Überlappende Teilprobleme Algorithmus kehrt immer wieder zum gleichen Teilproblem zurück. Anzahl der TP polynomiell. Beispiel: Längste gemeinsame Teilsequenz

$$S_1 = ATTGCGAATGA$$

$$S_2 = ATGGCGTAAGA \implies ATGCGAAGA \text{ ist IgT.}$$

Definition

Sei
$$X = (x_1, x_2, \dots, x_m)$$
. $Z = (z_1, z_2, \dots, z_k)$ heißt Teilsequenz von X , wenn es $i_1 < i_2 < \dots < i_k$ gibt, sodass $x_{i_j} = z_j$.

Definition

Eine Teilsequenz von $X = (x_1, x_2, ..., x_m)$, die auch Teilsequenz von $Y = (y_1, y_2, ..., y_n)$ ist, heißt längste gemeinsame Teilsequenz von X und Y, falls die Anzahl ihrer Einträge maximal ist.

Bemerkung: Es gibt 2^m Teilsequenzen von $X=(x_1,x_2,\ldots,x_m)$.

Definition

Das i-te Präfix von $X = (x_1, x_2, ..., x_m)$ ist definiert durch $X_i = (x_1, x_2, ..., x_i)$

Satz

Seien $X = (x_1, x_2, ..., x_m)$ und $Y = (y_1, y_2, ..., y_n)$ zwei Sequenzen, sei weiters $Z = (z_1, z_2, ..., z_k)$ lgT von X und Y. Dann gilt:

- ① Ist $x_m = y_n$, so gilt $z_k = x_m = y_n$ und $Z_{k-1} = (z_1, z_2, ..., z_{k-1})$ ist $\lg T$ von X_{m-1}, Y_{n-1} .
- ② Ist $x_m \neq y_n$, dann folgt aus $z_k \neq x_m$, dass Z eine lgT von X_{m-1} und Y ist.
- ③ Ist $x_m \neq y_n$, dann folgt aus $z_k \neq y_n$, dass Z eine lgT von Y_{n-1} und X ist.

Beweis:

• Sei $x_m = y_n$. Wenn $z_k \neq x_m$, dann könnte man $x_m = y_n$ an Z anhängen und erhielte eine gemeinsame Teilsequenz von X und Y der Länge k+1 \nleq

Noch zu zeigen: Z_{k-1} ist IgT von X_{m-1} und Y_{n-1} . Sei W eine IgT von X_{m-1} und Y_{n-1} der Länge k. Dann kann wiederum $x_m = y_n$ an W angehängt werden \sim Teilsequenz von X und Y der Länge k+1 \nleq

- Sei $x_m \neq y_n$ und $z_k \neq x_m$. Das ist Z eine gemeinsame Teilsequenz von X_{m-1} und Y. Gäbe es eine gemeinsame Teilsequenz W von X_{m-1} und Y, die länger als Z ist, dann wäre W auch eine gemeinsame Teilsequenz von X und $Y \not \downarrow$
- 3 Sei $x_m \neq y_n$ und $z_k \neq y_n$. Dieser Fall ist symmetrisch zu Fall 2.

Buchhaltung mittels Matrizen B und C: C[i,j] sei die Länge der IgT von X_i und Y_j

$$C[i,j] = \begin{cases} 0, & \text{wenn } i = 0 \text{ oder } j = 0 \\ C[i-1,j-1]+1, & \text{wenn } x_i = y_j \\ \max(C[i-1,j], C[i,j-1]), & \text{wenn } x_i \neq y_j. \end{cases}$$

B[i,j] ist ein Pfeil, der uns hilft in C zu navigieren, um die optimale Lösung zu konstruieren.

Algorithm $\lg T(X, Y)$

```
1: m := |X|
 2: n := |Y|
 3: Seien B[1..m, 1..n] und C[0..m, 0..n] Datenfelder
 4: for i = 1 to m do
 5: C[i, 0] := 0
 6: end for
 7: for j = 0 to n do
 8: C[0,j] := 0
 9: end for
10: for i = 1 to m do
11:
        for j = 1 to n do
12:
           if x_i = y_i then
               C[i,j] := C[i-1,j-1] + 1
13:
               B[i,j] := ,, \nwarrow "
14:
           else if C[i-1,j] \geq C[i,j-1] then
15:
16:
               C[i,j] := C[i-1,j]
               B[i,j] := ,,\uparrow"
17:
18:
           else
19:
               C[i,j] := C[i,j-1]
20:
               B[i,j] := ,,\leftarrow"
21:
            end if
22:
        end for
23: end for
```

Beispiel: X = [A,B,C,B,D,A,B], Y = [B,D,C,A,B,A].

	j	0	1	2	3	4	5	6
i	y_j		В	D	С	А	В	Α
0		0	0	0	0	0	0	0
1	А	0	0↑	0↑	0↑	1	1←	1
2	В	0	1	1←	1←	1↑	2 [^]	2←
3	С	0	1	1↑	2	2←	2↑	2↑
4	В	0	1	1←	2↑	2↑	3^	3←
5	D	0	1	2	2↑	2↑	3↑	3↑
6	A	0	1↑	2↑	2↑	3^	3↑	4^
7	В	0	1	2↑	2↑	3↑	4 [^]	4↑

Somit ist [B,C,B,A] eine IgT.

Aufwand: $\mathcal{O}(mn)$.

9: else

11: end if

10: Print-lgT(B, X, Y, i, j - 1)

```
Algorithm Print-\lg T(B, X, Y, i, j)

1: if i = 0 or j = 0 then

2: return

3: end if

4: if B[i,j] = \% then

5: Print-\lg T(B, X, Y, i - 1, j - 1)

6: print x_i

7: else if B[i,j] = \% then

8: Print-\lg T(B, X, Y, i - 1, j)
```

Algorithmische Geometrie in der Ebene (\mathbb{R}^2),

Eingabe: Punktmenge
$$Q$$
, Punkte $p_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix}, x_i, y_i \in \mathbb{R}$.

Eigenschaften von Strecken

$$p_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, p_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, p_3 = \alpha p_1 + (1 - \alpha)p_2, \ 0 \le \alpha \le 1,$$

konvexe Linearkombination.

