UE Discrete Mathematics
 Exercises for Oct 24, 2023

21) Let E be a set, $1 \leq k \leq|E|$ an integer, and let S denote the set of all subsets $X \subseteq E$ with cardinality at most k. Examine whether (E, S) is a matroid.
22) Prove that an independence system (E, S) is a matroid if and only if for every $A \subseteq E$, all maximal independent subsets of A have the same cardinality.
23) Let E_{1} and E_{2} be two disjoint sets. Moreover, assume that $\left(E_{1}, S_{1}\right)$ and $\left(E_{2}, S_{2}\right)$ are matroids. Define $S:=\left\{X \cup Y \mid X \in S_{1}\right.$ and $\left.Y \in S_{2}\right\}$. Prove that $\left(E_{1} \cup E_{2}, S\right)$ is a matroid.
24) Let $\left(E, S_{1}\right)$ and $\left(E, S_{2}\right)$ be matroids. Show that $\left(E, S_{1} \cap S_{2}\right)$ is in general not a matroid.

25-26) Given a matroid (E, S) and $A \subseteq E$. We define $r(A):=\max \{|C| \mid C \subseteq A$ and $C \in S\}$. Now let $B \subseteq E$ and define $\bar{B}:=\{a \in E \mid r(B)=r(B \cup\{a\})\}$.
25) Express the above definitions in your own words. Prove the following statements:
(a) For all $M \subseteq E$ we have $M \subseteq \bar{M}$.
(b) For all $M \subseteq E$ and all $e, f \in E$ the equations $r(M)=r(M \cup\{e\})$ and $r(M)=r(M \cup\{f\})$ together imply $r(M)=r(M \cup\{e, f\})$
26) Prove the following statements:
(a) Any two subsets C and D of E satisfy $r(C)+r(D) \geq r(C \cup D)+r(C \cap D)$.
(b) Let $M \subseteq N \subseteq E$ and $a \in \bar{M}$. Then $r(M)+r(N) \geq r(M)+r(N \cup\{a\})$. Use this inequality to show $\bar{M} \subseteq \bar{N}$.
27) Use Dijkstra's algorithm to determine $d(1,7)$ in the following graph.

28) Use Moore's algorithm to compute all distances to vertex x in the graph following graph.

29) Use the algorithm of Ford and Fulkerson to compute a maximal flow in the following network which hastwo sources s_{1} and s_{2} !

30) Assume that we have given the graph G_{1} above and that its vertices have weights (=bounded capacity), too. Is it still possible to apply the algorithm of Ford and Fulkerson to determine a maximal flow?

