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Chapter 1

Graph Theory

1.1 Basics

1.1.1 Notation

First the used notations have to be defined.

Definition 1.1. A mathematical structure G = (V,E) is called a graph, which consists of
the vertex set V and the edge set E.

Definition 1.2. A directed graph G is a graph in which all edges are directed. The directed
edges e ∈ E are pairs of the form e = (v, w), for v, w ∈ V and in particular (v, w) 6= (w, v).

Definition 1.3. An undirected graph G is a graph in which all the edges e ∈ E are of
the form e = {v, w}. An edge e is a set and in particular e = {v, w} = {w, v} = vw. As a
shorthand notation vw is used.

There are some special edges: a loop is an edge (v, v) or {v, v}. If there are more edges
between two nodes, it is a multi-set, with multiple edges.

A graph without loops and without multiple edges is called a simple graph. Unless otherwise
stated it can be assumed, that the graphs are simple and finite (there is a finite number of
vertices).

v w

(a) directed edge

v w

(b) undirected edge

v

(c) loop

v w

(d) multiple edges

Figure 1.1: Different kind of edges

A graph corresponds to a relation on V (⊆ V × V ), an undirected graph corresponds to a
symmetric relation. The number of vertices are defined as α0 = |V | and the number of
edges are α1 = |E|.
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d(v) degree number of edges which are incident to v
d+(v) out-degree number of edges of the form (v, w)
d−(v) in-degree number of edges of the form (w, v)
Γ(v) set of neighbors
Γ+(v) set of successors set of vertices that are reachable from v
Γ−(v) set of predecessors set of vertices from which v is reachable

v

(a) undirected graph, d(v) = 3

v

(b) directed graph, d+(v) = 1,
d−(v) = 2

Figure 1.2: Examples for the degrees of vertex v

1.1.2 Lemmas and further definitions

Lemma 1.1 (Handshaking Lemma). Let G = (V,E) be a simple graph. Then∑
v∈V

d(v) = 2|E| if G is undirected,∑
v∈V

d+(v) =
∑
v∈V

d−(v) = |E| if G is directed.

Proof.

• Undirected case:
Count all the edges that are incident to v. If this is done for every v ∈ V every edge is
counted twice.

• Directed case:
Again count all the edges that are incident to v. However this time only the outgoing
edges are counted.
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0 1

(a) 1D-hypercube

00 10

1101

(b) 2D-hypercube

000 100

110010

001 101

111011

(c) 3D-hypercube

Figure 1.3: n-Hypercubes

Example 1.1. Let G be a graph, such that G = ({0, 1}n, E) and vw ∈ E ⇔
∑n

i=1 |vi−wi| = 1:
if two vertices differ only in one coordinate, there is an edge between them. Now it is possible
to compute the number of vertices (α0) and the number of edges (α1):

α0 = 2n

α1 =
1

2

∑
v∈V

d(v) = 2n−1 · n.

If the degree of every vertex v ∈ V , is the same, it is said that G is a regular graph.

Definition 1.4. Let e = vw ∈ E. Then v and w are adjacent, this is denoted by v ∼ w.
Furthermore: e and v (or e and w) are said to be incident.

Definition 1.5. With the above definition, the adjacency matrix can be defined. Let
V = {v1, . . . , vn} and i, j = 1, 2, . . . , n, then the adjacency matrix A = (ai,j) consists of
the following entries:

ai,j =

{
1 vi ∼ vj (vi and vj are adjacent)

0 vi 6∼ vj
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vi vj

(a) k = 1

vi vi vj

(b) k = 2

vi vi vj
1 step k − 1 steps

(c) induction-step

Figure 1.4: Adjacency via induction

Some remarks:

• If G is undirected, A is symmetric.
• Consider the following adjacency matrix:

Ak = (a
[k]
ij )i,j=1,...,n = A ·Ak−1

With a
[k]
ij =

∑n
l=1 ail · a

[k−1]
lj . In this matrix the entries a

[k]
ij of Ak give the number of

ways to get from vi to vj in exactly k steps.

Definition 1.6. A walk in a graph G is a sequence of edges, where successive edges have a
vertex in common. A walk may repeat an edge, but it does not make any jumps.

A trail is a walk, without repeating any edges. If a trail starts and ends in the same vertex,
it is a closed trail, or a circuit.

(a) Graph G

1

2,3,4

5

(b) Walk over G

1

2

3

(c) Trail over G

Figure 1.5: Walk and trail over G

Definition 1.7. A graph H = (V ′, E′) of a graph G = (V,E) is a subgraph of G (H ≤ G)
if:

• V ′ ⊆ V , and
• E′ ⊆ E.

E′ contains only edges between vertices of V ′. This is implied by the requirement that H is a
graph.

Definition 1.8. For undirected graphs, the connectivity relation R can be defined as fol-
lows:

vRw (v connected to w) ⇐⇒ ∃ walk from v to w.
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This relation can be described with a matrix C:

C =
L∑
k=0

Ak = (ci,j).

With L = min(|E|, |V | − 1) and ci,j, which is the number of walks between vi and vj, the
length has to be less than L.

The relation R has the following properties:
• ∀v ∈ V : vRv.
• ∀v, w ∈ V , vRw ⇒ wRv.
• ∀u, v, w ∈ V , vRw ∧ wRu⇒ vRu.
• R is an equivalence relation!
• R induces a partition of V : V = V1 ∪ V2 ∪ . . . ∪ Vn and if i 6= j than Vi ∩ Vj = ∅. The
Vi’s are the connected components of the graph.

Figure 1.6: Graph with 2 components

Definition 1.9. An undirected graph G is connected if ∀v, w ∈ V : vRw.

Definition 1.10. A subgraph H of G is a connected component of G if H is connected
and H is maximal with regard to the subgraph relation. A graph H is maximal if: there exists
no graph H ′ such that: H ≤ H ′ ≤ G and H ′ is connected.

Definition 1.11. For directed graphs, the connectivity relation S is defined as follows:

vSw (v connected to w) ⇐⇒ ∃ walk from v to w and

∃ walk from w to v.

Like R, S is an equivalence relation and S induces a partition on V .

Figure 1.7: Graph with 3 strong connected components

Definition 1.12. The directed graph G is strongly connected if and only if ∀v, w ∈ V :
vSw.

Let H ≤ G and let H be maximal and strongly connected. Then H is a strongly connected
component of G. The graph G is strongly connected if it has only one connected component.
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1.1.3 Shadow, reduction and node base

Definition 1.13. Let G be a directed graph. If the directions are ignored and multiple edges
are reduced to only one edge, a new graph H is created. This graph is called the shadow of
G. If H is connected, then G is weakly connected.

Definition 1.14. Let G = (V,E) be a directed graph. Let GR be a simple graph, with the
following vertex set: VR = {K1, . . . ,Km}, the set of the strongly connected components in G.
The edges of GR are defined as: ER = {(ki, kj) | ∃v ∈ V (ki), ∃w ∈ V (kj) : (v, w) ∈ E}. The
graph GR is called the reduction of G.

Some remarks:

• GR is always acyclic, otherwise it would be a strongly connected component on its own.
• If G is strongly connected, then GR will be exactly one vertex.

(a) directed Graph G

(b) shadow H of G

(c) strongly connected components of G

(d) Reduction GR of G

Figure 1.8: Graph G and its transformations

Definition 1.15. Let the graph G = (V,E) be directed. Then B is called a node base of G
if:

• B ⊆ V .
• ∀v ∈ V,∃w ∈ B, such that every vertex of the graph can be reached with a walk starting

from a vertex in B: wSv.
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• B is minimal with respect to the relation ⊆: there is no subset of B which is a node
base as well.

Some remarks:

• From a node base of GR a node base of G can be constructed: Suppose the node base of
GR is {K1, . . . ,KL} ⊆ VR. Then

{{b1, . . . , bl | bi ∈ V (Ki)}}

is the set of all node bases of G.
• The reduction GR has only a single, unique node base.
• The node base of GR (and of acyclic graphs in general) is

{K ∈ VR | d−GR
(K) = 0}.

1.2 Trees and Forest

Definition 1.16. An undirected acyclic graph G = (V,E) is called a forest. A tree is a
connected forest. If there is a node in a tree that can be designated as the root, it is a rooted
tree.

A node which has degree 1 (there are no successors) is called a leaf. If removing an edge e
increases the number of connected components, then e is called a bridge.

A plane tree is a tree embedded into the plane, i.e. the order of children (left and right)
matters. Two trees may be isomorphic, but not equivalent when regarded as plane trees.

An example for a plane, rooted tree is a binary search tree.

Definition 1.17. Two graphs G and H are isomorphic (G ∼= H) if there is a bijective
function ϕ such that:

ϕ : V (G) 7→ V (H)

and: vw ∈ E(G)⇔ ϕ(v)ϕ(w) ∈ E(H).

Lemma 1.2. Let T be a tree, with two ore more vertices: |V (T )| ≥ 2, then T has at least
two leaves.

Proof.

• The tree with two nodes: in this case there is one edge, connecting the two leaves.
• A tree T , with at least three nodes: start at an arbitrary node, this node has to have a

neighbor:
– If the node has only one neighbor, remove the edge and this node, this gives a new

tree: T ′. The last part of the proof will be by induction: eventually the remaining
tree has only two leaves.

– If the node has more than one neighbor, see those neighbors as trees of their own
and handle accordingly.

Theorem 1.1. The following statements are equivalent:
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1. T is a tree, it is a connected, acyclic, undirected graph.
2. ∀v, w ∈ V (T ) there is exactly one path from v to w.
3. T is connected and |V | = |E|+ 1.
4. T is a minimal connected graph (every edge is a bridge).
5. T is a maximal acyclic graph.

1⇒ 3. This will be proved by induction on n = α0 = |V (T )|. For n = 1 this is easy to see.

Take n→ n+ 1 vertices. Choose a leave v of T and create a new tree T ′ which is T without
this leave: T ′ = T\{v}. Apply the induction hypotheses: |V (T ′)| = |E(T ′)| + 1 ⇒ |V (T )| =
|V (T ′)| + 1 ∧ |E(T )| = |E(T ′)| + 1, this proofs 1 ⇒ 3, to prove the whole theorem, it would
be necessary to prove equivalence for all five statements.

1.2.1 Spanning subgraphs

Definition 1.18. Let G = (V,E) be an undirected graph. F is a spanning forest of G if
and only if:

1. V (F ) = V (G) and E(F ) ⊆ E(G).
2. F is a forest
3. F has the same connected component as G.

If F is connected, it is a spanning tree.

Example 1.2. Take a square with nodes and edges:

V = {1, 2, 3, 4}

E = {{1, 2} , {2, 4} , {3, 4} , {1, 3} , {1, 4}} = {a, b, c, d, e} .

There are eight spanning trees, all using only three edges.

1 2

34

a

b

c

d
e

Figure 1.9: Graph G and all its spanning trees

It is possible to construct the adjacency matrix A and the degree matrix D from here. Taking
nameweights into account the adjacency matrix Ã looks like:

Ã =


0 a d e
a 0 0 b
d 0 0 c
e b c 0


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The degree matrix with nameweights, D̃, looks like:

D̃ =


a+ d+ e 0 0 0

0 a+ b 0 0
0 0 c+ d 0
0 0 0 b+ c+ e


Resulting in:

D̃ − Ã =


a+ d+ e −a −d −e
−a a+ b 0 −b
−d 0 c+ d −c
−e −b −c b+ c+ e


The determinant will give all the possible spanning subtrees:

∣∣∣∣∣∣
a+ b 0 −b

0 c+ d −c
−b 0 b+ c+ e

∣∣∣∣∣∣ = (a+ b)(c+ d)(b+ c+ e)− b2(c+ d)− c2(a+ b)

= bcd+ abc+ abd+ acd+ ace+ ade+ bce+ bde.

If a = b = c = d = e = 1 then the determinant would be 8: the number of spanning subtrees.