Strecke:
$$\overline{p_1p_2} = \{\alpha p_1 + (1-\alpha)p_2 | 0 \le \alpha \le 1\}, \ \overrightarrow{p_1p_2}$$
 (gerichtet)

$$p_1 \otimes p_2 = \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} = x_1 y_2 - x_2 y_1 = -p_2 \otimes p_1 = \pm ||p_1 \times p_2||$$
:

vorzeichenbehafteter Flächeninhalt des von den Strecken $\begin{pmatrix} 0 \\ 0 \end{pmatrix} p_1$

und
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} p_2$$
 aufgespannten Parallelogramms

Lagebestimmung von $p_0 \stackrel{\rightarrow}{p_1}$ zu $p_0 \stackrel{\rightarrow}{p_2}$

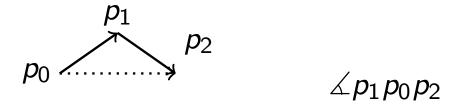
Mögliche Lagen:

$$(I) \qquad (II) \qquad p_0 \rightleftharpoons p_1 \qquad p_0 \rightleftharpoons p_1 \qquad p_0 \rightleftharpoons p_2 \qquad p_2 \qquad p_2 \qquad p_0 \rightleftharpoons p_2 \qquad p_3 \qquad p_4 \qquad p_4 \qquad p_5 \qquad p_5 \qquad p_6 \qquad p_6$$

Wähle p_0 als Ursprung, dann gilt

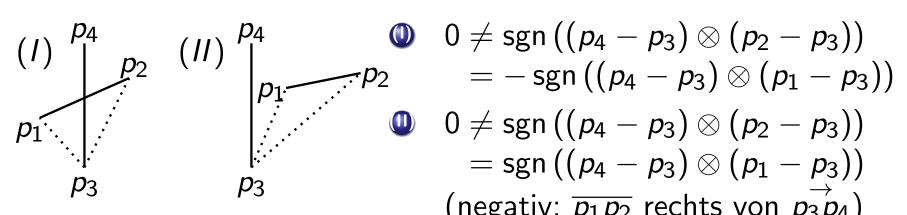
$$(p_1 - p_0) \otimes (p_2 - p_0)$$
 $\begin{cases} > 0 & \text{im Fall } (I), \\ < 0 & \text{im Fall } (II), \\ = 0 & \text{falls } \varphi = 0 \text{ oder } \varphi = \pi. \end{cases}$

Aufeinanderfolgende Strecken: Links- oder Rechtskurve?



$$(p_1-p_0)\otimes (p_2-p_0)$$
 $\begin{cases} >0 & \text{im Fall einer Linkskurve,} \\ <0 & \text{im Fall einer Rechtskurve,} \\ =0, & \text{falls beide Strecken auf einer Linie.} \end{cases}$

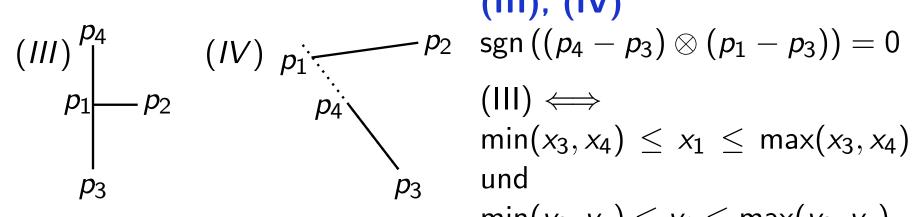
Wann schneiden sich die Strecken $\overline{p_1p_2}$ und $\overline{p_3p_4}$?



$$0 \neq \operatorname{sgn}((p_4 - p_3) \otimes (p_2 - p_3))$$

= $-\operatorname{sgn}((p_4 - p_3) \otimes (p_1 - p_3))$
 $0 \neq \operatorname{sgn}((p_4 - p_3) \otimes (p_2 - p_3))$
= $\operatorname{sgn}((p_4 - p_3) \otimes (p_1 - p_3))$

(negativ: $\overline{p_1p_2}$ rechts von $\overrightarrow{p_3p_4}$)



(III), (IV) $p_2 \operatorname{sgn}((p_4 - p_3) \otimes (p_1 - p_3)) = 0$ und $\min(y_3, y_4) \le y_1 \le \max(y_3, y_4)$

Algorithm DIRECTION(p, q, r)

1: return $(r-p)\otimes (q-p)$

Algorithm ON-SEGMENT(p, q, r)

```
1: if \min(x_p, x_q) \le x_r \le \max(x_p, x_q) \land \min(y_p, y_q) \le y_r \le \max(y_p, y_q) then
```

- 2: return TRUE
- 3: else return FALSE
- 4: end if

11: end if

Algorithm SEGMENT-INTERSECT(p_1, p_2, p_3, p_4)

```
1: d_1 := \mathsf{DIRECTION}(p_3, p_4, p_1)

2: d_2 := \mathsf{DIRECTION}(p_3, p_4, p_2)

3: d_3 := \mathsf{DIRECTION}(p_1, p_2, p_3)

4: d_4 := \mathsf{DIRECTION}(p_1, p_2, p_4)

5: if d_1d_2 < 0 \land d_3d_4 < 0 then return TRUE

6: else if d_1 = 0 \land \mathsf{ON-SEGMENT}(p_3, p_4, p_1) then return TRUE

7: else if d_2 = 0 \land \mathsf{ON-SEGMENT}(p_3, p_4, p_2) then return TRUE

8: else if d_3 = 0 \land \mathsf{ON-SEGMENT}(p_1, p_2, p_3) then return TRUE

9: else if d_4 = 0 \land \mathsf{ON-SEGMENT}(p_1, p_2, p_4) then return TRUE
```

Bestimmen der konvexen Hülle

Gegeben: Punktmenge Q

Gesucht: Konvexe Hülle [Q]

Es genügt, konvexes Polygon $P = \{p_0, p_1, \dots, p_n\}$ zu bestimmen, sodass für alle $q \in Q$ Skalare $\lambda_1, \dots, \lambda_n$ existieren mit

$$q = \sum_{i=1}^n \lambda_i p_i$$
, und $\lambda_i \ge 0$, $\sum_{i=1}^n \lambda_i = 1$.

Voraussetzungen:

- Es gibt 3 Punkte $q_1, q_2, q_3 \in Q$, die nicht kollinear sind.
- Die Menge P sei minimal, d.h. P besteht genau aus den Extremalpunkten von [Q].

Daraus folgt insbesondere $P \subseteq Q$.

Grahamsches Scannen

verwaltet Stack S aus Kandidaten x für P

- Alle $x \in Q$ kommen im Laufe des Algorithmus auf den Stack.
- Alle $x \in Q \setminus P$ werden schließlich entfernt und kommen nie wieder auf den Stack
- Wenn der Algorithmus terminiert, dann ist S ,,=" P, wenn von unten nach oben gelesen, geordnet in mathematisch positiver Richtung; i.Z. $S \sim P$.

Hilfsfunktionen:

- TOP(S): Ausgabe des obersten Elements von S;
- NEXT-TO-TOP(S): Ausgabe des zweitobersten Elements von S;
- POP(S): Entfernen des obersten Elements;
- PUSH(S,x): x auf den Stack legen.

