UE Discrete Mathematics

Exercises for Dec 5, 2023

81) An involution is a permutation π such that $\pi \circ \pi=\operatorname{id}_{M}$ where $M=\{1,2, \ldots, n\}$. Let \mathcal{I} be the set of involutions. Give a specification of \mathcal{I} as a combinatorial construction and use this to determine the exponential generating function $I(z)$ of \mathcal{I}.
82) Let \mathcal{T} be the class of rooted and labelled trees, i.e. the n vertices of a tree of size n are labelled with the labels $1,2, \ldots, n$. Use the theory of combinatorial constructions to determine a functional equation for the exponential generating function of \mathcal{T}. Finally, apply the following theorem to prove that the number of trees in \mathcal{T} which have n vertices is equal to n^{n-1}. (You are not asked to prove the theorem.)
Theorem. Let $\Phi(w)=\sum_{n \geq 0} \phi_{n} w^{n}$ with $\phi_{0} \neq 0$. If $z=w / \Phi(w)$, then $\left[z^{n}\right] w=\frac{1}{n}\left[w^{n-1}\right] \Phi(w)^{n}$.
83) Let P be the set of all divisors of 12 . Determine the Möbius function of (P, \mid) using the definition of the Möbius function and compare your result with the one from the last example in the lecture.
84) Let (P, \leq) be the poset defined by $P=\{0,1,2,3,4\}$ and $0 \leq 1 \leq 4,0 \leq 2 \leq 4,0 \leq 3 \leq 4$. Compute all values $\mu(x, y)$ for $x, y \in P$.
85) Let $\left(P_{1}, \leq_{1}\right)$ and $\left(P_{2}, \leq_{2}\right)$ be two locally finite posets with 0 -element and (P, \leq) be defined by $P=P_{1} \times P_{2}$ and for $(a, x),(b, y) \in P$:

$$
(a, x) \leq(b, y): \Longleftrightarrow a \leq_{1} b \wedge x \leq_{2} y
$$

Show that (P, \leq) is a locally finite poset with 0 -element.
86) Draw the Hasse diagram of $\left(2^{\{1,2,3\}}, \supseteq\right)$ and redo the proof of the principle of inclusion and exclusion for the special case of three sets $A_{1}, A_{2}, A_{3} \subseteq M$. Carry out every step in detail.
87) Let p, q, r be three distinct prime numbers and $m=p q r$. How many of the numbers $1,2, \ldots, m$ are relatively prime to m ? (Two numbers x and y are called relatively prime if their greatest common divisor is 1.)
88) Given an alphabet of size four, how many ways are there to create a password of 20 characters, if it is required that every letter of the alphabet must occur?
89) Let a_{n} denote the number of permutations $\pi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ that have no fixed point. Use the inclusion-exclusion principle to show that

$$
a_{n}=n!\sum_{k=0}^{n}(-1)^{k} \frac{1}{k!} .
$$

90) Let \mathcal{A}_{n} denote the set of the permutations considered in Exercise 89 and set $\mathcal{A}=\{\varepsilon\} \cup$ $\bigcup_{n \geq 1} \mathcal{A}_{n}$, where ε is the zero-sized combinatorial object and $\pi \in \mathcal{A}$ has size n if and only if $\pi \in \mathcal{A}_{n}$. Specify \mathcal{A} as a combinatorial construction, use that specification to determine its generating function and rederive the formula from Exercise 89
