UE Discrete Mathematics Exercises for Jan 23, 2024

131) Show that $\sqrt{2} + \sqrt{3}$ is algebraic over \mathbb{Q} and determine its minimal polynomial.

132) Each element of $\mathbb{Q}(\sqrt[3]{2})$ can uniquely be represented in the form $a + b\sqrt[3]{2} + c\sqrt[3]{4}$ where $a, b, c \in \mathbb{Q}$. Why is this true?

Consequently, each element of $\mathbb{Q}(\sqrt[3]{2})$ can be identified with a triple $(a, b, c) \in \mathbb{Q}^3$. Which triple corresponds to $(a + b\sqrt[3]{2} + c\sqrt[3]{4})(a' + b'\sqrt[3]{2} + c'\sqrt[3]{4})$?

133) Which of the following polynomials is primitive over \mathbb{Z}_3 ?

$$x^{3} + x^{2} + x + 1$$
, $x^{3} + x^{2} + x + 2$, $x^{3} + 2x + 1$.

134) Let K be a field with char(K) = p. Prove that $(a + b)^p = a^p + b^p$ for all $a, b \in K$.

Hint: Use the binomial theorem and consider the equation $\binom{p}{k} = p \cdot \frac{(p-1)!}{k!(p-k)!}$ for 0 < k < p. Show that $\binom{p}{k} \in \mathbb{N}$ implies that the fraction on the right-hand side must be an integer, too, since the factors in the denominator do not divide p.

135) Four symbols have to be encoded with elements of \mathbb{Z}_2^5 such that the code forms a (5, k) linear code (k to be determined) with which 1-bit errors can be detected and corrected. Determine a generating matrix and a check matrix of this code.