(a) Graph G (b) maximal forest

Figure 1.10: Maximal spanning forest of graph G

Theorem 1.2 (Kirchhoff’s Matrix-Tree Theorem). Let G be an undirected connected graph,
A the adjacency matrix and D the degree matrix (with on its diagonal: d(v1), d(v2), . . . , d(vn)).
The number of spanning trees is: | det((D−A)′)|, in which (D−A)′ is the matrix D−A with
one row and one column deleted.

In the case that G is not connected, the same principle can be applied for every connected
component. To count the number of possible spanning forests, you have to multiply.

Remark: If you want to know which tree is cheapest, it is not efficient to generate them all.
There are however some efficient algorithms that can do that.
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1.2.2 Minimum or maximum Spanning Trees

Given an undirected graph G = (V,E), with a weight function w : E → R, every edge in E
is assigned a weight: e 7→ w(e). Then G is called a weighted graph (sometimes also called
a network).

The main interest lies in a subset of the edges. F ⊆ E and w(F ) =
∑

e∈F w(e) are defined
as the weight of the edge set F . The problem that arises is to find a set F , a spanning forest
(with its vertices), with w(F ) (the weight) minimal/maximal. This problem is called the
MST problem.

Two greedy algorithms that (in some cases) give the right set of edges are Kruskal’s algo-
rithm and Prim’s algorithm.

Algorithm 1: Kruskal’s algorithm

input : A undirected graph G = (V,E), with a weight function w
output: A set F ⊆ E, with G′(V, F ) a spanning forest

1 Sort edges by weight; E′ := ∅; j := 1;
2 if (V,E′ ∪ {ej}) is acyclic then
3 E′ := E′ ∪ {ej};
4 end
5 if (j = |V | − 1 or j = m) then
6 END
7 else
8 j := j + 1;
9 goto 2;

10 end
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3|d

1|g

2|h
3|i

1|f

1|c
2|e

2|j

5|k

2|h

2|b

4|a

(a) Graph G, sorted edge-set

E = {c, f, g, b, e, h, j, d, i, a, k}

3|d

1|g

2|h
3|i

1|f

1|c
2|e

2|j

5|k

2|h

2|b

4|a

(b) Choosing the first few edges without conflict,

E′ = {c, f, g}

3|d

1|g

2|h
3|i

1|f

1|c
2|e

2|j

5|k

2|h

2|b

4|a

(c) Cannot add edge b because it would create a
cycle, continue with e,

E′ = {c, f, g, e}

3|d

1|g

2|h
3|i

1|f

1|c
2|e

2|j

5|k

2|h

2|b

4|a

(d) Result, E’={c,f,g,e,h,j}

Figure 1.11: Example using Kruskal’s algorithm
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Algorithm 2: Prim’s algorithm

input : A undirected graph G = (V,A), with a weight function w. With
Ai = (vj1, . . . , vjm), the list of all the vertices adjacent to vi.

output: A spanning forest
1 g(v1) := 1; S := ∅; T := ∅;
2 for i = 2 to n do
3 g(vi) :=∞;
4 end
5 while S 6= V do
6 choose vi ∈ V \S such that g(vi) minimal;
7 S := S ∪ {vi};
8 if i 6= 1 then
9 T := T ∪ {ei};

10 end
11 for vj ∈ Ai ∩ (V \S) do
12 if g(vj) > w(vivj) then
13 g(vj) := w(vivj);
14 ej := vivj ;

15 end

16 end

17 end

14



v0 v1 v2

v3v4v5

3 3

1 5

54

2

6

(a) Graph G

v0 v1 v2

v3v4v5

3 3

1 5

54

2

6 g(v1) g(v2) g(v3) g(v4) g(v5)

v0

(b) Start at node v0

v0 v1 v2

v3v4v5

3 3

1 5

54

2

6 g(v1) g(v2) g(v3) g(v4) g(v5)

v0 3 ∞ 2 ∞ 1

(c) Choose minimum weighted edge to v6

v0 v1 v2

v3v4v5

3 3

1 5

54

2

6
g(v1) g(v2) g(v3) g(v4) g(v5)

v0 3 ∞ 2 ∞ 1
v5 3 ∞ 2 4 –

(d) Choose minimum/maximum weighted edge to v4

v0 v1 v2

v3v4v5

3 3

1 5

54

2

6

g(v1) g(v2) g(v3) g(v4) g(v5)

v0 3 ∞ 2 ∞ 1
v5 3 ∞ 2 4 –
v3 3 5 – 4 –
v1 – 3 – 4 –
v2 – – – 4 –

(e) Result

Figure 1.12: Example using Prim’s algorithm
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1.2.3 Matroids and Greedy Algorithms

Kruskal’s and Prim’s algorithm are greedy algorithms. These algorithms only work on
a local view of the graph and they use these local values to solve the maximization (or
minimization) problem. Since these algorithms are greedy, they generally don’t produce
optimal maximal or minimal spanning trees. However they always work in the special case
of matroids.

Using Kruskal’s algorithm, the edges are stored in decreasing order of their weight. Every
time the next best one is taken, with the restriction that it does not create a cycle. Let
G(V,E) be a graph on which Kruskal is used and define S = {F ⊆ E | F is a forest}. The
algorithm constructs a tree T , such that: T := T ∪{e} if T ∪{e} ∈ S. In this case S is the set
of all the possible forests with the edges in G. Note that, if an edge is used, the two vertices,
that are connected by this edge, are also present in the generated tree.

Definition 1.19 (Independence systems). (E,S) is an independence system if S ⊆ 2E

and S is closed under inclusion. If A ∈ S and B ⊆ A then B ∈ S. S is called the set of
independent sets.

This definition gives rise to a new optimization problem. Given the system (E,S) with
w : E → R+

0 , A ⊆ S and w(A) =
∑

e∈Aw(E). The problem is to search for an A such that
w(A) is maximal (or minimal) and A is in S. A should be maximal with respect to inclusion
(B ⊇ A implies B ∈ S). An example is the system (E,S) in which E is the edge set and S
is the set of forests.

A more generalized version of Kruskals algorithm is called GREEDY:

Algorithm 3: Generalized Kruskal: GREEDY

input : Sets E and S, a weight function w and the set T , which is the result of
this algorithm

output: A spanning forest
1 Sort the elements of E according to weight: E = {e1, . . . , ek | w(e1) ≤ w(e2) ≤ . . .};
2 T = ∅;
3 for k = 1, . . . ,m do
4 if T ∪ {ek} ∈ S (it does not create a cycle) then
5 T := T ∪ {ek};
6 end

7 end

Definition 1.20 (Matroids). An independence system M = (E,S) is called a matroid if
A,B ∈ S such that |B| = |A|+ 1. Then ∃v ∈ B\A with A ∪ {v} ∈ S.

Remark: This so called matroid property holds in general for A,B ∈ S such that |A| ≤ |B|
as well.

Definition 1.21. A ∈ S is a basis of M if and only if A is a maximal independence set, with
respect to inclusion. If A,B are bases of M , then the rank of the matroid M is defined as:
r(M) = |A| = |B|.
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Theorem 1.3. Let G(V,E) be an undirected graph and S = {F ⊆ E | F is a forest}, then
(E,S) is a matroid.

Proof. Suppose F1, F2 ⊆ E, such that F2 ∈ S and F1 ⊆ F2, then F1 ∈ S. Since F1, F2 ∈ S, it
follows that |F2| = |F1| + 1. Suppose F1 has m connected components (trees): Ti = (Vi, Ai)
for i = 1, . . . ,m.

Observe: V = V1 ∪ V2 ∪ . . . ∪ Vm, F1 = A1 ∪ A2 ∪ . . . ∪ Am with |Ai| = |Vi| − 1 and F2 is a
forest.

Since F2 is a forest it follows that there are at most |Vi|−1 edges in F2 which connect v, w ∈ Vi,
since |F2| > |F1|. This means that there exists an edge e, which connects two components of
F1, in F2. Hence F1 ∪ {e} is a forest.

T1 T2 . . . Ti Tj . . . Tm

e ∈ E

Figure 1.13: Forest F2 and its trees

Example: Let E = {a1, a2, . . . , an} be a set of vectors in Rm. Define the set S as follows:
S = {A ⊆ E | A = ∅ or A = linear independent}. S is an independence system and it also a
matroid.

Remark: A is a basis of S if and only if A is a basis of the span of E (denoted by [E]),
a vector space. The rank of M is: r(M) = dim([E]). If A,B ∈ S and |A| + 1 = |B| then
∃x ∈ B\A such that A ∪ {x} ∈ S.

Theorem 1.4. Let M = (E,S) be a matroid with weight function w : E → R. Then
GREEDY computes ”A is maximal with respect to inclusion such that w(A) is minimal (or
maximal)” correctly. GREEDY computes the basis with minimal (or maximal) weight.

Proof. Let A be the resulting set after running GREEDY, A = {a1, a2, . . . , ar}. The proof
consists of three parts:

1. Start with proving that A is a basis, A ∈ S, by construction. Assume that A is not
maximal, then ∃e ∈ E such that A∪{e} ∈ S. This is a contradiction, which means that
A is maximal and hence a basis.

2. Now to prove that w(a1) ≤ w(a2) ≤ . . . ≤ w(ar). The elements are sorted in advance,
GREEDY takes them in order, this property holds as well.

3. In this step it has to be proven that w(A) is minimal. To to get a contradiction,
assume that w(A) is not minimal. Then ∃B = {b1, . . . , br}, which is a basis such that
w(B) < w(A), with w(b1) ≤ w(b2) ≤ . . . ≤ w(br).
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Define i := min{j | w(bj) < w(ai)} and Ai−1 = {a1, . . . , ai−1} as the status of A after
m ≥ i− 1 iterations of GREEDY. Now Bi = {b1, . . . , bi} and hence |Bi| = |Ai−1|+ 1.

Apply the matroid condition: ∃bj ∈ Bi\Ai−1 such that Ai−1 ∪ {bj} ∈ S, but w(bj) ≤
w(bi) < w(ai). This implies ∀x ∈ Bi: w(x) < w(ai). However, this is not how
GREEDY works, the algorithm would have found bj before ai, which means that
it would already have been added to the matroid. Since this is a contradiction, it
follows that w(A) is indeed minimal.

With this, it has been proven that GREEDY works on matroids in a general setting. It is
left to prove that matroids are exactly the structures on which GREEDY works correctly.

Theorem 1.5. M = (E,S) is an independence system. Assume GREEDY solves the
optimization problem ”A is maximal such that w(A) is maximal” correctly for all weight
functions on w, then M has to be a matroid.

Proof. Assume M is not a matroid, then ∃A,B ∈ S such that |B| = |A|+ 1 and ∀x ∈ B\A :
A ∪ {x} /∈ S. What is w(A) if w(e) is set to:

w(e) =


|A|+ 2 if e ∈ A
|A|+ 1 if e ∈ B\A
0 otherwise

To get a contradiction, present a weight function for which GREEDY does not work. By
definition:

w(A) = |A| · (|A|+ 2) < (|A|+ 1)2 ≤ w(B).

This implies that A is not a solution of the optimization problem and also not of ”w(A) is
maximal”. GREEDY chooses x ∈ A first (because w(A) < w(B)), then w(A) cannot be
increased anymore if x ∈ B\A. This implies A∪ {x} /∈ S by assumption, so x /∈ A∪B. If all
the weights would be zero, GREEDY arrives eventually at a set such that w(N) = w(A) is
not maximal. This is a contradiction: M has to be a matroid.

1.3 Weighted Graphs and Algorithms

Take a look at undirected graphs. The graphs that are used to find a shortest path are notated
as: G = (V,E,w : E 7→ R). The distance between two vertices v, w ∈ V is defined as:

d(v, w) =

{
min(w(x), x : v  w) if the walk exists

∞ otherwise.

