UE Discrete Mathematics

Exercises for Nov 28, 2023

71) Use generating functions to answer the following question: What is the number of solutions of the equation $a+b+c+d=25$ if $a, b, c, d \in\{0,1,2, \ldots, 9\}$?
72) Prove the following identity:

$$
\sum_{n \geq 0}\binom{2 n}{n} z^{n}=\frac{1}{\sqrt{1-4 z}}
$$

73) Compute

$$
\left[z^{n}\right] \frac{2+3 z^{2}}{\sqrt{1-5 z}}
$$

74) A ternary tree is a plane rooted tree such that every node has either 3 or 0 succesors. A node with 3 succesors is called internal nodes. How many leaves has a ternary tree with n internal nodes? Moreover, let a_{n} be the number of ternary trees with n internal nodes and $A(z)$ the generating function of this sequence. Find a functional equation for $A(z)$!
75) Compute the numbers t_{n} of plane rooted trees with n nodes specified by the equation

76) Compute the number of plane rooted trees with n nodes.
77) Consider the following context-free grammar: $S \rightarrow a S b S \mid \varepsilon$. This defines a formal language \mathcal{L} which consists of all words w over the alphabet $\Sigma=\{a, b\}$ such that either (a) w starts with a followed by a word from \mathcal{L}, then a b follows, which is itself followed by another word of \mathcal{L}, or (b) w is the empty word. Compute the number of words in \mathcal{L} that consist of n letters. Do this by finding a combinatorial structure that specifies \mathcal{L} and analyzing the generating function of that structure.
78) Let \mathcal{W} denote the set of words over the alphabet $\{a, b\}$ that contain exactly k occurrences of b. Obviously, the number of words in \mathcal{W} which have exactly n letters is $\binom{n}{k}$. Prove this by finding a specification of \mathcal{W} as combinatorial construction and translating this specification into generating functions.
79) Use exponential generating functions to determine the number a_{n} of ordered choices of n balls such that there are 2 or 4 red balls, an even number of green balls and an arbitrary number of blue balls.
80) Determine all solutions of the recurrence relation:

$$
a_{n}-2 n a_{n-1}+n(n-1) a_{n-2}=2 n \cdot n!, n \geq 2, a_{0}=a_{1}=1
$$

Hint: Use exponential generating functions.