Algorithm GRAHAM-SCAN(Q)

```
1: p_0 := q \in Q; Punkt in Q mit kleinster y-Koordinate, von all diesen jener mit
    kleinster x-Koordinate.
 2: (p_1, p_2, \ldots, p_m) := \text{Punkte von } Q \setminus \{p_0\}, geordnet nach Polarwinkel \varphi(p_i), wobei
    bei mehreren Punkten mit gleichem Polarwinkel nur der mit maximalem Abstand
    zu p_0 genommen wird.
 3: if m \le 2 then
 4: return Q
 5: else
        S := [] % leerer Stack
 6:
       PUSH(S, p_0); PUSH(S, p_1); PUSH(S, p_2)
 7:
 8:
        for i = 3 to m do
           while NEXT-TO-TOP(S) \rightarrow TOP(S) \rightarrow p_i keine Linkskurve do
 9:
10:
               POP(S)
11:
           end while
           PUSH(S, p_i)
12:
13: end for
14: return S
15: end if
```

Bemerkung: Der Polarwinkel von p_i bezüglich p_0 ist der Winkel, den die Trägergerade von $\overrightarrow{p_0p_i}$ mit der x-Achse einschließt.

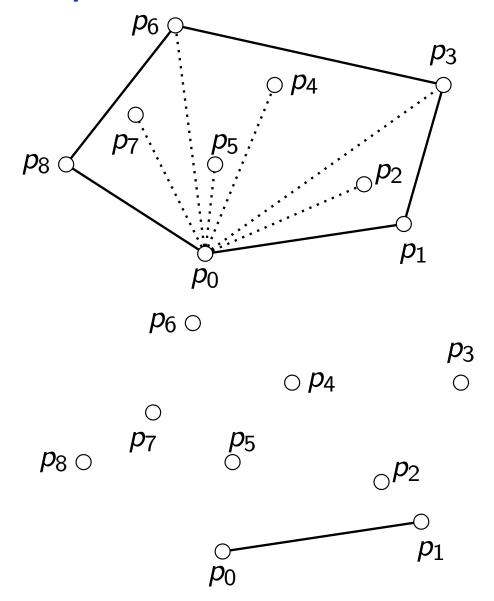
```
Laufzeit: Sei n = |Q|.

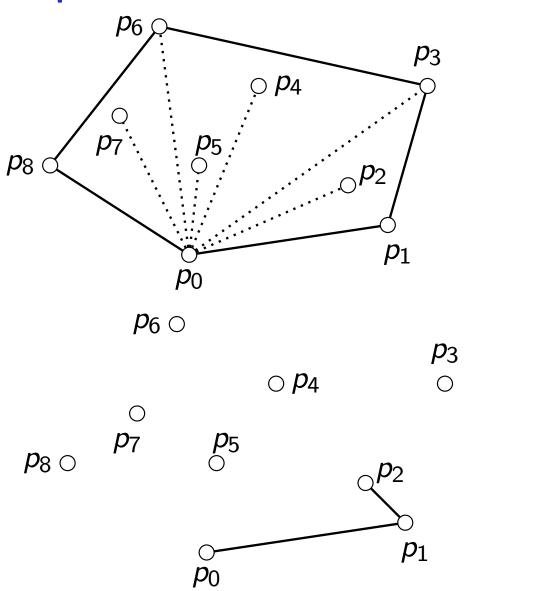
Sortieren nach \varphi(p_i): \mathcal{O}(n \log n)

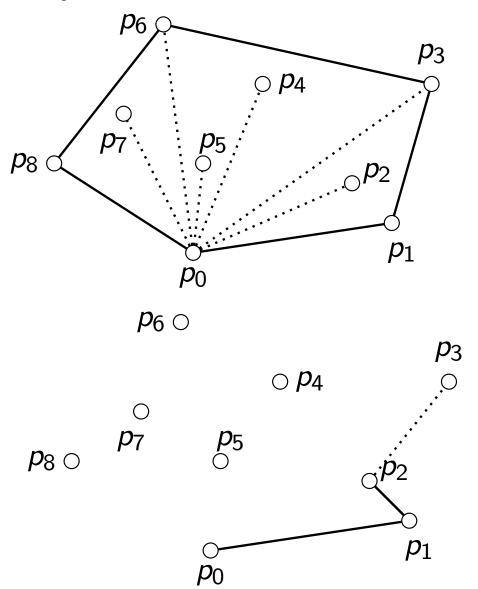
PUSH,POP, etc.: \mathcal{O}(1)

for-Schleife: m-2 mal PUSH, höchstens m-2 mal POP, also \mathcal{O}(n).

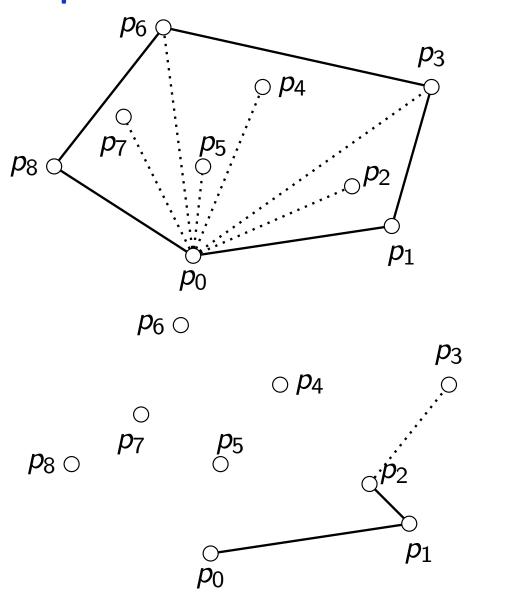
Insgesamt also \mathcal{O}(n \log n).
```