1.3.1 Shortest path algorithms

The following three algorithms give as output the shortest path from one vertex (v0) to all the
others: Dijkstra’s Algorithm, Moore’s Algorithm and Floyd-Warshall Algorithm.
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Algorithm 4: Dijkstra’s algorithm

input : An undirected graph G = (V,E,w : E 7→ R)
output: A graph with the shortest paths from v0 to all the other vertices

1 l(v0) := 0;
2 for v ∈ V \{v0} do
3 l(v) :=∞
4 end
5 U := {v0}, u := v0;
6 for v ∈ V \U do
7 if (u, v) ∈ E and l(v) > l(u) + w(u, v) then
8 p(v) := u;
9 l(v) := l(u) + w(u, v)

10 end

11 end
12 m := minv∈V \U l(v), choose node z ∈ V \U with l(z) = m;

13 U := U ∪ {z}, u := z;
14 if U = V or ∀v ∈ V \U : l(v) =∞ then
15 END
16 else
17 goto 6;
18 end

Dijkstra’s algorithm is a marking algorithm. The set U is the set of marked nodes. This
algorithm works in directed and undirected graphs, however the weights have to be non-
negative. The complexity of Dijkstra is: O(min(|V |3, |V | · log(|V |) · |E|)).
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(c) Continue with the next edge
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v0 v1 v2 v3 v4 v5 chosen pred.
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6/v1 5/v1 ∞ v4 v1

6/v1 11/v4 v3 v1

10/v3 v5 v3

(d) Result

Figure 1.14: Example using Dijkstra’s algorithm
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Algorithm 5: Moore’s algorithm

input : An undirected graph G = (V,E,w : E 7→ R)
output: A graph with the shortest paths from v0 to all the other vertices

1 l(v0) := 0, a(v0) := 0, p(v0) := ∗, STEPS := 0, IND := 0;
2 for v ∈ V \{v0} do
3 l(v) :=∞, a(v) := 1, p(v) := ∗
4 end
5 IND := 0;
6 for v ∈ V do
7 if a(v) = STEPS then
8 for 〈v, v〉 do
9 if l(v) > l(v) + w(v, v) then

10 IND := 1, l(v) := l(v) + w(v, v), a(v) := a(v) + 1, p(v) := v
11 end

12 end

13 end

14 end
15 if IND = 0 then
16 STOP
17 end
18 if IND = 1 then
19 STEPS := STEPS + 1
20 end
21 if STEPS > α0(G) then
22 STOP
23 else
24 goto 6;
25 end

Moore’s Algorithm constructs the distances by constructing a distance tree, it uses two func-
tions: l: the distance from v0 in the network and d: the distance form v0 in the underlying
graph such that d(v, w) is the minimum of edges needed to go from v to w.

The tree is constructed level by level, for all its nodes. At the top, the neighbors have to be
found. The best next edge is added. It might happen that a better walk is found, that vertex
will be put on the new level and be removed from its old place. The algorithm stops if no
improvements are possible, or the number of steps is equal to the number of used vertices.

In Moore’s Algorithm, cycles of negative length are a problem. Another drawback is, if only
the distance between two vertices has to be calculated, the whole graph has to be calculated.
The complexity of Moore’s Algorithm is: O(|V | · |E|).
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(d) Result

Figure 1.15: Example using Moore’s algorithm
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Algorithm 6: Floyd-Warshall algorithm

input : An undirected graph G = (V,E,w : E 7→ R)
output: A graph with the shortest paths from v0 to all the other vertices

1 V = {v1, v2, . . . , vn}, W = (wij)1≤i,j≤n, wij = w(vi, vj);
2 lij := wij ;
3 for i = 1 to n do
4 for j = 1 to n do
5 for k = 1 to n do
6 ljk := min(ljk, lji + lik)
7 end
8 if ljj < 0 then
9 STOP (cycle of negative length!)

10 end

11 end

12 end

Floyd-Warshall computes all the shortest paths simultaneously and it also works for negative
cycles. The drawback of the algorithm is its complexity: O(|V |3), this is because of all the
loops.
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2 0 8 ∞ 1
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
(a) Graph G and initial conditions

L0 → L1 =


0 2 4 ∞ 3
2 0 6 ∞ 1
6 2 0 4 3
1 ∞ ∞ 0 5
∞ ∞ ∞ 1 0

 =


0 2 4 ∞ 3
2 0 6 ∞ 1
6 2 0 4 3
1 ∞ ∞ 0 5
∞ ∞ ∞ 1 0



=


0 2 4 ∞ 3
2 0 6 ∞ 1
6 2 0 4 3
1 3 5 0 4
∞ ∞ ∞ 1 0

 =


0 2 4 ∞ 3
2 0 6 ∞ 1
6 2 0 4 3
1 3 5 0 4
∞ ∞ ∞ 1 0


(b) Compare all rows to the first row

L1 → L2 =


0 2 4 ∞ 3
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4 2 0 4 3
1 3 5 0 4
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
(c) Changes from L1 to L2

L5 =


0 2 4 4 3
2 0 6 2 1
4 2 0 4 3
1 3 5 0 4
2 4 6 1 0


(d) Result L5

Figure 1.16: Example using the Floyd-Warshall algorithm

1.4 Maximal Flows

Definition 1.22. Let G=(V,E,w) be a directed network, in which w is the weightfunction
w : E 7→ R+

0 and there are two special nodes: the source s, with in-degree d−(s) = 0 and the
sink t, with out-degree d+(t) = 0. Such a network (V,E,w, s, t) is called a flow network.

Definition 1.23. The flow in a netwrok G is a function φ : E 7→ R if:

• ∀e ∈ E : 0 ≤ φ(e) ≤ w(e), this is called the feasability condition.

• ∀x ∈ V \{s, t} :
∑

y∈Γ−(x)

φ(yx)

︸ ︷︷ ︸
in-flow

=
∑

y∈Γ+(x)

φ(xy)

︸ ︷︷ ︸
out-flow

, this is called the flow conservation condi-

tion: the source generates the flow and the sink absorbs it.

The size or valuation v(φ) of the flow φ is defined as:

v(φ) =
∑

y∈Γ+(s)

φ(sy).
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Lemma 1.3. The out-flow of the source is the in-flow of the sink:∑
y∈Γ+(s)

φ(sy) =
∑

y∈Γ−(t)

φ(yt).

Proof. ∑
x∈Γ+(s)

φ(sx) +
∑

x∈Γ+(t)

φ(tx) +
∑
v 6=s,t

∑
x∈Γ+(v)

φ(vx) =
∑
e∈E

φ(e).

With
∑

x∈Γ+(t) φ(tx) = 0. But∑
e∈E

φ(e) =
∑

x∈Γ−(s)

φ(xs) +
∑

x∈Γ−(t)

φ(xt) +
∑
v 6=s,t

∑
x∈Γ+(v)

φ(vx).

However,
∑

x∈Γ−(s) φ(xs) is not necessary and
∑

v 6=s,t
∑

x∈Γ+(v) φ(vx) exists left an right from
the equality. Thus only remaining:∑

y∈Γ+(s)

φ(sy) =
∑

y∈Γ−(t)

φ(yt).

Definition 1.24. A cut of a flow network is a partition of V = S ∪T , with S ∩T = ∅, s ∈ S
and t ∈ T .

The capacity c(S, T ) of a cut is given by:

c(S, T ) =
∑

x∈S,y∈T
w(xy).

A cut (S, T ) is minimal if all cuts (S′, T ′) satisfy c(S′, T ′) ≥ c(S, T ).

Lemma 1.4. Let G be a flow network, φ the flow on G and (S, T ) a cut of G. Then

v(φ) =
∑

x∈S,y∈T
φ(xy)︸ ︷︷ ︸

flow forward

−
∑

x∈T,y∈S
φ(xy)︸ ︷︷ ︸

flow backwards

≤ c(S, T ).

In particular, the maximumn over all flows:

max
flow φ

v(φ) ≤ min
cut (S, T )

c(S, T ).

Proof. Start by looking at the following equation:

φ(v) =
∑
v∈S

 ∑
x∈Γ+(v)

φ(vx)−
∑

y∈Γ−(v)

φ(yv)

 .

According to the flow condition: the part between the parenthesis is zero, unless v = s, which
means that indeed, this is the size of the flow φ. For each vertex, the flow on the outgoing
edges is counted positive and the flow on incoming edges is counted negative. There are three
cases:

25



• Both of the vertices are in S, outgoing and ingoing cancel each other: such edges do
not contribute to the sum.
• A flow with starting point in S and end point in T , these edges contribute their flow

with a positive sign.
• A flow with starting point in T and end point in S, these edges contribute their flow

with a negative sign.

S T
e1

e2

e3

Figure 1.17: 3 possible cases

This means that the size of v(φ) can be rewritten as:

v(φ) =
∑

x∈S,y∈T
φ(xy)−

∑
x∈T,y∈S

φ(xy)

Observe that in the first sum, all φ(xy) ≤ w(xy) and the second sum is nonnegative:

0 ≤ φ(xy) ≤ c(S, T ).

From this it can be concluded that:

v(φ) ≤ c(S, T ).

Definition 1.25. A path P : s → t (not necessarily respecting the edge directions) is called
an augmenting path with respect to a flow φ if φ(e) < w(e) on every forward edge of P and
φ(e) > 0 on every backward edge of P .

Theorem 1.6. Let G be a flow network with flow φ. Then:

v(φ) maximal ⇐⇒ @ augmenting path (w.r.t. φ).

Proof.

(”⇒”) If there is a maximal flow, there cannot be an augmenting path. To create a con-
tradiction, suppose there is an augmenting path P . Since everything is finite, choose the
following:

δ′ = min
e∈P, forward

w(e)− φ(e) > 0

δ′′ = min
e∈P, backward

φ(e) > 0

δ = min(δ′, δ′′) > 0
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Define another flow φ̃(e), which is also a flow on G:

φ̃(e) :=


φ(e) + δ if e forward edge of P

φ(e)− δ if e backward edge of P

φ(e) otherwise.

Since δ is defined as the minimum of δ′ and δ′′, φ̃ does not become negative on backward
edges. Since an augmenting path starts in s, with a decreasing flow, it follows that v(φ̃) =
v(φ) + δ > v(φ). This means that v(φ) is not maximal, which is a contradiction: such an
augmenting path does not exist.

(”⇐”) If there is no augmenting path, then v(φ) is maximal. Assume there is no augmenting
path. Define

S = {v ∈ V | ∃ augmenting path s→ v}.

There is no augmenting path s → t, thus t /∈ S. Which means (S, T = V \ S) is a cut.
Each edge xy with x ∈ S, y ∈ T must be saturated: otherwise it would be possible to find an
augmenting path.

S is defined such that for every x ∈ S there is an augmented path s → x. There might be
an edge xy with y ∈ T , such that there is an augmented path s→ y. However, each edge xy
with x ∈ T, y ∈ S must be void (φ(xy) = 0). From this it follows:

v(φ) = c(S, T ) = 0.

Therefore v(φ) must be maximal.

s t
x y

S T

Figure 1.18: Proof augmented path

Theorem 1.7. If G is a flow network, with ∀e ∈ E : w(e) ∈ N, a maximal flow exists.

Proof. Start with a flow φ0(e) ≡ 0. If φ0 is not maximal, there exist an augmenting path,
with δ ∈ N+, this follows from the theorem above. Construct φ1 from the previous proof (φ̃),
from which we know that v(φ1) ≥ 1. Iterating this procedure gives φ2, with v(φ2) ≥ 2,...
After finitely many steps, a flow φmax is reached for which no augmented path can be found.
This flow is maximal.

Corollary 1.1. Let G be a flow network, with a weight function: w : E → Q, this implies
that there exists a maximal flow.

Remark: If the weights are reals, it can also be shown that a maximal flow exists, however,
another proof strategy is needed.
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Theorem 1.8 (Max-flow Min-cut Theorem). Let G be a flow network, then there exists a
maximal flow (φmax), which satisfies:

v(φmax) = min
(S,T )cut

c(S, T ).

