UE Discrete Mathematics Exercises for Oct 10, 2023

1) Use a suitable graph theoretical model to solve the following problems:
(a) Show that in every city at least two of its inhabitants have the same number of neighbours!
(b) 11 friends want to send postcards according to the following rules: (i) Each person sends and receives exactly 3 cards. (ii) Each one receives only cards from those to whom he or she sent a card and vice versa.
Tell how this can be done or prove that this is impossible!
(c) Determine all graphs in which all vertices have degree 1.
2) Let M be a finite set with n elements. The graph G is defined by

$$
\begin{aligned}
V(G) & =\mathcal{P}(M)=\{U \mid U \subseteq M\} \\
E(G) & =\{(U, V) \mid U, V \subseteq M, U \neq V, U \cap V=\emptyset\}
\end{aligned}
$$

Determine $\alpha_{0}(G)$ and $\alpha_{1}(G)$!
3) Prove that the edge set of an undirected simple graph can be partitioned into cycles if, and only if, every vertex has even degree.
Hint: To prove the existence of a cycle, consider a maximal path and use the even degree condition, i.e. the fact that all vertices have even degree.
4) Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two undirected graphs. A graph isomorphism is a bijective mapping $\phi: V \rightarrow V^{\prime}$ such that two vertices $x, y \in V$ are adjacent if and only if $\phi(x)$ and $\phi(y)$ are adjacent. The two graphs G and G^{\prime} are called isomorphic, if there exists an isomorphism $\phi: V \rightarrow V^{\prime}$.
Prove the following statements: If $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are isomorphic graphs and $\phi: V \rightarrow V^{\prime}$ is an isomorphism, then $d_{G}(x)=d_{G^{\prime}}(\phi(x))$ for all $x \in V$.
If, on the other hand, $\phi: V \rightarrow V^{\prime}$ is a bijective mapping satisfying $d_{G}(x)=d_{G^{\prime}}(\phi(x))$ for all $x \in V$, then G and G^{\prime} are not necessarily isomorphic.
5) Are the following two graphs isomorphic?

