UE Discrete Mathematics
 Exercises for Nov 21, 2023

61) Prove that for all complex numbers x and all $k \in \mathbb{N}$ we have

$$
\binom{-x}{k}=(-1)^{k}\binom{x+k-1}{k}
$$

62) Prove the following identity:

$$
x^{n}=\sum_{k=0}^{n} S_{n, k}(x)_{k} \quad(n \geq 0)
$$

63) Let A, B be two finite sets with $|A|=n$ and $|B|=k$. How many injective mappings $f: A \rightarrow B$ are there? Furthermore, show that the number of surjective mappings $f: A \rightarrow B$ equals $k!S_{n, k}$.
64) The n-th Bell number equals the number of set partitions of $\{1,2, \ldots, n\}$. We set $B_{0}:=1$. Prove the following identities:

$$
B_{n}=\sum_{k=0}^{n} S_{n, k} \quad \text { and } \quad B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{k}
$$

65) Prove that the squares of the Fibonacci number satisfy the recurrence relation $a_{n+3}-2 a_{n+2}-$ $2 a_{n+1}+a_{n}=0$ and solve this recurrence relation with the correct initial conditions.
66) Let a_{n} denote the number of fat subsets of $\{1,2, \ldots, n\}$ where a set A is called fat if $A=\emptyset$ or $\forall k \in A: k \geq|A|$. Prove that $a_{n}=F_{n+2}$ (as usual $\left(F_{n}\right)_{n \geq 0}$ denotes the sequence of the Fibonacci numbers) and show that this implies

$$
F_{n+1}=\sum_{k=0}^{n}\binom{n-k}{k}
$$

67) Solve the following recurrence using generating functions: $a_{n+1}=3 a_{n}-2$ for $n \geq 0, a_{0}=2$.
68) Solve the following recurrence using generating functions: $a_{n+1}=a_{n}+(n+1)^{2}$ for $n \geq 0$, $a_{0}=1$.
69) Solve the following recurrence using generating functions: $a_{n}=6 a_{n-1}-9 a_{n-2}$ for $n \geq 2$ with $a_{0}=1, a_{1}=-2$.
70) Use generating functions to find a closed form expressions for the sum $\sum_{k=0}^{n}\left(k^{2}+3 k+2\right)$.