An algorithm that calculates the maximal flow in a graph, is the Ford-Fulkerson Algorithm
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Algorithm 7: Ford-Fulkerson algorithm

input : A directed graph G = (V,E,w : E 7→ R)
output: The maximal flow in the graph G

1 for e ∈ E do
2 φ(e) := 0
3 end
4 p(s) := +s, δ(s) :=∞, V1 := {s}, V2 := V \{s};
5 for x ∈ V1 do
6 for y ∈ Γ+(x) ∩ V2 do
7 if φ(〈x, y〉) < w(〈x, y〉) then
8 p(y) := +x;
9 δ(y) := min(δ(x), w(〈x, y〉)− φ(〈x, y〉));

10 V1 := V1 ∪ {y};
11 V2 := V2\{y};
12 end

13 end
14 for y ∈ Γ−(x) ∩ V2 do
15 if φ(〈y, x〉) > 0 then
16 p(y) := −x;
17 δ(y) := min(δ(x), φ(〈x, y〉));
18 V1 := V1 ∪ {y};
19 V2 := V2\{y};
20 end

21 end

22 end
23 if V1 increased in step 5 then
24 goto 3;
25 end
26 if t ∈ V2 then
27 STOP
28 else
29 x := t;
30 while x 6= s do
31 if p(x) = +z then
32 φ(〈z, x〉) := φ(〈z, x〉) + δ(t);
33 x := z;

34 end
35 if p(x) = −z then
36 φ(〈x, z〉) := φ(〈x, z〉)− δ(t);
37 x := z;

38 end

39 end

40 end
41 goto 4;
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0|18

0|11
0|25

0|4

0|20
0|8

0|70|23 0|15

node x pred. p(x) flow δ(x)

a +s 14
b +s 23
c +a 10
d +c 10
e +c 10
f +d 10
g +d 4
t +g 4

(d) First flow

Figure 1.19: Example using the Ford-Fulkerson Algorithm, 1/2
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a

b
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d

e

f

g

t

4|14

0|9
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0|26
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0|11
0|25

4|4

0|20
0|8

0|70|23 4|15

(a) Second flow
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0|20
0|8
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(b) Third flow
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f

g

t

10|14

0|9

10|10

1|26

10|12

0|18

0|11
7|25

4|4

0|20
0|8

7|71|23 11|15

node x pred. p(x) flow δ(x)

a +s 4
b +s 22
d +b 22
f +d 18
c −d 10
e +c 10
t +e 10

(c) 4th flow, with reversal
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(d) 5th flow
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(e) No further flow possible
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0|11
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18|20
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7|719|23 11|15

(f) Result

Figure 1.20: Example using the Ford-Fulkerson Algorithm, 2/2
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1.5 Special Graph Classes

There exists, besides trees and forest many other special graph classes, some of which that
will be discussed in this section.

1.5.1 Eulerian Graphs

Definition 1.26. An open/closed Eulerian trail is a trail in which no edge is repeated and
every edge is used. In a closed trail, the start and end vertex are the same, this is called a
Eulerian tour.

Definition 1.27. A graph is called Eulerian if there is an Eulerian tour in it.

Theorem 1.9. Let G = (V,E) be an undirected, connected multigraph, G is Eulerian if and
only if ∀x ∈ V : d(x) even. There exists an open Eulerian trail if and only if there are exactly
two vertices that have odd degree, those vertices are the start and end vertex.

Proof. This proof is done by induction on the number of edges: α1(G) = m. Start with
m = 0, this case is trivial: there is only one vertex.

Now suppose that m ≥ 1 and construct a tour W (a closed trail). Since all the degrees are
even, it is possible to find such a tour: if a vertex can be reached, it is also possible to leave
it again. Stop at the starting vertex. This gives two possibilities:

• W is an Eulerian tour, in this case: the proof is done.
• There are some edges that are not in the tour W yet. In this case remove all the

edges that are used in W , which will result in a graph G′, with connected components
G′1, . . . , G

′
r, such that ∀x ∈ V (G′i) : dG′(x) is still even.

Apply the induction hypothesis: in every component G′i there exists an Eulerian tour
Wi. Notice that ∀i, Wi and W have a vertex in common. Start with the tour W , as
soon as a vertex of a Wi is reached, take the tour in G′i as a subtour. After ending the
subtour, follow W again, until the next Wi. Repeat this until the end of W . With this
an Eulerian tour of G is found.
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(a) Graph G

(b) Find a tour

(c) Remove tour’s edges from graph, find components and its
tours

(d) Putting it all together

Figure 1.21: Proof Eulerian graph
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1.5.2 Hamiltonian Graphs

Definition 1.28. A Hamilton cycle in a graph is a cycle in which every vertex is visited ex-
actly once, except for the start and end vertex, which is the same. A graph G is Hamiltonian
if and only if there exists a Hamilton cycle in it.

For a Hamilton cycle there are no characterizations known. Finding a Hamilton path is a
NP-hard problem. Hamilton graphs are more complex than Eulerian graphs.

Definition 1.29. Let G = (V,E) be a graph. Define a new edge set Ẽ as follows:

Ẽ = E ∪ {vw | v, w ∈ V, d(v) + d(w) ≥ |V |}.

The graph [G] = (V, Ẽ) is called the closure of G.

Theorem 1.10. A graph G is Hamiltonian ⇔ [G] is Hamiltonian.

Proof. (”⇒”) This side of the proof is trivial: If G is Hamiltonian, adding an edge is not
going to change that, since it is about the vertices, so [G] is Hamiltonian.

(”⇐”) This side of the proof is more complicated. Assume the following:

v, w ∈ V
vw /∈ E(G)

d(v) + d(w) ≥ |V |.

Define with this the graph H = (V,E ∪ {v, w}), assume that H is Hamiltonian and G is not,
which means that the edge vw makes the difference: the Hamilton cycle in H must contain
vw. Suppose this Hamilton cycle is the following:

v = x1, x2, x3, . . . , xn = w, x1.

This means that |V | = n, since every vertex is visited. Define the following two sets:

X = {x1 | xi−1 ∈ ΓG(w), 3 ≤ i ≤ n− 1}
Y = {xi | xi ∈ ΓG(v), 3 ≤ i ≤ n− 1}.

The path v = x1, x2, x3, . . . , xn = w is a path in G, since this does not contain vw yet. The
set X exists of dG(w) − 1 elements, the set Y of dG(v) − 1 elements and |X| + |Y | ≥ n − 1.
Therefore, there exists an i: 3 ≤ i ≤ n− 1 such that xi−1 ∈ ΓG(w) and xi ∈ ΓG(v). But this
suggests that there is a path like:

v, xi, xi+1, . . . , xn−1, xn(= w), xni− 1, xi−2, . . . , x2, x1(= v).

In this path, every vertex appears exactly once, which implies a Hamilton cycle in G. However,
the assumption was that there is no such cycle in G, a contradiction, either the graphs are
both Hamiltonian, or they are both not Hamiltonian.

Corollary 1.2. Let G = (V,E), with |V | ≥ 3, such that ∀v, w ∈ V : vw /∈ E implies
d(v) + d(w) ≥ |V |. Then G is Hamiltonian.

Corollary 1.3. If ∀v ∈ V : d(v) ≥ n
2 , then G is Hamiltonian.

A problem, which is a generalization of finding an optimal Hamiltonian cycle in a weighted
graph is the Traveling Salesman Problem.
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1.5.3 Planar Graphs

Definition 1.30. A graph G is planar if there is an isomorphic graph H embedded in the
plane (vertices are points in the plane = R2) such that no two edges intersect.

Example 1.3. The graphs K3 and K4 (the complete graphs with three resp. four vertices)
are planar. However, the graph K5 is the smallest non-planar graph and the graph K3,3 is the
smallest non-planar complete bipartite graph.

(a) K3, planar (b) K4, planar (c) K4, planar,
alternative

(d) K5, nonplanar (e) K3,3, nonpla-
nar, bipartite

Figure 1.22: Examples for planar and non-planar graphs

Definition 1.31. The edges of a graph (which have to be Jordan curves) divide the plane
into regions. These regions are the faces of the graph, if the graph is planar. All the space
outside the graph is a face as well. The number of faces will be denoted by α2.

I II

III

IV

α0 = 4
α1 = 6
α2 = 4

Figure 1.23: Faces of K4

Definition 1.32. A graph H is called a subdivision of G if H is obtained by replacing every
edge of G by a path. This means: just adding some nodes on each edge, such that the edges
become paths.

(a) Graph G (b) subdivision H
of G

Figure 1.24: Graph G and a possible subdivision H
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Theorem 1.11. A graph G is planar if and only if there exists no subgraph which is a
subdivision of K5 or of K3,3.

Proof. (”⇒”) This side of the proof is to hard for this course. (”⇐”) This side of the proof
is trivial, since it is known that K5 and K3,3 are non-planar.

Theorem 1.12 (Euler’s polyhedron formula). If G is a connected and planar graph, then
α0 − α1 + α2 = 2. Where α0 − α1 + α2 is also known as the Euler characteristics.

α0 = 8
α1 = 12
α2 = 6
α0 − α1 + α2 = 8− 12 + 6 = 2

Figure 1.25: Polyhedron of a dice

Proof. The proof is done by induction on α2. Start with α2 = 1. This means that G must be
a tree: there is only one face and the face outside of the graph is counted once, which means
that there cannot be any cycles in a graph with α2 = 1. In a tree the following holds:

α0 − α1 + 1 = α0 − (α0 − 1) + 1 = 2.

Assume that this holds for all α2 up to k faces. Apply induction k 7→ k + 1. G has at least
k+ 1 ≥ 2 faces. This implies that there exists an edge that separates two faces. Remove such
an edge, which gives a new graph G′, where α2 = k. This means:

α2(G′) = k ⇒ α0(G′)− α1(G′) + α2(G′) = 2

⇒ α0(G)− α1(G) + α2(G) = α0(G)− (α1(G′) + 1) + (α2(G) + 1) = 2.

Lemma 1.5. If G is a simple, connected, planar graph, with no cycles of length 3 (this also
means, no cycles of length ≤ 3), then

α1(G) ≤ 2α0(G)− 4.

Proof. Let fj denote the number of faces with a boundary of length j. In this case: f3 = 0.
Then: ∑

j≥4

fj = α2∑
j≥4

j · fj ≤ 2 · α1

4 ·
∑
j≥4

fj = 4 · α2 ≤ 2 · α1.
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From this it follows:

α0 − α1 + α2 ≥ 2

2α0 − 2α1 + 2α2 = 4 (where 2α2 ≤ α1)

4 ≤ 2α0 − α1

α1 ≤ 2α0 − 4.

Remark: In a graph with k components, the Euler characteristic becomes: α0 − α1 + α2 =
1 + k.

Corollary 1.4. The graph K3,3 is not planar. Assume it is planar. Notice that α0 = 6 and
α1 = 9, as it is a bipartite graph, there are no cycles of length 3: f3 = 0. Therefore it should
hold that:

α1 ≤ 2α0 − 49 ≤ 8.

However, it cannot be the case that 9 ≤ 8! Which means that K3,3 is not planar.

For K5, the lemma does not apply, since this graph does have cycles of length 3.

Definition 1.33. Let G = (V,E) be a planar graph and let F be the set of its faces. Then
G∗ = (V ∗, E∗) is defined such that V ∗ = F and for every edge e ∈ E, set e∗ = (f1, f2), if f1

and f2 are the faces left and right of e. G∗ is called the dual of G.

Remark Some remarks on the dual G∗ of G:

• G∗ is not unique.
• |E| = |E∗|.
• In general |G∗| is a multigraph.
• Let G1 and G2 be duals of G, they might be different, but they are at least isomorphic:
G1
∼= G2.

Theorem 1.13 (Witness Theorem). Let A ⊆ E, such that A is a cycle in G if and only if
A∗ is a minimum cut. Let G be a not necessarily planar graph, define G∗∗ with this property
such that: if G is planar, then G∗∗ ∼= G∗. If G is not planar, G∗∗ does not exist.

