UE Discrete Mathematics
 Exercises for Oct 31, 2023

31) Find an Eulerian graph with an even/odd number of vertices and an even/odd number of edges or prove that there is no such graph (for each of the four cases).
32) Let G_{n} denote the n-dimensional hypercube. Show that G_{n} is Hamiltonian if $n \geq 2$.
33) Prove that a graph G is bipartite if and only if each cycle in G has even length.
34) For which m and n is the complete bipartite graph $K_{m, n}$ an Eulerian graph?
35) Let G be an Eulerian graph and H be a subdivision of G. Is H Eulerian? Suppose that G is Hamiltonian. Does this imply that H is Hamiltonian as well?
36) For which m and n does the complete bipartite graph $K_{m, n}$ have a Hamiltonian cycle?
37)

a) Prove that every simple, connected and planar graph with at least 3 vertices satisfies $\alpha_{1}(G) \leq$ $3 \alpha_{0}(G)-6$. Show that this implies that K_{5} is not planar.
b) Prove the following statement or find a counter-example: For all n, m, f with $n-m+f=2$ and for which there exists a simple graph with $\alpha_{0}=n, \alpha_{1}=m$ there exists also a simple planar graph with $\alpha_{0}=n, \alpha_{1}=m$ and $\alpha_{2}=f$.
38) Let G and H be conected graphs with no vertices in commen and $x \in V(G), y \in V(H)$. Define the graph $K=(V, E)$ by $V=V(G) \cup V(H)$ and $E=E(G) \cup E(H) \cup\{x y\}$.
a) Prove the following statement or find a counter-example! If G and H are Eulerian, then K has an Eulerian trail, but is not Eulerian itself.
b) Prove the following statement or find a counter-example! If K has an Eulerian trail, then G and H are Eulerian.
c) Choose a concrete example with $\alpha_{0}(G)=\alpha_{0}(H)=7$ and $\alpha_{1}(G)=\alpha_{1}(H)=21$ and find an Eulerian trail for K, using your proof of a) or b).
39) Prove that a connected planar graph always has a vertex v with $d(v) \leq 5$.
40) Let G be a connected planar graph. Suppose that every vertex has the same degree d and that boundary of every face is a cycle of length ℓ.
a) Prove that $2 \alpha_{1}(G)=\ell \cdot \alpha_{2}(G)$.
b) Find an equation relating $\alpha_{0}(G), \alpha_{1}(G)$ and d and prove it.
c) Use Euler's polyhedron formula and what you proved so far to show that $\ell \geq 6$ implies $d=\alpha_{2}(G)=2$.

