UE Discrete Mathematics

Exercises for Jan 9, 2024

111) Let $(R, +, \cdot)$ be an integral domain. Show that $x \in R$ is a unit if and only if it is a divisor of every $a \in R$.

112) Let $(R, +, \cdot)$ be a Euclidean ring and let its Euclidean function be denoted by n. Show that n(x) = n(1) for all units x of R.

Prove moreover that, if $x, y \in R$ and y is a unit, then n(xy) = n(x).

113) List all irreducible polynomials up to degree 3 over \mathbb{Z}_3 .

114) Decompose $x^5 + x^4 + 1$ into irreducible factors over \mathbb{Z}_2 .

115) Let K be a field and $p(x) \in K[x]$ a polynomial of degree m. Prove that p(x) cannot have more than m zeros in K (counted with multiplicities).

Hint: Use the fact that K[x] is a factorial ring.

116) Consider the ring R[[x]] of formal power series with coefficients in some integral domain R. Set $I = \left\{ \sum_{n\geq 0} a_n z^n \mid \forall i \in \mathbb{N} : a_i \in R \text{ and } a_0 = 0 \right\}$. Show that I is an ideal of R[[x]].

117) Let R be a (not necessarily commutative) ring and $A \subseteq R$. Furthermore, let $\mathcal{I}(A)$ denote the set of all ideals of R that contain A as a subset. Prove: $J := \bigcap_{I \in \mathcal{I}(A)} I$ is the smallest ideal of R with $A \subseteq J$.

118) Let $\varphi : R_1 \to R_2$ be a ring homomorphism and I be an ideal of R_2 . Prove that $\varphi^{-1}(I) := \{x \in R_1 \mid \varphi(x) \in I\}$ is an ideal of R_1 .

119) Let R be a ring and I one of its ideals. Define the relation \sim_I on R by $a \sim_I b :\Leftrightarrow a - b \in I$. Show that \sim_I is an equivalence relation. Let [x] denote the equivalence class of x with respect to \sim_I . Prove that for all $x \in R$ we have [x] = x + I.

120) Let R be a ring and I be an ideal of R. Then (R/I, +) is the quotient group of (R, +) over (I, +). Define a multiplication on R/I by

$$(a+I) \cdot (b+I) := (ab) + I.$$

Prove that this operation is well-defined, *i.e.* that

$$\left.\begin{array}{c} a+I=c+I\\ \text{and} \quad b+I=d+I\end{array}\right\}\implies (ab)+I=(cd)+I.$$

Furthermore, show that $(R/I, +, \cdot)$ is a ring.