1.5.4 Bipartite Graphs and Matchings

Definition 1.34. Let G = (V,E) be a simple undirected graph. G is called bipartite if and
only if:

V = V1 ∪ V2, V1 ∩ V2 = ∅
vw ∈ E ⇒ v ∈ V1, w ∈ V2.

The complete bipartite graph is denoted by Kn,m.
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(a) K1,1 (b) K2,3 (c) K3,3 (d) K4,2

Figure 1.26: Examples for bipartite graphs

(a) Graph G (b) Possible matching (c) Perfect matching

Figure 1.27: Graph with (perfect) matching

Definition 1.35. A matching is a subset of edges M ⊆ E such that

∀e, f ∈M : e, f have no vertex in common.

A matching is a perfect matching if ∀v ∈ V , v is incident to some e ∈M .

Theorem 1.14 (Hall’s marriage theorem). Given a bipartite graph G = (V,E), such that
V = W ∪ M , where W and M are finite and nonempty. Define the friendship relation:
F ⊆W ×M , with wm ∈ E ⇔ wFm.

A feasible marriage is a complete matching F1 ⊆ F (i.e. ∀x ∈ W : ∃!y ∈ M such that
xFy). Now the theorem states the following: there is a feasible marriage, if and only if:

∀W0 ⊆W : |{y ∈M | ∃x ∈W0 : xF y}|︸ ︷︷ ︸⋃
w∈W0

Γ(w)

≥ |W0|.

If there is a feasible marriage, every woman gets a partner.

Proof. (”⇒”) This side of the proof is trivial. (”⇐”) Consider a network given by a source
with directed edges to all elements in W (each edge with weight w = 1). For each element
in M , there is an edge to the sink (all of these edges also have weight w = 1). The edges
between W and M all have weight w = |W | + |M | + 1. With this definition all the weights
are integers, which means that there exists a maximal flow with integer weight.

Claim: S = ({s}, V \{s}) is an minimum cut: c(S) = |W |.

Assume that there exists a S′ such that c(S′) < c(S), this means: S′ has no edge wm, with
w ∈W and m ∈M . Hence:

S′ = (V1, V2)=̂{sw | w ∈ W̃ ⊆W} ∪ {mt | m ∈ M̃ ⊂M}.
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s t

w = 1 w = 1

w = |W |+ |M |+ 1

Figure 1.28: Feasable marriage, ∃ maximal flow with integer weights

The claim is that:
w ∈W\W̃ ,m ∈ Γ+(w)⇒ m ∈ M̃.

Assume that this does not hold, then there is a path such that s→ w → m→ t, without using
an edge of S′. But that would mean that w, t ∈ V1, which is by construction not possible.
This implies that: ∣∣∣∣∣∣

⋃
w∈W\W̃

Γ+(w)

∣∣∣∣∣∣ ≤ |M̃ |.
But

c(S′) = |W̃ |+ |M̃ | < c(S) = |W |.

This implies that:
|M̃ | < |W\W̃ |.

But that is a contradiction which means that c(S′) cannot be a minimal cut: c(S) is the
minimal cut, which concludes the proof of the claim.

By the Ford and Fulkerson Algorithm, there exists a flow φ such that v(φ) = c(S) = |W |.
This flow defines the feasible marriage relation.

1.6 Graph Colorings

A simple undirected graph G = (V,E) can be used for graph colorings. Like coloring the
countries on a map. A planar graph can be used to represent the coloring of the countries.

Definition 1.36. Let G = (V,E) be a simple undirected graph. A vertex coloring is a
mapping c : V → C in which C = {c1, . . . , cr}, a set of possible colors.

A coloring is feasible if vw ∈ E ⇒ c(v) 6= c(w).

Definition 1.37. An edge coloring can be defined as: c : E → C, such that a coloring is
feasible if edges that have a common vertex, have different colors. Then it follows that

G = (V ,E), V = E, and e1e2 ∈ E ⇔ e1, e2 share a common vertex.

Based on this definition, everything that can be done with a vertex coloring, can also be done
with an edge coloring.
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Remark: Similarly, face colorings of a planar graph (think of the countries on a map) can
be defined.

Definition 1.38. Let G = (V,E) be a graph. Then the chromatic number χ(G) is the
minimum number of colors such that there is a feasible coloring.

Some examples:

χ(Kn) = n

χ(Kn,m) = 2

χ(T ) = 2 if T is a tree and |V | > 1

Theorem 1.15. Some theorems about graph coloring, with obvious proofs or proofs too hard
for a normal human being:
• χ(G) = 1 if and only if E(G) 6= ∅.
• χ(G) = 2 if and only if E(G) 6= ∅ and G is bipartite.
• χ(G) = 2 if and only if E(G) 6= ∅ and all cycles have even length.
• If G is a planar graph: χ(G) ≤ 4. This is really hard to proof, in which many cases

have to be considered.
• χ(G) ≤ 1 + maxv∈V d(v). This can be proved by induction on the number of vertices.

Theorem 1.16. If G = (V,E) is a planar graph, then χ(G) ≥ 5.

Proof. This proof is easier than the 4-color theorem. However, there are still some cases,
which have to be considered. Start with a claim: the minimunm degree is less or equal to 5:
dmin ≤ 5, this claim has to be proven first.

Assume dmin ≥ 6, then

2α1 =
∑
x∈V

d(x) ≥ 6α0

which implies that α1 ≥ 3α0. It is known that 2α1 is the sum over all faces from the boundary
edges, which is greater or equal to 3α2 = 3(2− α0 + α1). Now: α1 ≤ 3α0 − 6 but α1 ≥ 3α0!
This is a contradiction. Hence: there has to be a vertex with d ≤ 5.

With this claim, the following cases can be proven, which will prove the whole theorem:
1. Suppose dmin ≤ 4 and suppose that x0 is a vertex such that d(x0) ≤ 4. Define G′ =
G\{x0} and assume χ(G′) = 5. Then, since x0 has at most 4 neighbors, the vertex x0

can be colored with the remaining color. Then, by induction: χ(G) = 5.
2. There is vertex v, such that d(v) = dmin = 5. Suppose the neighbors of v are
{a, b, c, d, e}, such that c(a) = 1, c(b) = 2, c(c) = 3, . . .. Define the following set:
Ga = {x ∈ V | ∃1− 3− 1− 3− . . . path a x}. And define a similar set for Gc.
(a) If Ga ∩ Gc = ∅, the vertices in Ga can be recolored, by switching colors 1 and 3.

Then v can be colored with c(v) = 1.
(b) If Ga ∩Gc 6= ∅, then it has to be the case that Ga = Gc. In the same way this can

be done for Gb and Gd:
i. If Gb ∩Gd = ∅, then recolor Gb by switching 2 and 4, and let c(v) = 2.

ii. If Gb ∩Gd 6= ∅, then Gb = Gd. However, this is a contradiction: the graph G
is a planar graph, which means that the paths Ga = Gc and Gb = Gd cannot
cross each other.
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(e) Case (b).ii with contradiction

Figure 1.29: Planar graph coloring
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1.6.1 Ramsey Theory

Example 1.4. Every 2-edge coloring of K6 has a monochromatic K3.

Proving this can be done by drawing such a graph. A monochromatic triangle will always be
found!

(a) K6 (b) Start coloring
edges

(c) Continue (d) Stuck (e) Thin triangles

Figure 1.30: Attempt to color a K6 without producing a monochromatic triangle.

The idea of those monochromatic subgraphs can be generalized: take Kn instead of K6 and
Kr and Ks instead of K3. This is exactly what the Ramsey Theory does.

Definition 1.39. The Ramsey number R(r, s) is the minimum n such that every red-blue
coloring of Kn contains either a red Kr or a blue K6.

In the given example: R(3, 3) ≤ 6. It can even be shown that R(3, 3) = 6.

(a)
K1

(b) K2 (c) K3 (d) K4 (e) K5

Figure 1.31: Examples for Ramsey number

Lemma 1.6. R(r, s) ≤ R(r − 1, s) +R(r, s− 1).

Proof. Let n = R(r − 1, s) +R(r, s− 1) and partition Kn. Take a vertex v, let M be the set
of all the neighbors of v connected with a red edge and let N be the set of all neighbors of v
connected with a blue edge.

Claim: |M | ≥ R(r − 1, s) or |N | ≥ R(r, s − 1) and n = |M | + |N | + 1. Now there are two
possibilities:

• There exists a blue Ks in M or a red Kr−1 in N .
• There exists a blue Ks−1 in M or a red Kr in N .

To show that there exists a blue Ks or a red Kr. In both cases, together with v, it is always
possible to find a blue Ks or a red Kr.

Corollary 1.5. R(r, s) ≤
(
r+s−2
r−1

)
≤ 2r+s−2.
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Proof. Start with R(2, n) = R(n, 2) = n ≤
(
n
1

)
. From there, apply induction, use Pascal’s

triangle and the above lemma. This will give the whole proof.

Definition 1.40.

R(n1, n2, . . . , nr) = min{n | all r-edge colorings of Kn (colors c1, . . . , cr)

have a cj-colored Kj for some j}
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Chapter 2

Higher Combinatorics

2.1 Enumerative Combinatorics

The first part of this chapter will be about enumerative combinatorics: Let A be a finite set,
the goal is to find the cardinality of A: |A|. More general: Given a collection/system/family
of sets (An)n≥0, let an = |An|, what is the counting sequence (an)n≥0?

• In the best case, it is possible to find a closed formula.
• Otherwise a recursion or a generating function is also alright (e.g.

∑
n≥0[anz

n]).
• If all those options fail an asymptotic estimate can be used:

an ∼ bn ⇔ lim
n→∞

an
bn

= 1.

Example 2.1. Let An = {permutations of 1, 2, . . . , n}, then |An| = n!. Now let a1 = 1 and
an = nan−1. Then an ∼

(
n
e

)n√
2πn.

2.1.1 Counting Principles

The elementary counting principles are:

• Sum principle: A ∩B = ∅ ⇒ |A ∪B| = |A|+ |B|.
• Product principle: |A×B| = |A| ∗ |B|.
• Bijection principle: A bijective mapping f : A 7→ B ⇒ |A| = |B|.

Example 2.2. What is the number of two-digit positive integers? This problem looks at the
set {10, . . . , 99}. It is easy to see that its cardinality is 90. But this can also be done with the
given product principle, let xy be such an integer, then:

x ∈ X = {1, 2, . . . , 9}
y ∈ Y = {0, 1, . . . , 9}
|X × Y | = |X| ∗ |Y | = 9 ∗ 10 = 90.
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Example 2.3. How many passwords are there that have 4 up to 10 digits? Let Ai denote
the set of passwords with i digits. Let Y = {0, 1, . . . , 9}, then:

Ai = Y i

|Y | = 10

|Ai| = 10i

Total number = 104 + 105 + . . .+ 1010.

Example 2.4. There is a thief, who saw someone using his bankcard and afterwards stole
this card. The thief has seen that the code starts with 0 and contains an 8. How many
possibilities are left for the thief to check?

Since one of the four digits is already known, we know by the product principle, that there are
103 possibilities left, including codes without the integer 8. With the sum principle, the codes
without the integer 8, there are 93 such codes, can be subtracted, this gives a total of:

Total number = 103 − 93 = 271.

Example 2.5. Given a set A = {a1, a2, . . . , an} and its power set: 2A = {X | X ⊆ A}, what
is the cardinality of this powerset, what is: |2A|?

Define the set: B ⊆ A; B = {ai1 , . . . , aik}, where k ≤ n, such that 1 ≤ ii ≤ i2 ≤ . . . ≤ ik ≤ n.
Map B to a new set: B 7→ (b1, b2, . . . , bn) ∈ {0, 1}n, such that:

bi =

{
1 ai ∈ B
0 ai /∈ B

The mapping f : 2A 7→ {0, 1}n is bijective, by the bijection principle it follows that |2A| =
|{0, 1}n| = 2n.