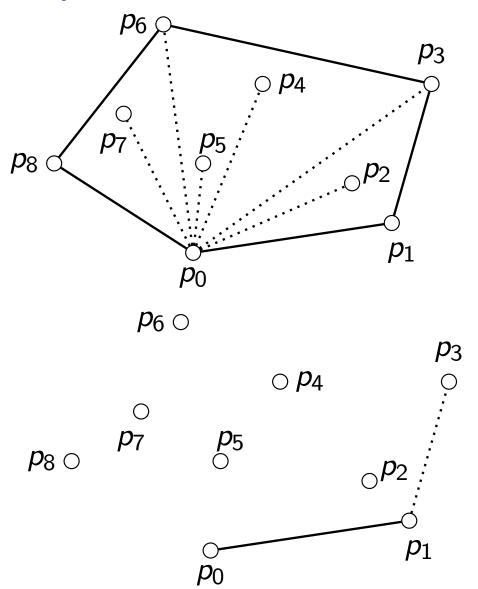




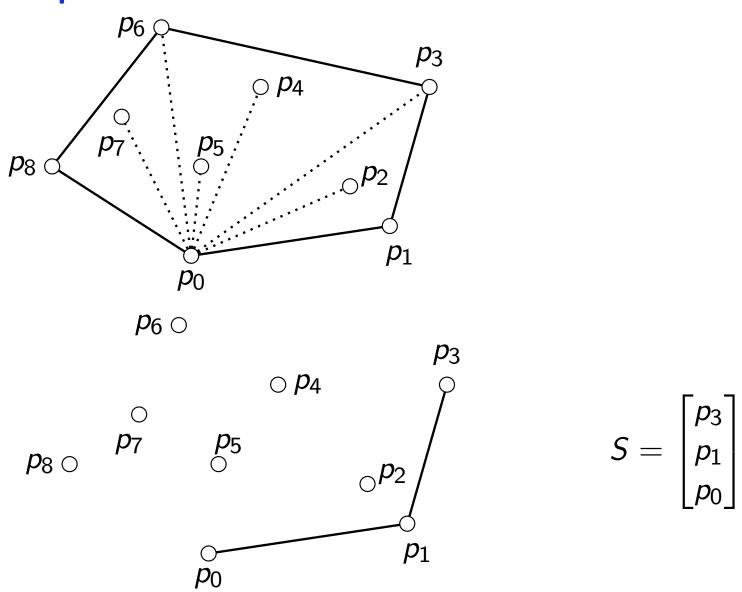
$$S = egin{bmatrix} p_2 \ p_1 \ p_0 \end{bmatrix}$$

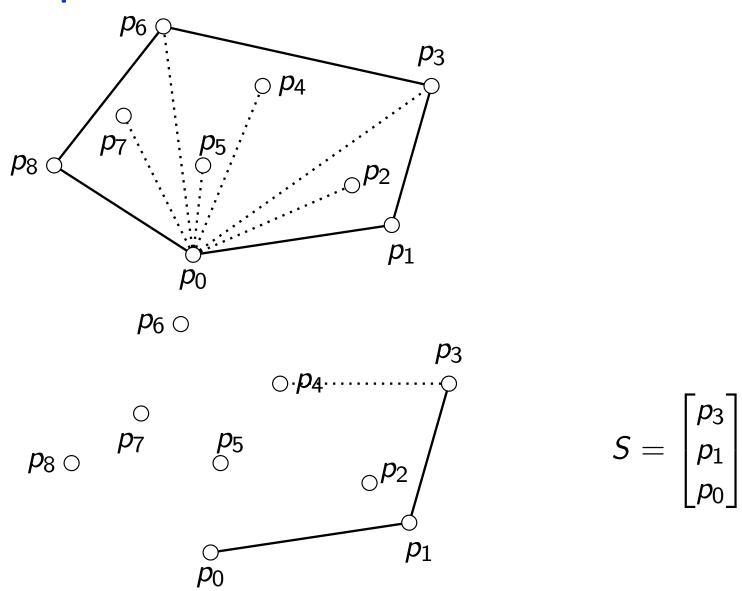


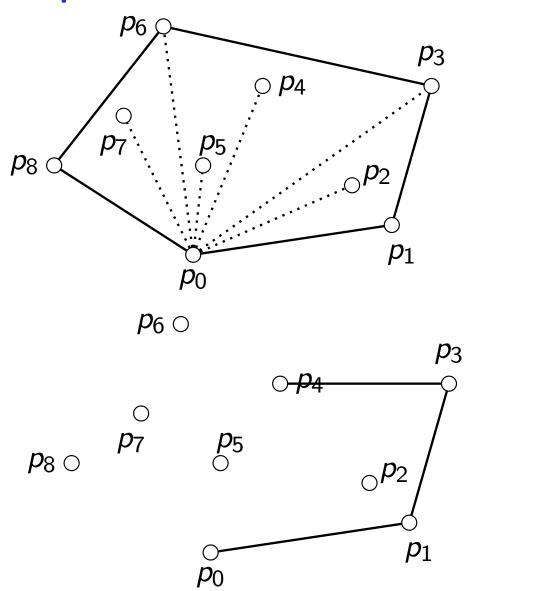
$$S = \begin{bmatrix} p_1 \\ p_0 \end{bmatrix}$$

