UE Discrete Mathematics

Exercises for Jan 16, 2024

121) Let $I=\left\{\left(x^{2}+1\right) \cdot p(x) \mid p(x) \in \mathbb{R}[x]\right\}$. Prove that I is an ideal of $\mathbb{R}[x]$ and compute $((2 x+3)+I) \cdot((x-2)+I)$ in $\mathbb{R}[x] / I$.
122) From Exercise 121 we know that $I=\left\{\left(x^{2}+1\right) \cdot p(x) \mid p(x) \in \mathbb{R}[x]\right\}$ is an ideal of $\mathbb{R}[x]$. Prove that $x^{2}+I=-1+I$ holds and that $\mathbb{R}[x] / I \cong \mathbb{C}$.
123) Show that $(\mathbb{Z}[x],+, \cdot)$ is a ring and that $1 \notin(\{x, x+2\})$.

Remark: It can be shown that a principal ideal which is generated by $a_{1}, a_{2}, \ldots, a_{k}$ can be alternatively generated by $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. Therefore this example shows that $\mathbb{Z}[x]$ is a ring where not every ideal is a principal ideal. As a consequence, $\mathbb{Z}[x]$ cannot be a Euklidean ring.
124) Show that the set $R=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ with the usual addition and multiplication is an integral domain but not a field. Furthermore, prove that there are infinitely many units in R and give three concrete examples.
125) Let R be a commutative ring with $R \neq\{0\}$ that has only the trivial ideals $\{0\}$ and R. Prove the following assertions:
(a) The set $I=\{x \in R \mid(x)=\{0\}\}$ is an ideal of R.
(b) If $I=R$ then $x y=0$ for all $x, y \in R$.
126) Consider the ring R from Exercise 125 and its ideal $I=\{x \in R \mid(x)=\{0\}\}$. Prove the following assertions under the assumption that $I \neq R$:
(a) If $a \neq 0$ then $(a)=R$. This implies that there is a $b \in R$ with $a b=a$.
(b) R is a field.

Remarks and hints: Note that what you show in (a) does not yet imply that $b=1$! To show that b is indeed the multiplicative identity, consider an arbitrary $c \in R$ and the expression $a(b c-c)$. Having done this, in (b) you only have to show that a^{-1} exists.
127) Let $(L,+, \cdot)$ be a field and K be a subfield of L. Show that $(L,+)$ together with the scalar multiplication $\odot: K \times L \rightarrow K,(x, z) \mapsto x \odot z:=x \cdot z$ is a vector space over the scalar field K.
128) Show that the set $\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ with the usual addition and multiplication is a field. Compute $(3-5 \sqrt{2})^{-1}$.
129) Determine all elements of the ring $R=\mathbb{Z}_{3}[x] /{ }_{\left(x^{2}+x+1\right)}$ as well as its table for the multiplication. Is this ring a field?
130) Examine whether $x^{2}+1$ is a unit of $\mathbb{Q}[x] /\left(x^{3}+x^{2}-3 x+1\right)$. If so, determine its multiplicative inverse!