Double counting: Given two sets A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn} and a
relation R ⊆ A×B, such that aRb⇔ (a, b) ∈ R. Define two other sets: Ri,0 = {b ∈ B | aiRb}
and R0,i = {a ∈ A | aRbi}, where the subscript 0 just means that this part is fixed. Then:

|R| =
m∑
i=1

|Ri,0| =
n∑
j=1

|R0,j |.

Proof. Define a matrix (xij) in which i = 1, . . . ,m and j = 1, . . . , n, with:

xij =

{
1 if aiRbj

0 otherwise

The first sum is the row-wise sum (count row by row). The second sum is the column-wise
sum (count column by column). Both give the cardinality. Of course, summing up all the
elements of the matrix gives the same result.
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Example 2.6. Define the following:

τ(n) = average number of divisors of an integer k, 1 ≤ k ≤ n.
d(n) = number of divisors of n. Then:

τ(n) =
d(1) + . . .+ d(n)

n

=
1

n

n∑
i=1

d(i)

A = B = {1, . . . , n}
R ⊆ A×B : aRb⇒ a|b.

The example for the integers 1 to 9 is shown in table 2.1. From this table it can be concluded
that for n = 6, τ(n) = τ(6) = 7

3 .

n 1 2 3 4 5 6 7 8 9
d(n) 1 2 2 3 2 4 2 4 3

Table 2.1: The number of divisors of integers 1 to 9

Based on the definitions, the given example can be extended into the following more general
rules:

n prime⇒ d(n) = 1

n = pe, p ∈ P, e ∈ N+ ⇒ d(n) = e+ 1

n =

k∏
i=1

peii ⇒ d(n) =
∏

i = 1k(e1 + 1).

From here it follows that l|n if and only if l =
∏n
i=1 p

fi
i , fi ≤ ei, for some fi ≤ ei, where l is

defined by (f1, . . . , fk). Now it follows that:

τ(n) =
1

n

n∑
i=1

d(i)

=
1

n

n∑
j=1

|R0,j | sum of the columns

=
1

n

n∑
i=1

|Ri,0| sum of the rows. Where:

R0,j = {a | aRj} = d(j)

Ri,0 = {b | iRb} sum of the number of multiples of i in b.
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With this, τ(n) can be calculated as follows:

τ(n) = . . . =
1

n

n∑
i=1

∣∣∣n
i

∣∣∣
=

1

n

n∑
i=1

ni − {n
i

}
︸ ︷︷ ︸

fractional part


=

n∑
i=1

1

i
− 1

n

n∑
i=1

{n
i

}
︸ ︷︷ ︸
≤1

= Hn +O(1) ∼ ln(n).

Where H are the harmonic numbers.

Pigeon hole principle: Let A1, . . . , Ak be finite pairwise disjoint sets, |A1∪ . . .∪Ak| > k ·r,
for r ∈ N, this implies: ∃i : |Ai| > r. If r = 1, then it follows that:

f : A 7→ B, |A| > |B| ⇒ ∃b ∈ B : |f−1(b)| ≥ 2.

Where |f−1(b)| is the set of pre-images and f is not injective.

Example 2.7. Claim: there are two people, living in Austria, who are born in the same
hour, of the same day, in the same year.

Take as the maximal age 200 (in that case everyone in Austria is counted), there are 365
days, with each 24 hours. Then it follows:

365 · 24 · 200 < 2 · 106.

The Austrian population is bigger than that!

Example 2.8. For all odd numbers q: ∃i : q|2i = 1 =: ai.

If ∃i : ai ≡ 0 mod q, the proof is done. Consider a1, a2, . . . aq mod q. Either ∃i : ai ≡ 0
mod q or ∃i, j : i < j, ai ≡ aj mod q. By the pigeon hole principle, without 0, there are only
q − 1 residue classes left. Assume that i < j:

ai − aj = q · a a ∈ Z
2i(1− 2j−i) = q · a.

Since q is odd: gcd(2i, q) = 1, which implies that q|2j−i− 1 and 2j−i− 1 = a(j − i). But then
aj−i ≡ 0, which is what is needed.

Example 2.9 (Interpreting the pigeon hole principle as a coloring). Let A be a set with
|A| = n. Define: l1, l2, . . . , lk ≥ 1 and n > l1 + l2 + . . . + lk − k. Then, by the pigeon hole
principle, for each coloring of the elements of A with colors 1, 2, . . . , k, there is an i such that
li elements have the color i.
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Let f : A 7→ {1, 2, . . . , k} be a mapping. Assume |f−1| is the number of elements having the
color i < li, ∀i = 1, 2, . . . , k. Then:

n = |A| =
k∑
i=1

|f−1(i)| ≤ l1 + . . .+ lk − k.

However, this is a contradiction and hence proofs this example.

Principle of inclusion and exclusion: Given two non-disjoint sets A and B, it might be
interesting to know the cardinality of |A ∪ B|. Since the sets are non-disjoint, just adding
the cardinalities of both sets, counts the elements of A ∩ B twice. In order to calculate the
cardinality of |A ∪B| correctly, |A ∩B| has to be subtracted from |A|+ |B| once:

|A ∪B| = |A|+ |B| − |A ∩B|.

Now consider three sets, that are all overlapping: A, B and C. Again, just adding the
cardinalities of those three sets will count some elements twice or even three times!

This time it is not enough to subtract just the intersections of each two sets, because then
A ∩B ∩ C is not counted at all. This gives the following:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

A BA ∩ B

(a) 2 sets

A B

C

A ∩ B

A ∩ C B ∩ C

A ∩ B ∩ C

(b) 3 sets

Figure 2.1: Principle of inclusion and exclusion

What about the general case? For pairwise disjoint sets it is known that:

|A1 ∪ . . . ∪An| = |A1|+ . . . |An|

=
∑

∅6=I⊆{1,...,n}

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .
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If there is a universe A, such that: A1, . . . , An ⊆ A, where the sets are not necessarily pairwise
disjoint, then:

A1, . . . , An ⊆

∣∣∣∣∣A\
n⋂
i=1

Ai

∣∣∣∣∣ = |A|+
∑

∅6=I⊆{1,...,n}

(−1)|I|

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
=

∑
I⊆{1,...,n}

(−1)|I|

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .
2.1.2 Counting Sets

Given a finite set A = {a1, . . . , an}. A counting set is a set A such that: A = {1, 2, . . . , n}.
There are six basic problems:

1. The number of permutations: n!
2. The number of k subsets:

(
n
k

)
3. The number of ordered k-subsets: k ·

(
n
k

)
4. The number of k-multisets, (in which the arguments can be used more than once):(

n+k−1
k

)
. Proof: b1, . . . , bk ∈ A, the order does not matter. There is a mapping f , that

maps the k-multiset ⊆ A: b1,≤ . . . ≤ bk to the k-multiset⊆ {1, 2, . . . , n+ k − 1} : b1 <
b2 + 1 < . . . < bk + k − 1.

5. The number of arrangements of the multiset {b1, . . . , b1, b2, . . . , b2, . . . , bm, . . . , bm}, where
b1 appears k1 times and ki are all the elements bi. Then there are n!

k1!k2...km! permutations
of this multiset.

6. The number of ordered k-multisets over A: nk. (Take a fixed number of positions k and
for each position choose any element from A).

The total number of subsets of the set A is:
∑n

k=0

(
n
k

)
= 2n. There are some important

identities that are used often when counting sets:

n∑
k=0

(
n

k

)
= 2n(

n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
n∑

m=0

(
m

k

)
=

(
n+ 1

k + 1

)
(
n

k

)
=

(
n

n− k

)
n∑
k=0

(
m+ k

k

)
=

(
m+ n+ 1

n

)

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k ∀n ∈ N,∀x, y ∈ C(

n

k

)
=
n(n− 1) . . . (n− k + 1)

k!
This also holds if n ∈ C.

Lemma 2.1. ∀k ∈ N, ∀x ∈ C:
(
x
k

)
=
(
x−1
k−1

)
+
(
x−1
k

)
. If k < 0 then

(
x
k

)
= 0.
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Theorem 2.1 (Vandermonde). ∀n ∈ N, ∀x, y ∈ C and ∀k ∈ Z:(
x+ y

n

)
=

n∑
k=0

(
x

k

)(
y

n− k

)
.

If k < 0 then again:
(
x
k

)
:= 0.

Proof. Assume that x, y ∈ N. Let X,Y be sets, such that X ∩ Y = ∅, |X| = x and |Y | = y.
The left-hand side of the theorem is

(
x+y
n

)
, this is the number of n-subsets of x+ y elements,

of X ∪Y . Choose any n-subset A ⊆ X ∪Y . Then A = (A∩X)∪ (A∩Y ). Where |A∩X| = k
and |A ∩ Y | = n− k.

The number of unions of the shape of the right-hand side of A is
(
x
k

)(
y

n−k
)
. For all possible k

it is
∑n

k=0

(
x
k

)(
y

n−k
)
. Let I be a finite set. Then for the left-hand side it follows:∑

i∈I
pi(x)yi =

∑
i∈I

p̃i(x) · yi.

Assume x ∈ N and assume it is fixed. Let Qi denote a polynomial. Then: Q1(y) = Q2(y),
∀y ∈ C. It follows: pi(x) = p̃i(x), ∀x ∈ N.

2.1.3 Stirling Numbers

Let A = {1, 2, 3, . . . , n} be a set and let π ∈ Sn be a permutation, where Sn is the symmetric
group, such that: |Sn| = n!. This permutation π can be represented as follows:(

1 2 3 · · · n
π(1) π(2) π(3) · · · π(n)

)
Example 2.10. Permutations on symmetric groups. Take the set of the first seven positive
integers and a possible permutation. A possible permutation is the following, 2-line represen-
tation: (

1 2 3 4 5 6 7
4 6 3 1 7 5 2

)
The second line is also called the word representation. Another way to represent the same
permutation is the cycle representation: (14)(3)(2657). Fixpoints can be omitted, which means
that the permutation is: (14)(2657). With this permutations calculations can be carried out.

More examples of permutations are:

• (12) ∈ S7, this is the same as: (12)(3)(4)(5)(6)(7).
• A transposition is a permutation of just 2 elements.
• Take two cycles: (12) and (13), both from S7. Then this can also be written as: (12) ◦

(13) = (132).

Every π ∈ Sn is a product of cycles, even a product of transpositions, however, not unique.
For example: (14)(2657) = (14)(27)(25)(26).
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The order within the cycle does not matter: (2657) = (5726). Notice that for S4: (12)(3)(4) =
(12) = (12)(12)(12) = (12)(34)(34).

The canonical representation is generated from the 2-line representation, the smallest
element comes first. If additionally the representation is started with the largest last element
first, the parentheses can be omitted.

Definition 2.1. Let sn,k be the number of permutations of an n-set A, which has k cycles (a
fixpoint counts as a cycle as well). Then sn,k are the Stirling numbers of the first kind.

Remark:

sn,1 = (n− 1)!

sn,n−1 =

(
n

2

)
sn,n = 1

s0,0 = 1

sn,0 = s0,k = 0 n, k ≥ 1
n∑
k=0

sn,k = k!.

It does not matter where in the cycle the permutation is started. However, the order of the
cycle should always be the same.

Theorem 2.2. ∀n, k > 0 : sn,k = sn−1,k−1 + (n− 1)sn−1,k.

Proof. Take a permutation π(1 . . .)(. . .) . . . (. . .) ∈ Sn, with k cycles. The question is: how
many such permutations are there? There are two options:

1. 1 is a fixed point (it is always mapped to itself). In this case this cycle can be removed,
which leaves: sn−1,k−1.

2. 1 is not a fixed point. Start with a permutation of n− 1 elements and add the element
1 to one of the cycles. This can be inserted before any of the n − 1 elements. Then
there are (n− 1)sn−1,k possibilities.

Remark: Let cn,k = (−1)n+ksn,k. These are the signed Stirling numbers of the first
kind, sn,k are the signless Stirling numbers.

