UE Discrete Mathematics

Exercises for Jan 9, 2024

111) Let $(R,+, \cdot)$ be an integral domain. Show that $x \in R$ is a unit if and only if it is a divisor of every $a \in R$.
112) Let $(R,+, \cdot)$ be a Euclidean ring and let its Euclidean function be denoted by n. Show that $n(x)=n(1)$ for all units x of R.
Prove moreover that, if $x, y \in R$ and y is a unit, then $n(x y)=n(x)$.
113) List all irreducible polynomials up to degree 3 over \mathbb{Z}_{3}.
114) Decompose $x^{5}+x^{4}+1$ into irreducible factors over \mathbb{Z}_{2}.
115) Let K be a field and $p(x) \in K[x]$ a polynomial of degree m. Prove that $p(x)$ cannot have more than m zeros in K (counted with multiplicities).
Hint: Use the fact that $K[x]$ is a factorial ring.
116) Consider the ring $R[[x]]$ of formal power series with coefficients in some integral domain R. Set $I=\left\{\sum_{n \geq 0} a_{n} z^{n} \mid \forall i \in \mathbb{N}: a_{i} \in R\right.$ and $\left.a_{0}=0\right\}$. Show that I is an ideal of $R[[x]]$.
117) Let R be a (not necessarily commutative) ring and $A \subseteq R$. Furthermore, let $\mathcal{I}(A)$ denote the set of all ideals of R that contain A as a subset. Prove: $J:=\bigcap_{I \in \mathcal{I}(A)} I$ is the smallest ideal of R with $A \subseteq J$.
118) Let $\varphi: R_{1} \rightarrow R_{2}$ be a ring homomorphism and I be an ideal of R_{2}. Prove that $\varphi^{-1}(I):=$ $\left\{x \in R_{1} \mid \varphi(x) \in I\right\}$ is an ideal of R_{1}.
119) Let R be a ring and I one of its ideals. Define the relation \sim_{I} on R by $a \sim_{I} b: \Leftrightarrow a-b \in I$. Show that \sim_{I} is an equivalence relation. Let $[x]$ denote the equivalence class of x with respect to \sim_{I}. Prove that for all $x \in R$ we have $[x]=x+I$.
120) Let R be a ring and I be an ideal of R. Then $(R / I,+)$ is the quotient group of $(R,+)$ over $(I,+)$. Define a multiplication on R / I by

$$
(a+I) \cdot(b+I):=(a b)+I .
$$

Prove that this operation is well-defined, i.e. that

$$
\left.\begin{array}{rl}
a+I & =c+I \\
\text { and } & b+I \\
=d+I
\end{array}\right\} \Longrightarrow(a b)+I=(c d)+I .
$$

Furthermore, show that $(R / I,+, \cdot)$ is a ring.

