UE Discrete Mathematics
 Exercises for Oct 17, 2023

11) Let $G=(V, E)$ be an undirected graph with n vertices which does not have any cycle of length 3. Prove:
1. If $x y \in E$ then $d(x)+d(y) \leq n$.
2. The previous inequality $d(x)+d(y) \leq n$ implies that $\sum_{v \in V} d(v)^{2} \leq n|E|$.
3. The graph has at most $n^{2} / 4$ edges. Hint: Use the hand-shaking lemma, the Cauchy-Schwarz inequality $\left(\sum_{i=1}^{r} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{r} a_{i}^{2}\right)\left(\sum_{i=1}^{r} b_{i}^{2}\right)$, and what you have proved so far.
12) Let $G=(V, E)$ be a simple graph. Moreover, let G_{R} its reduction. Prove that G_{R} is acyclic!
13) Let $G=(V, E)$ be a simple, directed, and acyclic graph. Prove that $B=\left\{v \in V \mid d^{-}(v)=0\right\}$ is a vertex basis of G. Furthermore, prove that B is the only vertex basis of G.
14) Let $G=(V, E)$ be a simple, directed graph, G_{R} be its reduction and K_{1}, \ldots, K_{ℓ} be those strongly connected components which satisfy $d_{G_{R}}^{-}\left(K_{i}\right)=0, i=1, \ldots, \ell$. Prove that $B \subset V$ is a vertex basis of G if and only if $\left|B \cap K_{i}\right|=1$ for $i=1, \ldots, \ell$, and $|B|=\ell$.
15) Find the strongly connected components and the reduction G_{R} of the graph G below. Furthermore, determine all vertex bases of G.

16) Use the matrix tree theorem to compute the number of spanning forests of the graph below!

17) K_{n} denotes the complete graph with n vertices. Show that the number of spanning trees of K_{n} is n^{n-2} !
Hint: Use the matrix tree theorem and delete the first column and the first row of $D\left(K_{n}\right)-A\left(K_{n}\right)$. Then add all rows (except the first) to the first one and observe that all entries of the new first row are equal to 1 . Use the new first row to transform the matrix in such a way that the submatrix built of the second to the last row and second to the last column is diagonal matrix.
18) If T is a tree having no vertex of degree 2 , then T has more leaves than internal nodes. Prove this claim
(a) by induction,
(b) by considering the average degree and using the handshaking lemma.
19) List all matroids (E, S) with $E=\{1\}, E=\{1,2\}$ or $E=\{1,2,3\}$.
20) Let $M=(E, S)$ be a matroid and $M_{0}=\left(E_{0}, S_{0}\right)$ where $E_{0} \subseteq E$ and $S_{0}=\left\{X \cap E_{0} \mid X \in S\right\}$. Prove that M_{0} is a matroid.
