternionic ratios of adjacent edges in any single face.

subdivisions can be blended with linear subdivisions as a spectrum,

by interpolating the canonical forms with the original vertex stars.

We will explore such extensions in future work.

We consider as future work rigorous proofs of bijectivity prop-

erties, as evidenced in Section 4.5. In addition, it is necessary to

prove complete theorems about smoothness and convergence of

the scheme. We did not find any examples where the scheme did

not converge in practice, and conjecture that it is because of the

conversion of the existing well-known linear schemes, as done in

other nonlinear methods.

Finally, it is interesting to explore subdivision schemes that sub-

divide two conformally-equivalent meshes simultaneously, in a way

that preserves their conformal equivalence, under some definition

of discrete conformality that is Möbius related. We expect that our

scheme can inspire such a subdivision method as well.
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A POINTS ON SPHERES
Lemma A.1. Let a,b, c,d ∈ ImH � R3 be four points in general

position with cr[a,b, c,d] = [r ,v]. Further, letp ∈ H be the quaternion
that solves cr[a,b, c,p] = [λr , µv], for some λ, µ ∈ R (the explicit
formula for p as solution of the above eqation is given by Equation (3)

where χ = [λr , µv]). Thenp ∈ ImH, i.e.,p is an imaginary quaternion.
Furthermore, p lies on the cirumsphere of a,b, c,d . In particular p(λ, µ)
is a parameterization of the circumsphere.

Proof. From Equation (2), we know that the two occurring cross-

ratios can be expressed in terms of corner tangents as

cr[a,b, c,d] = t1 · t2, and cr[a,b, c,p] = t1 · t3,

where we denote for brevity t1 := t[c,a,b]−1, t2 := t[c,a,d], and
t3 := t[c,a,p]. Consequently, as all ti ∈ ImH, we have

[r ,v] = [−⟨t1, t2⟩, t1 × t2], and [λr , µv] = [−⟨t1, t3⟩, t1 × t3].
Since the corner tangents t1, t2, t3 are orthogonal to v and therefore

in a plane we can express t3 in the form t3 = αt1 + βt2. Together
with the above equation we obtain

λ⟨t1, t2⟩ = −λr = ⟨t1, t3⟩ = α ⟨t1, t1⟩ + β ⟨t1, t2⟩,
µt1 × t2 = µv = t1 × t3 = αt1 × t1 + βt1 × t2.

Consequently, β = µ and α = (λ− µ)⟨t1, t2⟩/|t1 |2, which determines

t3 uniquely. From the definition of t3 = t[c,a,p] = (c−a)−1+(p−a)−1,
we then immediately get

p = (t3 − (a − c)−1)−1 + a ∈ ImH.

Furthermore, the circumsphere of a,b, c,p is the same as the cir-

cumsphere of a,b, c,d since both pass through a,b, c and both have

parallel normal vecctors (µv and v , resp.) at a, and there is only one

such sphere. □
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