UE Discrete Mathematics Exercises for Dec 19, 2023

101) Use the Chinese remainder theorem to solve the following system of congruence relations:

$$
4 x \equiv 12(13), \quad 3 x \equiv 7(20), \quad 2 x \equiv 3(7) .
$$

102) Use the Chinese remainder theorem to solve the following system of congruence relations:

$$
7 x \equiv 8(24), \quad 12 x \equiv 4(28), \quad 9 x \equiv 3(15) .
$$

103) Prove that the sum of two squares of odd integers is always even, but never divisible by 4 .
104) Let $(m, e)=(3233,49)$ be a public RSA key. Compute the private key (m, d).
105) Use the key of Exercise 104) to encrypt the string „COMPUTER". Decompose the string into blocks of length 2 and apply the mapping $\mathrm{A} \mapsto 01$, $\mathrm{B} \mapsto 02, \ldots, \mathrm{Z} \mapsto 26$.
106) Prove that the identity

$$
\varphi(m \cdot n)=\varphi(m) \varphi(n) \frac{\operatorname{gcd}(m, n)}{\varphi(\operatorname{gcd}(m, n))}
$$

holds for all $m, n \in \mathbb{N}^{+} . \varphi$ denotes Euler's totient function.
107) Let G be a finite, abelian group and $a \in G$ an element for which $\operatorname{ord}_{G}(a)$ is maximal. Prove that for all $b \in G$ the $\operatorname{order}^{\operatorname{ord}_{G}(b)}$ is a divisor of $\operatorname{ord}_{G}(a)$.
108) Let λ and φ denote the Carmichael function and Euler's totient function, respectively. Compute $\lambda(351384)$ and $\varphi(351384)$.
109) Show that $m \mid n$ implies $\lambda(m) \mid \lambda(n)$ where λ denotes the Carmichael function.

Hint: Prove first that $a_{i} \mid b_{i}$ for $i=1, \ldots, k$ implies $\operatorname{lcm}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \mid \operatorname{lcm}\left(b_{1}, b_{2}, \ldots, b_{k}\right)$.
110) Let $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ where $i=\sqrt{-1}$. Show that $\mathbb{Z}[i]$ is a subring of $(\mathbb{C},+, \cdot)$ and determine its group of units $\left(\mathbb{Z}[i]^{*}, \cdot\right)$. Is $\mathbb{Z}[i]$ an integral domain?

