UE Discrete Mathematics Exercises for Dec 12, 2023

91-93) Note: Do not refer to integer factorization in your proofs!

91) Prove: If x and y are odd integers, then $2 \mid (x^2 + y^2)$ but $4 \not| (x^2 + y^2)$.

92) Let a, b, c, d be integers. Prove:

a) If $a \mid b$ and $a \mid c$, then for all integers x, y we have $a \mid (xb + yc)$.

b) If gcd(a, b) = 1 and $c \mid a$ and $d \mid b$, then gcd(c, d) = 1.

c) If $a \mid c$ and $b \mid c$ and gcd(a, b) = 1, then $ab \mid c$

93) Prove: If gcd(a, b) = 1 then gcd(a + b, a - b) is either 1 or 2.

94) Use the Euclidean algorithm to find two integers a and b such that 2863a + 1057b = 42.

95) Use the Euclidean algorithm to find all greatest common divisors of $x^3 + 5x^2 + 7x + 3$ and $x^3 + x^2 - 5x + 3$ in $\mathbb{Q}[x]$.

96) Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence, i.e. $F_0 = 0, F_1 = 1, F_{n+1} = F_n + F_{n-1}$. Prove $gcd(F_{n+2}, F_n) = 1$.

97) Prove that there exist infinitely many prime numbers p which are solutions of the equation $p \equiv 3 \mod 4$.

Hint: Assume that there are only finitely many such primes, say p_1, \ldots, p_n , and consider the number $4p_1p_2\cdots p_n-1$.

98) Prove that in a commutative ring with 1 for all elements a and b and all units x we always have gcd(a, b) = gcd(ax, b).

99) Consider the ring $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ (addition and multiplication taken from \mathbb{C}) and determine a greatest common divisor of 19 + 5i and 16 - 6i.

Hint: You may assume without proof that $\mathbb{Z}[i]$ with $n(a+bi) = a^2 + b^2$ is a Euklidean ring. Now find q, r in u = qv + r by determining $\frac{u}{v}$ in $\mathbb{Z}[i]$ and rounding real and imaginary part.

100) Which of the following mappings is well-defined?

- a) $f: \mathbb{Z}_m \to \mathbb{Z}_m, \, \overline{x} \mapsto \overline{x^2},$
- b) $g: \mathbb{Z}_m \to \mathbb{Z}_m, \, \overline{x} \mapsto \overline{2^x}.$