UE Discrete Mathematics
 Exercises for Dec 12, 2023

91-93) Note: Do not refer to integer factorization in your proofs!
91) Prove: If x and y are odd integers, then $2 \mid\left(x^{2}+y^{2}\right)$ but $4 \not \backslash\left(x^{2}+y^{2}\right)$.
92) Let a, b, c, d be integers. Prove:
a) If $a \mid b$ and $a \mid c$, then for all integers x, y we have $a \mid(x b+y c)$.
b) If $\operatorname{gcd}(a, b)=1$ and $c \mid a$ and $d \mid b$, then $\operatorname{gcd}(c, d)=1$.
c) If $a \mid c$ and $b \mid c$ and $\operatorname{gcd}(a, b)=1$, then $a b \mid c$
93) Prove: If $\operatorname{gcd}(a, b)=1$ then $\operatorname{gcd}(a+b, a-b)$ is either 1 or 2 .
94) Use the Euclidean algorithm to find two integers a and b such that $2863 a+1057 b=42$.
95) Use the Euclidean algorithm to find all greatest common divisors of $x^{3}+5 x^{2}+7 x+3$ and $x^{3}+x^{2}-5 x+3$ in $\mathbb{Q}[x]$.
96) Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence, i.e. $F_{0}=0, F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$. Prove $\operatorname{gcd}\left(F_{n+2}, F_{n}\right)=1$.
97) Prove that there exist infinitely many prime numbers p which are solutions of the equation $p \equiv 3 \bmod 4$.
Hint: Assume that there are only finitely many such primes, say p_{1}, \ldots, p_{n}, and consider the number $4 p_{1} p_{2} \cdots p_{n}-1$.
98) Prove that in a commutative ring with 1 for all elements a and b and all units x we always have $\operatorname{gcd}(a, b)=\operatorname{gcd}(a x, b)$.
99) Consider the ring $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ (addition and multiplication taken from \mathbb{C}) and determine a greatest common divisor of $19+5 i$ and $16-6 i$.
Hint: You may assume without proof that $\mathbb{Z}[i]$ with $n(a+b i)=a^{2}+b^{2}$ is a Euklidean ring. Now find q, r in $u=q v+r$ by determining $\frac{u}{v}$ in $\mathbb{Z}[i]$ and rounding real and imaginary part.
100) Which of the following mappings is well-defined?
a) $f: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}, \bar{x} \mapsto \overline{x^{2}}$,
b) $g: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}, \bar{x} \mapsto \overline{2^{x}}$.

