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Undirected graph
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T he vertices of a graph
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vertex set V, ag = |V|
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The edges of a graph
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edge set E, a1 := |E|, — Graph G = (V, E)

density e(G) = {—E||
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Special edges: loops and multiple edges

A VNN

SN

Graphs without loops and multiple edges: simple graphs
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Adjacency and incidence
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A vertex v and the set of its neighbours I (v)
d(v) =dg(v) = | (v)| = the degree of v
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6(G) = minyey d(v), A(G) = maXyey d(v)
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Directed case: successors [ (v) and predecessors [~ (v)
dt(v) = |[FT(v)| and d—(v) = |F~(v)|: out-degree and indegree of wv,
respectively.




Basic Concepts of Graph Theory

Directed case: successors [ (v) and predecessors [~ (v)
dt(v) = |[FT(v)| and d—(v) = |F~(v)|: out-degree and indegree of wv,
respectively.

Theorem (Handshaking lemma)

Y d(z) = 2|E(G)|, directed case: Y. dt(z)= Y d (z)=|E(G)]
xeV(Q) xeV(Q) zeV(Q)
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Example: Hypercube
G = ({0,1}", E)
For v =vqvo---vp and w = wywo - - - wp, We stipulate

n
vw € B i< Z lv; —w;| = 1.
=1
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Example: Hypercube
G = ({0,1}", E)
For v =vqvo---vp and w = wywo - - - wp, We stipulate

n
vw € B i< Z lv; —w;| = 1.
=1

Then, for all x € V we have d(x) =n and |V| = 2",
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Example: Hypercube
G = ({0,1}", E)
For v =vqvo---vp and w = wywo - - - wp, We stipulate

n
vw € B i< Z lv; —w;| = 1.
=1

Then, for all x € V we have d(x) =n and |V| = 2",

So,

|E|— Y d(z) == Zn—% n2" = p2" 1

:I:EV xeV
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A graph G and one of its subgraphs, G’

G = (V' E, viCcCv, E CE
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Induced subgraphs of G = (V, E): G[Vp] determined by its vertex set
Vo CV

edge set of G[Vp] maximal w.r.t. inclusion
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sequences of edges with “no jumps’ = walks

trails: no edge repetition allowed

paths: no edge and no vertex repetition allowed
(actually, paths are particular subgraphs)
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Particular walks: cylces (no edge and no vertex repetition allowed)
(actually, cycles are particular subgraphs)
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circuits (tours): no edge repetition, but vertex repetition allowed,
(circuits are therefore closed trails, but can also be seen as subgraphs)
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Theorem If there is a walk from v to w, then there is a path from v
to w as well.

Theorem If in an undirected graph there exist two different paths
from v to w, then there is a cycle (of positive length).

If in a directed graph there exists a closed walk, then there is a
cycle (of positive length).
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The adjacency matrix of G = (V, E):

V={v1...,vn}, A=(aij)ij=1,.n With a;; = {
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The adjacency matrix of G = (V, E):

V={vi...,on}, A= (aij)ij=1..n
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We have: d(v;) = Z a;; = Z aj;
1=1
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Theorem Let G = (V,E) be an undirected graph and v ~ w by defi-

nition if and only if there exists a (possibly empty) walk from v to w.
Then ~ is an equivalence relation.

Theorem Let G = (V,E) be a directed graph and v ~ w by definition
if and only if there exists a (possibly empty) walk from v to w and

likewise a (possibly empty) walk from w tov. Then ~ is an equivalence
relation.

Matrix of the relation ~ (undirected case): Let G = (V,E) be undi-
rected with |V| =n and |E| = m.

M = (mi,j)i,jZI,...,na where m; j = sgn(cm-)

and

min(m,n—1)

c= Y Ak

k=0
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connected graph
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A weakly, but not strongly connected graph
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The strongly connected components
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Reduction Gg = (Vg, ER): Vi = { strongly connected components },
ER: directions given by G = (V, E).
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Basic Concepts of Graph Theory

A vertex basis of a directed graph G = (V, E) is a set B C V such that

e For all x € V there is a vertex y € B such that there exists a (di-
rected) path y ~ x

e B is minimal with that property, i.e. for all B’ ; B thereisanxz eV
such that for all y € B’ there is no (directed) path y ~ =.



Basic Concepts of Graph Theory

A vertex basis of a directed graph G = (V, E) is a set B C V such that

e For all x € V there is a vertex y € B such that there exists a (di-
rected) path y ~ x

e B is minimal with that property, i.e. for all B’ ; B thereisanz eV
such that for all y € B’ there is no (directed) path y ~ z.

Remarks:

e The reduction Gr of a graph G = (V, F) is always acyclic.

e The reduction G of a graph G = (V, E) has a unique vertex basis,
namely

B:{ZBEGR| d_(CB):O}

e [ he vertex bases of GG constructible from the vertex basis of Gp.



Basic Concepts of Graph Theory

Trees and Forests

A simple undirected graph without cycles of positive length is called
forest.

A connected forest is called tree.
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Theorem InatreeT = (V,E) any two verticesv,w € V are connected
by a unique path W (v,w).

The length of W(v,w) is denoted by dp(v,w) and called the distance
between v and w
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Particular classes of trees: rooted trees, plane rooted trees, binary
trees, ...
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A vertex v with d(v) = 1 is called a leaf.

Theorem A tree with at least two vertices has at least two leaves.

Proof: Consider a path
V— V] —VUp — VU3 — = -++"" — VUV — W

of maximal length. Then v and w must be leaves.
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Theorem LetT = (V,E). Then the following statements are equiv-
alent:

1. T is a tree.

2. For all v,w € V(T) there is a unique path from v to w.
3. T is connected and |V| = |E|+ 1.

4. T is a minimal connected graph (every edge is a bridge)

5. T is a maximal acyclic graph.
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Proof: (1)=—=-(3), that is

“If T = (V, F) is a tree, then it is connected and satisfies |V| = |E|+1.”
We prove the state by induction on n = ag(T) = |V (T)|.

Induction start: ag(T) =1, a1(T) = |E(T)| = 0.

Now consider a tree T' = (V, E) with n 4+ 1 vertices. Then there is a
leaf v and let e be the edge incident to v. Let T/ = (V \ {v}, E \ {e}).

As ag(T") = n, we can apply the induction hypothesis to T".
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(3)=(1), that is
“T'=(V,E) connected and |V|=|E|+ 1 = T is a tree.”

Set n = |V|.
If T" has no cycle, we are done.

If T has a cycle, then remove an edge from the cycle. — graph T".
T’ is connected and cycle-free and has n — 2 edges.

But every connected graph on n vertices has at least n — 1 edges é
(proof by induction)
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A spanning tree of a connected graph G = (V, E) is a subgraph T of
G such that T is a tree, V(T) =V (G), E(T) C E(G).

A spanning forest of a graph G = (V, E) is a subgraph F' of G such that

Fis a forest, V(F) = V(G), E(F) C E(G), each connected component
of F'is a spanning tree of a connected component of G.

Remark: If a subgraph H of G satisfies V(H) = V(G), then it is called
a spanning subgraph.

Theorem Every connected graph contains a spanning tree.