Definition 2.2. Let A = {1, 2, . . . , n} and A = A1∪A2∪ . . .∪Ak such that ∀i, j : Ai∩Aj = ∅.
The number of set partitions of A, with k blocks (a k-partition) is denoted by: Sn,k. These
numbers are called the Stirling numbers of the second kind.
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Remark:

Sn,1 = Sn,n = 1

Sn,2 = 2n−1 − 1

Sn,n−1 =

(
n

2

)
S0,0 = 1

Sn,0 = S0,k = 0 ∀n, k ≥ 1

Example 2.11. Let A = {1, 2, 3, 4}, then:

S4,1 = 1

S4,2 = 7

S4,3 = 6

S4,4 = 1

Theorem 2.3. Sn,k = Sn−1,k−1 + k · Sn−1,k.

Proof. This proof will be similar to the proof with the Stirling numbers of the first kind. The
proof exists of two parts.

1. If {1} is a block, then it follows: Sn−1,k−1.
2. If {1} is not a block, then 1 is part of one of the k blocks, with at least one other element

in the same block. This means: k · Sn−1,k.

Theorem 2.4. ∀x ∈ C, ∀n ≥ 0:

x0 := 1

(x)n := x(x− 1)(x− 2) . . . (x− n+ 1) =
n∑
k=0

(−1)n+ksn,kx
k

xn =
n∑
k=0

Sn,k(x)k.

Remark: Let Vn = {a0 + a1x+ . . .+ anx
n | ai ∈ C}. Then (Vn,+,C) is a vectorspace with

dimension: n+ 1. Now: {1, x, x2, . . . , xn} and {1, (x)1, (x)2, . . . , (x)n} are bases of Vn.
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Proof.

(x)n = (x)n−1(x− n+ 1)

= (x− n+ 1) ·
n−1∑
k=0

(−1)n−1+ksn−1,kx
k

=
∑
k=0

n− 1(−1)n−1+ksn−1,kx
k+1 + (n− 1)

n∑
k=0

(−1)n+ksn−1,kx
k

=
n∑
k=0

(−1)n+ksn−1,k−1x
k + (n− 1)

n∑
k=0

(−1)n+ksn−1,kx
k

=

n∑
k=0

(−1)n+k(sn−1,k−1 + (n− 1)sn−1,k)x
k

=

n∑
k=0

(−1)n+ksn,kx
k.

2.2 Generating Functions

Generating functions provide a tool for coping with combinatorial enumeration problems.
The ordinary generating function defines the sum of a sequence:

(an)n≥0 =
∑
n≥0

anz
n.

Such a sequence is in most cases defined on R or even N. The definition above is the decoding
of the sequence, as a formal power series. Some operations:

• Addition:
∑

n≥0(an + bn)zn.
• Multiplication:

∑
n≥0

∑n
k=0 akbn−kz

n, the Cauchy product.
• Division: If b0 6= 0, then: ∑

anz
n∑

bnzn
=
∑

cnz
n.

• Limit: If it is given that:

(∗) =
∑
n≥0

anz
n = lim

n→∞

n∑
k=0

akz
k

and (∗) is convergent ((∗) <∞), then the domain of the convergence is a disk with its
center (0,0), the origin. The radius of the convergence is R:

R =
1

lim n
√
|an|
∈ [0,∞].

Theorem 2.5. Let f(x) =
∑
an(z − z0)n, ai ∈ C and R = 1

lim n
√
|an|

. Then:

1. |z − z0| < R implies f(x) is absolutely convergent, i.e.,
∑
|an|(z − z0)n converges.

2. |z − z0| > R implies f(z) is divergent.
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Example 2.12.∑
n≥0

zn =
1

1− z
for |z| < 1, R = 1, only in disk of convergence

∑
n≥0

zn

n!
= ez R =∞

∑
n≥0

n!zn R = 0

The first example shows a function description everywhere on the plain, the second one
nowhere on the plain.

Inside the disk of convergence the uniform convergence allows the interchange of limits.
It is also possible to differentiate and integrate with these functions:

1

(1− z)2
=

(
1

1− z

)′
=

∑
n≥0

zn

′ = ∑
n≥1

nzn−1

Theorem 2.6 (Identity theorem for power series). Let f(z) =
∑

n≥0 an, where f(z) converges

for |z − z0| < ε. The coefficients an are unique and satisfy an
f (n)(z0)

n! . Notice that f(z) is a
Taylor series!

Corollary 2.1.∑
an(z − z0)n =

∑
bn(z − z0)n for |z − z0| < ε implies: an = bn.

Since f(z) generates the sequence (an) by continued differentiation and evaluation, f(z) is
called the generating function. In particular:∑

anz
n is an ordinary generating function∑

an
zn

n!
is an exponential generating function

2.2.1 Operations on Generating Functions

Let sequence (an)n≥0 correspond to the function:
∑

n≥0 anz
n = A(z) and (bn)n≥0 correspond

to B(z), observe that this is a linear process. Define the following operations:

1. Addition:
(αan + βbn)n≥0 ↔ αA(z) + βB(z), ∀α, β ∈ C.

2. Multiplication:(
n∑
k=0

akbn−k

)
↔ A(z)B(z) in particular:

(
n∑
k=0

ak

)
n≥0

↔ 1

1− z
A(z).
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Remark:

Â(z) =
∑
n≥0

an
zn

n!

B̂(z) =
∑
n≥0

bn
zn

n!(
n∑
k=0

(
n

k

)
akbn−k

)
n≥0

↔ Â(z)B̂(z).

3. (anγ
n)n≥0 ↔ A(γz).

4. (an−1)n≥1 ↔ zA(z),

(an+1)n≥0 ↔
A(z)− a0

z
and for exponential generating functions (EFG):

(an+1)n≥0 ↔ Â′(z).

5. (nan)n≥0 ↔ zA′(z).

Example 2.13.∑
n≥0

(−1)nzn =
1

1 + z
for |z| < 1

∑
n≥0

nzn =
z

(1− z)2
= z

(
1

1− z

)′
∑
n≥0

(
α

n

)
zn = (1 + z)α ∀α ∈ C

an =
n∑
k≥0

k then:

∑
n≥0

anz
n =

∑
n≥0

(
n∑
k=0

k

)
zn =

∑
n≥0

(
n∑
k=0

k · 1

)
zn =

∑
n≥0

nzn

∑
n≥0

1 · zn


=
z

(1− z)3
=

1

2
· z
(

1

1− z

)′′
=
z

2

∑
n≥0

n(n− 1)zn−2 =
∑
n≥0

(n+ 1)n

2
zn =

∑
n≥0

(
n+ 1

2

)
zn

an =

(
n+ 1

2

)
.

Lemma 2.2. ∑
n≥0

(
n+ k − 1

k − 1

)
zn =

1

(1− z)k

This can be proven using (1 + z)α =
∑(

a
n

)
zn and then using Taylor series:(

n+ k − 1

k − 1

)
= . . . = (−1)k

(
−k
n

)
.
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2.2.2 Recurrence Relations

Many problems, like the Towers of Hanoi and the Fibonacci sequence can be described with
recurrence relations.

Example 2.14. Consider the Towers of Hanoi problem with n disks. How many steps are
needed to move the disks? Notice that a0 = 0 and a1 = 1. For the n+ 1-th step, put n disks
to a temporary location, then move the n+ 1-th disk and then move the n disks again. So in
general it holds:

an+1 = 2an + 1

an = 2n − 1

A(z) =
∑
n≥0

anz
n.

Now multiply both sides with zn+1 and sum up over n. This results in the following:∑
n≥0

an+1z
n+1 = 2

∑
n≥0

anz
n+1 +

∑
n≥0

zn+1

A(z)− a0 = 2zA(z) +
z

1− z
A(z) = 2zA(z) +

z

1− z
=

z

(1− z)(1− 2z)

=
α

1− z
+

β

1− 2z

=
−1

1− z
+

1

1− 2z

= −
∑
n≥0

zn +
∑
n≥0

2nzn

=
∑
n≥0

(2n − 1)zn

Example 2.15. From the Fibonacci sequence it is known that: F0 = 0, F1 = 1 and that
Fn+2 = Fn+1 + Fn. From this, the following can be derived:

F (z) =
∑
n≥0

Fnz
n

F (z)− F0 − F1z = z (F (z)− F0) + z2F (z)

This implies: F (z) =
z

1− z − z2

=
−z

(z − z1)(z − z2)
z1,2
−1±

√
5

2

=
1√
5
· 1

1− 1+
√

5
2 · z

− 1√
5
· 1

1− 1−
√

5
2 · z

This implies: F (z) =
1√
5

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)
.
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In the more general case: take the sequence an+k + q1an+k−1 + . . .+ qkan = 0 and call it (∗),
for n ≥ 0. The sequence (∗) is unique if the first k elements: a0, a1, . . . , ak−1 are known. The
qi are given constants (independent of n). Then:

A(z) =
∑
n≥0

anz
n

∑
n≥0

an+kz
n+k + q1

∑
n≥0

an+k−1z
n+k + . . .+ qk

∑
n≥0

akz
n+k = 0

A(z) = a0 − a1 · z − . . .− ak−1z
k−1 + q1z

(
A(z)−

k−2∑
i=0

aiz
i

)
+ . . .+ qkzA(z) = 0

A(z) =
p(z)

1 + q1z + q2z2 + . . .+ qkzk
p(z)

q(z)
=

p(z)∏r
i=1(z − zi)λi

.

Observe that deg(p) < deg(q). Use the ansatz to solve the equation:

p(z)

q(z)
=

r∑
i=1

λi∑
j=1

Aij
(z − zj)j

=
A11

z − z1
+

A12

(z − z1)2
+ . . .+

A1λi

(z − z1)λi
+ . . .

Notice that
A

(z − zi)i
=

A

(−zi)i
· 1

(1− z
zi

)i
.

And hence, by looking at the coefficient of zn the following can be computed:∑
i

∑
j

Bij(
1− z

zi

)j =
∑
i

∑
j

Bij ·
(
n+ j − 1

j − 1

)
· z−ni

=
α

1− z
+

β

1− 2z
+

γ

(1− 2z)2
+

δ

(1− 2z)3
.

Now it follows that [zn] is a polynomial in n, with degree j−1. From here it can be concluded
that:

A(z) =
∑
n≥0

(
p1(n)

(
1

z1

)n
+ p2(n)

(
1

z2

)n
+ . . .+ pi(n)

(
1

zi

)n)
zn.

With the degree of: pi ≤ λi + 1.

Example 2.16. Let an+2 − 4an+1 − 4an = 0, such that n ≥ 0 and a0 and a1 are given and
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let A(z) =
∑
anz

n. The goal is to compute A(z), this can be done as follows:

A(z)− a0 − a1z − 4z(A(z)− a0)− 4z2A(z) = 0 = (∗)
(1− 4z + 4z2)A(z) = a0 + a1z − 4a0z

A(z) =
a0 + (a1 − 4a0)z

1− 4z + 4z2

=
a0 + (a1 − 4a0)z

(1− 2z)2

=
C

1− 2z
+

D

(1− 2z)2
= (◦)

a0 + (a1 − 4a0)z = C(1− 2z) +D

[z0] : a0 = C +D

[z1] : a1 − 4a0 = −2C.

Since a0 and a1 are known, it is possible to compute C and D and from there A(z) can be
calculated. With the found values of C and D, equation (◦) can be calculated:

(◦) = C ·
∑
n≥0

2nzn +D ·
∑
n≥0

(n+ 1)2nzn

=
∑
n≥0

(2n · C + (n+ 1) · 2nD)zn

=
∑
n≥0

(an)zn

an = 2n · C + (n+ 1) · 2n ·D.

If the right-hand side of the equation (∗) is not zero, but a function f(n), it is called a
inhomogeneous recurrence. In that case, the equation (∗) becomes:∑

f(n)zn+2 = F (z).