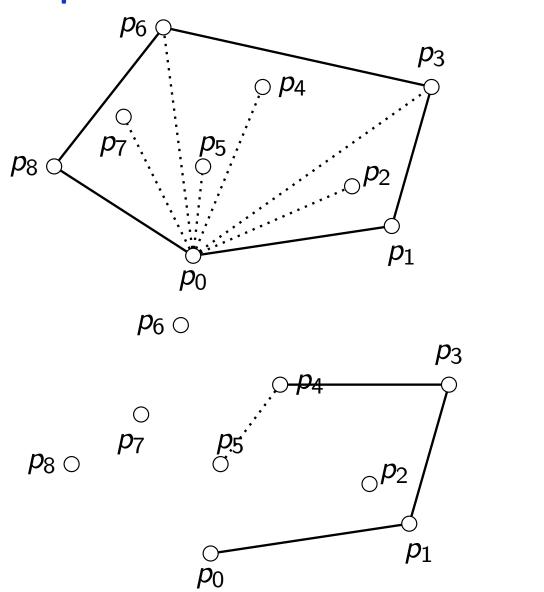


$$S = \begin{bmatrix} p_1 \\ p_0 \end{bmatrix}$$

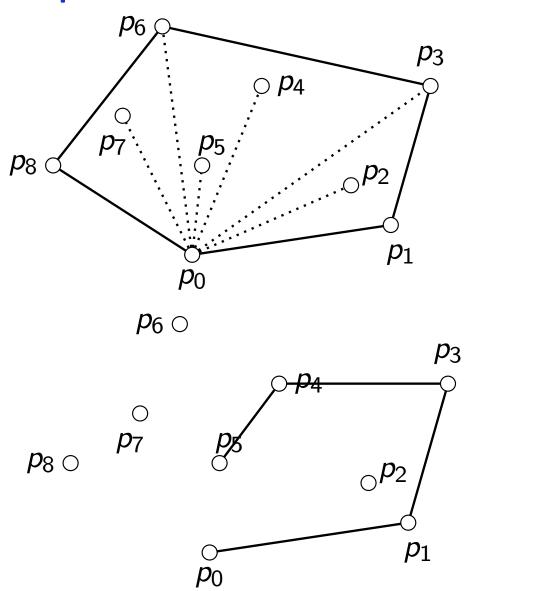




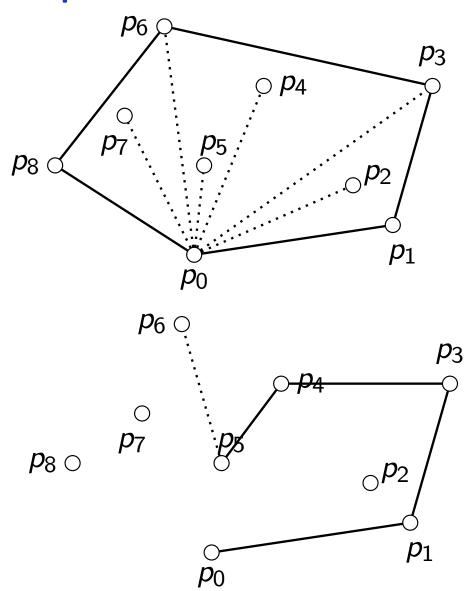




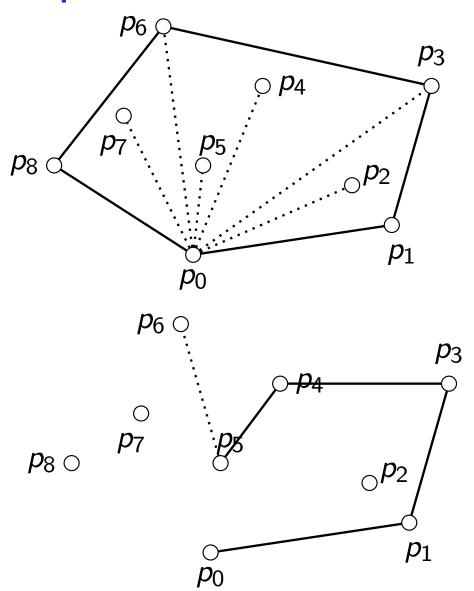
$$S = \begin{bmatrix} p_4 \\ p_3 \\ p_1 \\ p_0 \end{bmatrix}$$



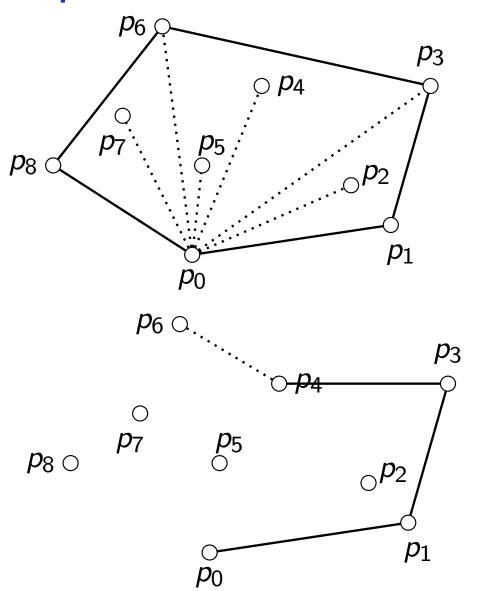
$$S = egin{bmatrix} p_5 \ p_4 \ p_3 \ p_1 \ p_0 \end{bmatrix}$$



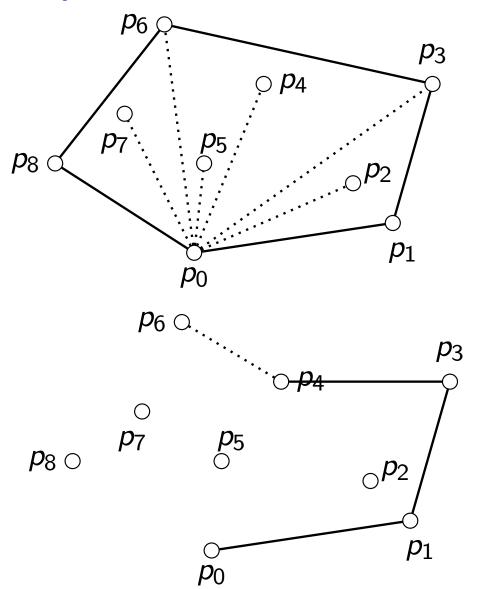
$$S = \begin{bmatrix} p_5 \\ p_4 \\ p_3 \\ p_1 \\ p_0 \end{bmatrix}$$



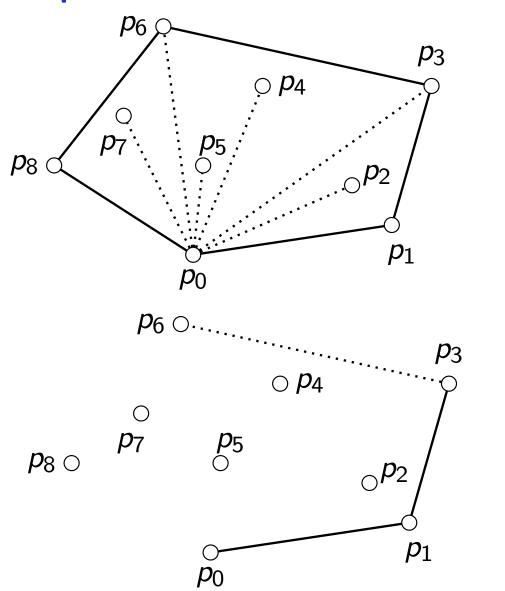
$$S = \begin{bmatrix} p_4 \\ p_3 \\ p_1 \\ p_0 \end{bmatrix}$$



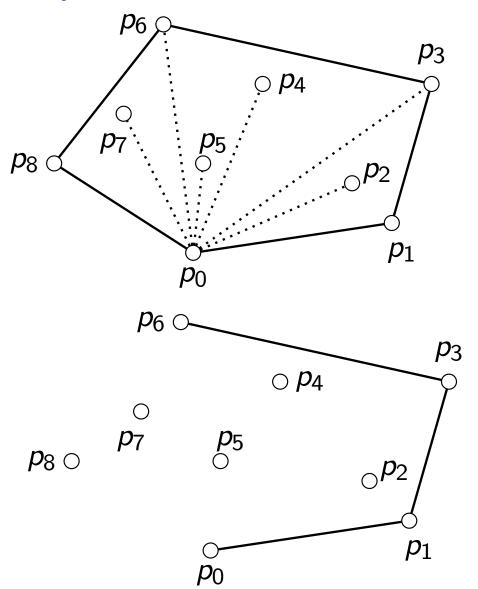
$$S = \begin{bmatrix} p_4 \\ p_3 \\ p_1 \\ p_0 \end{bmatrix}$$



