UE Discrete Mathematics

Exercises for Nov 14, 2023

51) Let $p_{n}(k)$ be the number of permutations of $\{1,2, \ldots, n\}$ having exactly k fixed points. Use the method of double counting to prove the identity $\sum_{k=0}^{n} k p_{n}(k)=n$!.
52) Let A be a set of 11 positive integers such that for all $x \in A$ we have $20 \nless x$. Prove that there are two integers $a, b \in A$ such that $20 \mid(a+b)$ or $20 \mid(a-b)$.
53) Let $A=\{1,2,3,4\}$ and $B=\{1,2, \ldots, 100\}$. All points of the plane having coordinates (x, y) which satisfy $(x, y) \in A \times B$ are coloured with one of the colours red, green or blue. Prove that there exists a monochromatic rectangle.

Remark: A rectangle is called monochromatic if all its four vertices have the same colour.
54) Place the numbers $1,2, \ldots, 12$ around a circle, in any order. Then there are three consecutive numbers which sum to at least 19.
55) Let $n \in \mathbb{N}$. Prove the identities

$$
\sum_{k=0}^{n} 2^{k}=2^{n+1}-1 \quad \text { and } \quad \sum_{k=1}^{n}(n-k) 2^{k-1}=2^{n}-n-1
$$

by using a combinatorial interpretation.
56) Let $D_{n} \subseteq S_{n}$ be the fixed-point-free permutations of $\{1,2, \ldots, n\}$, i.e. all permutations $\pi \in S_{n}$ with $\pi(i) \neq i$ for all i. The derangement numbers are defined as $d_{n}:=\left|D_{n}\right|$. Prove the recurrence

$$
\begin{cases}d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right) & \text { for } n \geq 2 \\ d_{0}=1, d_{1}=0\end{cases}
$$

using a combinatorial interpretation. Furthermore, prove that this recurrence relation implies

$$
d_{n}=n d_{n-1}+(-1)^{n} \quad \text { and } \quad d_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

57) Compute the number of elements of the set $\{x \in \mathbb{N} \mid 1 \leq x \leq 100000$ and x is neither a square nor a 3rd, 4th or 5th power of some $y \in \mathbb{N}\}$.
58) Prove Pascal's recurrence

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

algebraically using the closed formula $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ of the binomial coefficient, and prove

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

using a combinatorial interpretation of the binomial coefficient.
59) Let $n \in \mathbb{N}$. Prove the identity

$$
\sum_{m=0}^{n}\binom{m}{k}=\binom{n+1}{k+1}
$$

60) Let $t_{n, k}$ denote the number of permutations of an n-element set that have exactly k cycles. Prove that $t_{n, 2}=(n-1)!H_{n-1}$ for $n \geq 2$, where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.
