UE Discrete Mathematics Exercises for Nov 21, 2023

61) Prove that for all complex numbers x and all $k \in \mathbb{N}$ we have

$$\binom{-x}{k} = (-1)^k \binom{x+k-1}{k}$$

62) Prove the following identity:

$$x^n = \sum_{k=0}^n S_{n,k}(x)_k$$
 $(n \ge 0).$

63) Let A, B be two finite sets with |A| = n and |B| = k. How many injective mappings $f : A \to B$ are there? Furthermore, show that the number of surjective mappings $f : A \to B$ equals $k!S_{n,k}$.

64) The *n*-th Bell number equals the number of set partitions of $\{1, 2, ..., n\}$. We set $B_0 := 1$. Prove the following identities:

$$B_n = \sum_{k=0}^n S_{n,k}$$
 and $B_{n+1} = \sum_{k=0}^n \binom{n}{k} B_k.$

65) Prove that the squares of the Fibonacci number satisfy the recurrence relation $a_{n+3} - 2a_{n+2} - 2a_{n+1} + a_n = 0$ and solve this recurrence relation with the correct initial conditions.

66) Let a_n denote the number of fat subsets of $\{1, 2, ..., n\}$ where a set A is called fat if $A = \emptyset$ or $\forall k \in A : k \ge |A|$. Prove that $a_n = F_{n+2}$ (as usual $(F_n)_{n\ge 0}$ denotes the sequence of the Fibonacci numbers) and show that this implies

$$F_{n+1} = \sum_{k=0}^{n} \binom{n-k}{k}.$$

67) Solve the following recurrence using generating functions: $a_{n+1} = 3a_n - 2$ for $n \ge 0$, $a_0 = 2$. 68) Solve the following recurrence using generating functions: $a_{n+1} = a_n + (n+1)^2$ for $n \ge 0$, $a_0 = 1$.

69) Solve the following recurrence using generating functions: $a_n = 6a_{n-1} - 9a_{n-2}$ for $n \ge 2$ with $a_0 = 1, a_1 = -2$.

70) Use generating functions to find a closed form expressions for the sum $\sum_{k=0}^{n} (k^2 + 3k + 2)$.