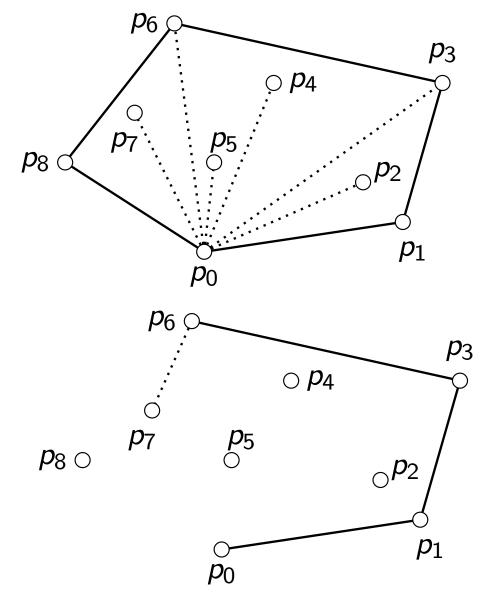
$$S = \begin{bmatrix} p_3 \\ p_1 \\ p_0 \end{bmatrix}$$



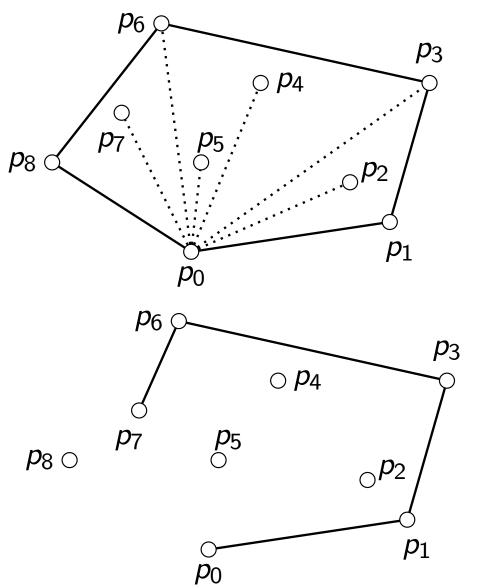
$$S = egin{bmatrix} p_3 \ p_1 \ p_0 \end{bmatrix}$$



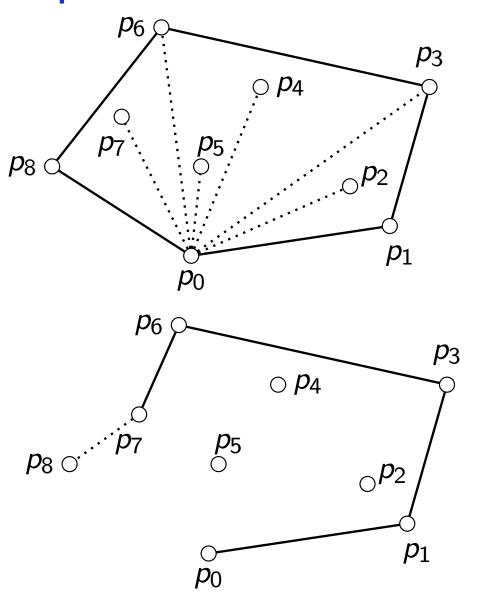
$$S = \begin{bmatrix} p_6 \\ p_3 \\ p_1 \\ p_0 \end{bmatrix}$$



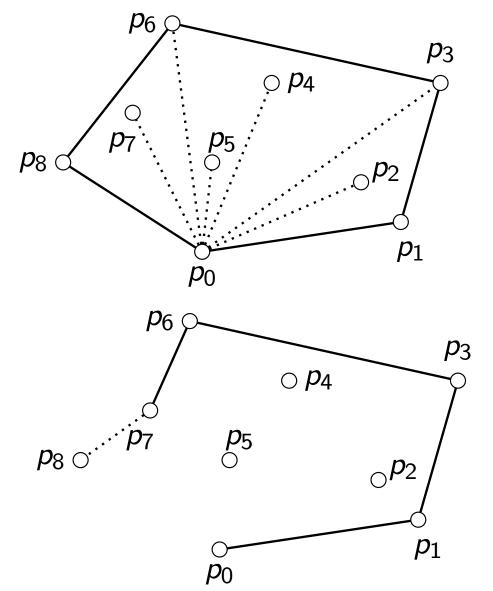
$$S = \begin{bmatrix} p_6 \\ p_3 \\ p_1 \\ p_0 \end{bmatrix}$$



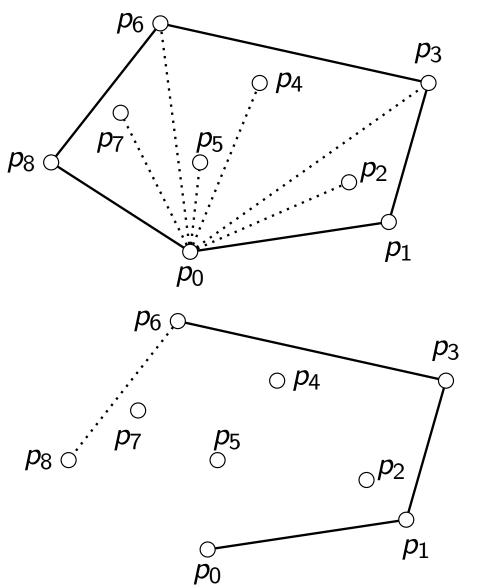
$$S = egin{bmatrix} p_7 \ p_6 \ p_3 \ p_1 \ p_0 \end{bmatrix}$$



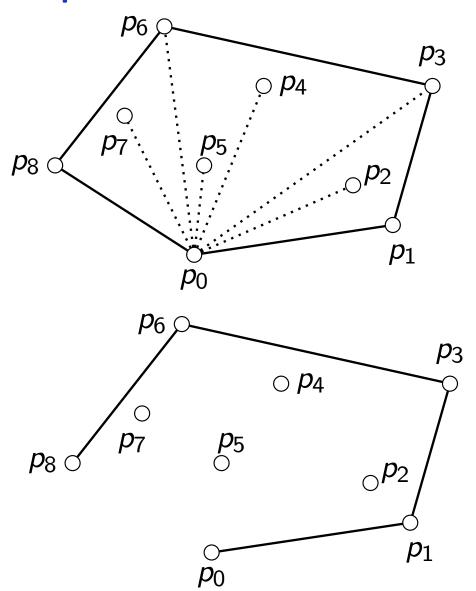
$$S = egin{bmatrix} p_7 \ p_6 \ p_3 \ p_1 \ p_0 \end{bmatrix}$$



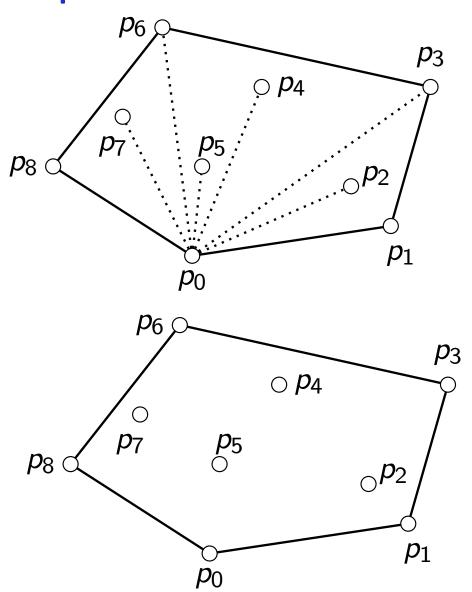
$$S = \begin{bmatrix} p_6 \\ p_3 \\ p_1 \\ p_0 \end{bmatrix}$$



$$S = egin{bmatrix} p_6 \ p_3 \ p_1 \ p_0 \end{bmatrix}$$



$$S = egin{bmatrix} p_8 \ p_6 \ p_3 \ p_1 \ p_0 \end{bmatrix}$$



$$S = egin{bmatrix} p_8 \ p_6 \ p_3 \ p_1 \ p_0 \end{bmatrix}$$

Satz

Das Grahamsche Scannen, angewendet auf eine Punktmenge Q, liefert schließlich einen Stack S mit $S = (e_0, \ldots, e_\ell)$, sodass e_0, \ldots, e_ℓ die Extremalpunkte von [Q] in mathematisch positiver Richtung sind. Wir notieren das als $S \sim E$ mit $E = \{e_0, \ldots, e_\ell\}$.

Beweis:

Sei $\{p_0, p_1, \dots, p_m\}$ die in Schritt 1 u 2 konstruierte Menge.

Weiters sei $Q_i := \{p_0, p_1, \dots, p_i\}$. Dann ist $Q \setminus Q_m$ die Menge der anfangs entfernten Punkte und $[Q_m] = [Q]$.

Sei E_i die Menge der Extremalpunkte von $[Q_i]$.

Es gilt $E_i \subseteq Q_i$ und $p_0, p_1, p_i \in E_i$.

Zu zeigen: Am Ende gilt $S \sim E_m$.

Schleifeninvariante: "Am Beginn jeder Iteration der **for**-Schleife gilt $S \sim E_{i-1}$."

Initialisierung:

$$i=3$$
: $S=egin{bmatrix} p_2 \ p_1 \ p_0 \end{bmatrix}$, $Q_2=\{p_0,p_1,p_2\}=E_2$; daher $S\sim E_2$.

Aufrechterhaltung:

Am Beginn der Iteration zum Wert i haben wir $TOP(S) = p_{i-1}$. Nach Ausführen der **while**-Schleife gelte $p_j := TOP(S)$ und $p_k := NEXT-TO-TOP(S)$.

D.h. S sieht aus wie unmittelbar nach Ausführen der Iteration zum Wert j der **for**-Schleife (j < i).

Nach der Induktionsvoraussetzung haben wir $S \sim E_j$.

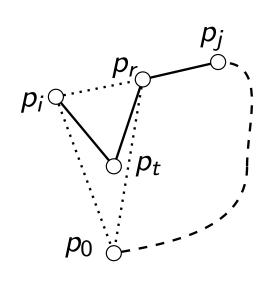
 $\varphi(p_i) > \varphi(p_j)$ und $p_k \to p_j \to p_i$ ist Linkskurve, denn andernfalls wäre p_j entfernt worden.

Nun wird PUSH (p_i, S) ausgeführt.

Behauptung: $[Q_i \cup \{p_i\}] = [Q_i]$

Bew. d. Beh.: Sei p_t ein Punkt, der durch die **while**-Schleife aus Sentfernt wurde, und sei p_r der Punkt unter p_t in S $(r \ge j)$. Dann ist $p_r o p_t o p_i$ keine Linkskurve und außerdem

 $\varphi(p_t) > \varphi(p_r)$.



 p_t liegt im Dreieck $p_0 p_r p_i$

(innen oder auf $\overline{p_r p_i}$).

Daraus folgt $p_t \notin E_i$ und daher $[Q_i \setminus \{p_t\}] = [Q_i]$.

$$[Q_i \setminus \{p_t\}] = [Q_i].$$

Mit $P_i := \{x \in \{p_0, \dots, p_m\} \mid$

POP(x) in **while**-Schleife der Iteration i}

folgt schließlich $[Q_i \setminus P_i] = [Q_i]$. \square_{Beh}

Wegen
$$[Q_i \setminus P_i] = [Q_j \cup \{p_i\}] = [E_j \cup \{p_i\}]$$
 folgt schließlich $S \sim E_i$.

Terminierung:
$$i = m + 1$$
 impliziert $S \sim E_m$.

Algorithm JARVIS-MARCH(Q)

```
1: x := \text{Punkt in } Q = \{q_0, \dots, q_n\} mit kleinster y-Koordinate, von all diesen jener
     mit kleinster x-Koordinate
 2: y := \text{dummy point}
 3: p_0 := x
 4: i := 0
 5: while y \neq p_0 do
 6: p_i := x
 7: y := q_0
 8: for j = 1 to |Q| - 1 do
            if ((y = x) \lor (p_i \to y \to q_i \text{ keine Linkskurve})) \land p_i \neq q_i \text{ then}
 9:
10:
               y := q_i
11:
            end if
12: end for
13: i := i + 1
14: x := y
15: end while
```

Laufzeit: $\mathcal{O}(n|E_m|)$

Technik: Wrapping

Das Nächste-Punktepaar-Problem

Gegeben: Punktmenge Q, $|Q| = n \ge 2$

Gesucht: $p_1, p_2 \in Q : \|p_1 - p_2\|_2 = \min_{x,y \in Q} \|x - y\|_2$.

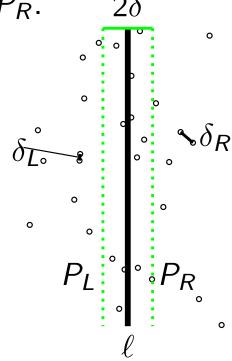
- Brute force: $\binom{n}{2}$ Punktepaare vergleichen: Aufwand $\Theta(n^2)$.
- Divide & Conquer: $T(n) = 2T(\frac{n}{2}) + \mathcal{O}(n)$, also $T(n) = \Theta(n \log n)$.
 - Eingabe:
 - \bullet $P\subseteq Q$,
 - Feld X: P sortiert nach der x-Koordinate,
 - Feld *Y*: *P* sortiert nach der *y*-Koordinate.
 - Eingabe bereits sortiert, sonst hätten wir $T(n) = 2T(\frac{n}{2}) + \mathcal{O}(n \log n)$ und somit $T(n) = \Theta(n(\log n)^2)$.
 - Prüfe, ob $|P| \leq 3$.
 - Ja: Brute force
 - Nein: Divide & Conquer.

<u>Teilen</u>: bestimme vertikale Gerade ℓ , sodass $P = P_L \cup P_R$ mit $|P_L| = \lceil |P|/2 \rceil$ und $|P_R| = \lfloor |P|/2 \rfloor$. Analog: $X = X_L \cup X_R$, $Y = Y_L \cup Y_R$

Conquer: rekursive Anwendung auf P_L und P_R liefert minimale Distanzen δ_L, δ_R . Setze $\delta := \min(\delta_L, \delta_R)$.

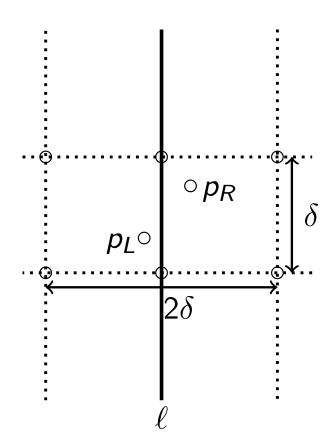
<u>Kombinieren</u>: gesuchtes Paar (a, b) ist entweder jenes (p, q) mit $||p - q||_2 = \delta$ oder eines mit $a \in P_L$, $b \in P_R$.

- $Y' = Y \setminus \{x \in Y \mid d(x,\ell) > \delta\}$
- $p \in Y'$, suche $x \in Y'$ mit $||x p||_2 < \delta$ durch Vergleich von p mit den 7 nachfolgenden Punkten aus Y'.
- $\delta' = \min_{x, x' \in Y'} \|x x'\|_2$.
- if $\delta' < \delta$ return (x, x', δ') else return (p, q, δ)



Korrektheit: klar, außer: Warum 7 Punkte?

Annahme: $\delta' < \delta$ und $\delta' = ||p_L - p_R||_2$.



Wegen $||p_L - p_R||_2 < \delta$ müssen p_L, p_R in einem $\delta \times 2\delta$ Rechteck R um die Gerade ℓ liegen.

Innerhalb jeder $\delta \times \delta$ -Hälfte von R: Alle Punkte haben voneinander Mindestabstand δ .

Maximal vier Punkte pro Rechteckshälfte.

Implementierung und Laufzeit

```
Hauptproblem: X_L, X_R, Y_L, Y_R, Y' sortiert
Lösung: X, Y vorsortieren; Kosten \mathcal{O}(n \log n).
```

Y in zwei sortierte Listen zerlegen (umgekehrtes Mergesort):

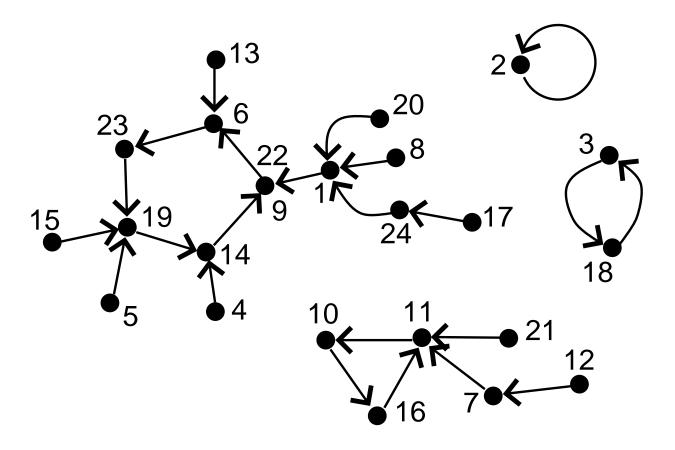
```
1: Seien Y_L und Y_R neue Felder
2: |Y_L| := 0; |Y_R| := 0
3: for i = 1 to |Y| do
4: if Y[i] \in P_L then
5: |Y_L| := |Y_L| + 1
6: Y_L[|Y_L|] := Y[i]
7: else
8: |Y_R| := |Y_R| + 1
9: Y_R[|Y_R|] := Y[i]
10: end if
11: end for
```

Aufwand: $T(n) = 2T(\frac{n}{2}) + \mathcal{O}(n)$, also $T(n) = \Theta(n \log n)$.

Faktorisierung – Pollards ρ -Methode

Faktorisierung − **Pollards** *p*-Methode

Sei $\sigma \in \{1, 2, ..., n\}^{\{1, 2, ..., n\}}$ zufällig gewählt. Beispiel für n = 24:



Für einen zufällig ausgewählten Punkt $x \in \{1, 2, ..., n\}$ gilt:

- Die mittlere Distanz zum Zyklus ist $\sim \sqrt{\pi n/2}$.
- Der Zyklus von x hat mittlere Länge $\sim \sqrt{\pi n/2}$.

Faktorisierung − **Pollards** *p*-**Methode**

Heuristik: $f(x) = x^2 - 1 \mod n$ verhält sich wie σ .

(allgemeiner: $g(x) = ax^2 + b$)

Erzeuge Folge $(x_i)_{i\geq 0}$ mit $x_{i+1}=x_i^2-1 \mod n$ und betrachte die Folge $(x_i')_{i\geq 0}$ definiert durch

$$x_i' = x_i \mod p$$

für einen nichttrivialen Teiler p von n.

Offensichtlich gilt $x'_{i+1} = (x'_i)^2 - 1 \mod p$. Daher erreicht x'_i nach $t = \Theta(\sqrt{p})$ Schritten einen Zyklus der Länge $\ell = \Theta(\sqrt{p})$, also gilt für alle $i \geq 0$: $x'_{t+\ell+i} = x'_{t+i}$.

Daraus folgt $p \mid x_{t+\ell+i} - x_{t+i}$ und daher $ggT(x_{t+\ell+i} - x_{t+i}, n) > 1$.

Setzt man $y_i := x_k \text{ mit } k = 2^{\lfloor \ln_2(i) \rfloor} \text{ und } y_i' = y_i \text{ mod } p, \text{ dann ist }$ für $i \text{ mit } 2^{\lfloor \ln_2(i) \rfloor} \ge t \text{ der Wert von } y_i' \text{ im Zyklus von } x_i'.$

Sobald $k > \ell$ ist y_i für i = k, k + 1, ..., 2k - 1 konstant und $2k - 1 > 2\ell$, während x_i' den Zyklus mindestens einmal durchläuft. \implies Für $i = k + \ell$ ist dann $ggT(x_{k+\ell} - y_{k+\ell}, n) > 1$.

Faktorisierung − **Pollards** *p*-Methode

Algorithm POLLARD(n)

```
1: i := 1
 2: x := RANDOM(0, n - 1)
 3: y := x
 4: k := 2
 5: while TRUE do
6: i := i + 1
 7: x := x^2 - 1 \mod n
8: d := ggT(y - x, n)
      if d \neq 1 and d \neq n then print d
10: end if
11: if i = k then
12: y := x
13: k := 2k
14: end if
15: end while
```