2.2.3 Unlabeled Combinatorial Structures

Example 2.17. Take a complete binary tree. This means: without cycles, plane, rooted and
every node has either no further children (external nodes, leaves) or two children (internal
nodes). The internal nodes are denoted by ◦, the external nodes by �. Assume this is a plain
tree, which means: the left and right ordering does matter.

Let an denote the number of binary trees with n internal nodes. If there are n internal nodes,
then there are n + 1 leaves. Notice that with that, it can be concluded that the number of
vertices in a binary tree is always odd: (n+ (n+ 1)).

A binary tree can be described recursively. The root node has two binary trees as its children:
B and B′. Assume the tree has size n + 1 and that the left child, binary tree B, has size k.
Then the right child, binary tree B′ has size n − k. A binary tree can also be described with
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(a) No internal node (b) One internal node

(c) 5 internal nodes

Figure 2.2: Binary trees

generating functions:

a0 = 1

an+1 =
n∑
k=0

akan−k

A(z) =
∑

anz
n

A(z)− 1 = zA(z)2 (Cauchy Product)

A(z) =
1±
√

1− 4z

2z

=
1± (1− 2z)

1
2

2z
Use ”-”, ”+” is no option here.

Since (1 + z)α =
∑

n

(
α
n

)
zn it follows that:

(1− 4z)
1
2 =

∑
n≥0

(1
2

n

)
(−4)nzn

= −
∑
n≥0

1
2(−1

2)(−3
2) . . . (1

2 − n+ 1)

n!
· (−4)nzn

=
∑
n≥0

1

n+ 1

(
2n

n

)
︸ ︷︷ ︸

Catalan numbers

zn.

In a binary tree, the number of internal nodes is: an = 1
n+1

(
2n
n

)
. Then A(z) = 1 + zA(z)2,

which can be solved. A tree, from the set of binary trees B exists of either a leaf, with size 0
(only one node: �) or a root node ◦ and two binary trees as its children.

59



Example 2.18. Given a bin with red, blue and yellow balls. The following is known: there
are 2 or 3 red balls, at least one blue ball and not more than one yellow ball. What is the
number of combinations of n balls?

Introduce variable names for each color: r, b and y respectively. The following holds: r2 + r3

for the red balls, 1 + y for the yellow balls and b+ b2 + . . . = b
1−b for the blue balls. There are

2 configurations:

A(z) =
∑

anz
n

B(z) =
∑

bnz
n

General: =
n∑
k=0

akbn−k.

Let z be the total number, then the generating function of these configurations is:

(r2z2 + r3z3)(1 + zy)

(
bz

1− bz

)
=
∑

almknr
lbmykzn.

Here the coefficient almkn is the number of configurations l · r, m · b, k · y and n balls in total.
Since the question is not about the number of balls with a specific color, but about the total
number of used balls, set r = b = y = 1. This results in the function:

(z2 + z3)(1 + z)
z

1− z
.

The number of combinations is:

[zn]
z3(1 + z)2

1− z
= [zn−3]

(1 + z)3

1− z

= [zn−3]
1

1− z
+ 2[zn−4]

1

1− z
+ [zn−5]

1

1− z
.

For n ≥ 5 it follows that an = 4, since 1
1−z =

∑
m≥0 z

m. Notice that a3 = 1 and a4 = 3.

Example 2.19. Given a set M = {1, 2, . . . , N}. What is the number of combinations of size
k =

(
N
k

)
?

Derive this number by the following generating functions:

a1, a2, . . . , an=̂ different balls =̂ elements of M.

For all the elements holds: the element is taken, or it is not taken. This gives the following
formula:

(1 + a1)(1 + a2) . . . (1 + aN ).

Like with the balls, the element does not matter, it is about the number of elements, replace
all ai by x. This gives the following:

(1 + x)(1 + x) . . . (1 + x) = (1 + x)N =
∑(

N

k

)
xk.
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If repetitions are allowed it follows that:

N∏
i=1

(1 + ai + a2
i + . . .) =

N∏
i=1

1

1− ai
.

Set again ai = x, the generating function is:

f(x) =

N∏
i=1

1

1− x
=

1

(1− x)N
= (1− x)−N

=
∑
k≥0

(
−N
k

)
(−1)kxk

=
∑
k≥0

(
N + k − 1

k

)
xk.

2.2.4 Combinatorial Construction

Let A be a combinatorial class, a set of object. Define the size of such a class by the size
function: w : A → N. Let an denote the number of objects x ∈ A, such that w(x) = n <∞,
∀n ∈ N. The generating function of (A, w) is the following:

A(z) =
∑
n≥0

anz
n.

Two combinatorial classes, from combinatorial classes, with weight function are created:
(A, wA) and (B, wB). Define the following operations:

1. Combinatorial sum, A+ B: Assume that A ∩ B = ∅. Then:

A+ B = (A ∪ B, w)

w(x) =

{
wA(x) x ∈ A
wB(x) x ∈ B

cn = an + bn this implies:

C(z) = A(z) +B(z).

2. Combinatorial product, A× B: Define C = A× B = (A× B, w), with:

w((x, y)) = wA(x) + wB(y), x ∈ A, y ∈ B.

Then:

cn =

n∑
k=0

akbn−k

and C(z) = A(z)B(z).
3. Sequence of A: Define

seq(A) = {(x1, x2, . . . , xk) | k ∈ N, xi ∈ A}
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If k = 0=̂ε then it is the empty sequence. Define the size as:

w((x1, . . . , xk)) =
k∑
i=1

wA(xi).

Then:

C = seq(A) = {ε} ∪ A ∪ A×A ∪ . . .

C(z) = 1 +A(z) +A(z)2 + . . . =
1

1−A(z)
.

With the assumption that a0 = 0.

Example 2.20 (Integer partitions). An integer can be decomposed into the sum of smaller
integers. The order does not matter. If the order would matter, it would be a composition of
integers. For example:

5 = 3 + 1 + 1 = 1 + 3 + 1 = 2 + 2 + 1 = 1 + 1 + 1 + 1 + 1

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = +2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

Let C define the compositions of an integer in N+. Then C is a sequence:

C = seq(A)

A = N+

wA = x

x = (x1, x2, . . . , xk) ∈ C
x=̂x1 + x2 + . . .+ xk

w(x) = x1 + . . .+ xk.

Let A = seq(({0})\{ε}), where {0} ↔ z, from this it follows:

A(z) =
1

1− z
− 1 =

z

1− z

C(z) =
1

1−A(x)
=

1− z
1− 2z

= 1 +
∑
n≥1

2n−1zn.

For integer partitions it follows:

P (z) =
∏
i≥1

1

1− xi

P = seq({1})× seq({2})× . . .

Example 2.21 (Strings composed of ◦ and −). Suppose there is a string, composed with
two signs: ◦ and −, where ◦ has length 1 and − has length 2. What is the number of strings
of length n?

Take the class A = {◦} and B = {−}=̂A×A. With generating functions z and z2 respectively.
Now:

C = seq(A ∪A×A)

C(z) =
1

1− z − z2
=
∑
n≥0

Fnz
n.

Notice that this is the Fibonacci sequence again.
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Example 2.22 (Binary trees). Let B be a binary tree, as defined above. Then this can also
be written as:

B = {�}+ {◦} × B × B
B(z) = 1 + z ·B(z) ·B(z).

2.2.5 Labeled Constructions

Example 2.23 (Permutations). Let an = n!, then

A(z) =
∑
n≥0

n!zn.

A cyclic permutation, exists of exactly one cycle: (p1p2 . . . pn)=̂(p3p4 . . . pnp1p2). Such that p1

maps on p2, p2 on p3 and so on, until pn maps on p1. The number of such cyclic permutations
is therefore (n− 1)!, with corresponding generating function:

B(z) =
∑

(n− 1)!zn.

If there are two cycles in the permutation, the total number of permutations will be

(k − 1)!(n− k)!

(
n

k

)
.

The Cartesian product alone is not enough.

Definition 2.3. Let A be a labeled structure. This means: each object of size n is composed
of n atomic objects. The atoms are numbered with integers from 1 to n. The generating
function is defined as follows:

Â(z) =
∑
n≥0

an
zn

n!

Define the following operations on these labeled structures:

1. Sum, A+ B: Let C = A+ B, with A∩B = ∅. Then the weight function is defined as:

w(x) =

{
wA(x) x ∈ A
wB(x) x ∈ B.

From there it follows that:

Ĉ(z) =
∑
n≥0

(an + bn)
zn

n!
= Â(z) + B̂(z).

2. Partitional product, A ∗ B: Let C = A ∗ B then:

C = {(x, y) | x ∈ A, y ∈ B, atoms are labeled in order preserving way

s.t. the labels are 1, 2, . . . , wA(x) + wB(x)}
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The question is: what is the number of objects of size n? This can be calculated as
follows:

cn =
n∑
k=0

(
n

k

)
akbn−k

cn
n!

=
n∑
k=0

1

k!(n− k)!
akbn−k

=
n∑
k=0

ak
k!
· bn−k

(n− k)!

=
n∑
k=0

[zk]Â(z)[zn−k]B̂(z)

⇒ Ĉ(z) = Â(z)B̂(z).

3. Sequence construction: Let seq(A) = {ε} × A× (A ∗ A)× . . .. Then

Ĉ(z) =
1

1− Â(z)
.

4. Set construction: Let

set(A) = {∅} × A× 1

2
A ∗ A× 1

3!
A ∗ A ∗ A.

This implies: Ĉ(z) = eÂ(z). In the unlabeled case, for set(A), C(z) is defined as:

C(z) = exp(Â(z)) = exp

(
A(z)− A(z2)

2
+
A(z3)

3
+ . . .

)
.

5. Cycles of objects of A: This is defined as:

cyc(A) ∼= A+
1

2
A ∗ A+

1

3
A ∗ A ∗ A+ . . . .

With generating function:

Ĉ(z) = log

(
1

1− Â(z)

)
.

Example 2.24. Let P = set(cyc({◦})), in P the order does not matter and ◦ is a labeled
atom. Then it follows:

P̂ (z) = elog( 1
1−z ) =

1

1− z

=
∑
n≥0

n!
zn

n!
.

Example 2.25. Let P be a permutation, then P = set(cyc(A)) and A = {1}, in which 1 is
a labeled atom. Then it follows:

P̂ (z) = exp

(
log

(
1

1− z

))
=
∑
n≥0

n!
zn

n!
.
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Example 2.26. Given a set partition: M = M1∪ . . .Mk, such that Mi 6= ∅ and if i 6= j then
Mi ∩Mj = ∅. For the class of set partitions P it follows:

P = set(set(A)\{∅})
P̂ (z) = exp(exp(z)− 1)

Which implies: [zn]ee
z−1 =

∑
k≥0

Sn,k.

2.2.6 Exponential Generating Functions and Ordered Structures

Take a look at ordered n-tuples: (q1, . . . , qn), where qi ∈ {1, 2, . . . , N}, with no repetitions.
Then an is the number of n-tuples. Define:

Q = {ε, 1}︸ ︷︷ ︸
1+z

∗ {ε, 2}︸ ︷︷ ︸
1+z

∗ . . . ∗ {ε,N}︸ ︷︷ ︸
1+z

.

For the generating function it follows:∑
n≥0

an
zn

n!
= (1 + z)N =

N∑
n=0

(
N

n

)
zn

an =
N !

(N − n)!
.

If repetitions were allowed it follows that:(
1 + z +

z2

2!
+
z3

3!
+ . . .

)N
= ezN =

∑
n≥0

Nn z
n

n!
.

2.3 Combinatorics on Posets

Recall (A,≤) ⊆ A × A. Use the notation a ≤ b instead of (a, b) ∈≤. The relation ≤ is a
partial order if:
• It is reflexive: ∀x ∈ A : x ≤ x.
• It is transitive: ∀x, y, z ∈ A : if x ≤ y and y ≤ z, then x ≤ z.
• It is anti-symmetric: ∀x, y ∈ A : if x ≤ y and y ≤ x then x = y.

Let A be a set and ≤ be a partial order on this set. Then (A,≤) is a partially ordered set: a
poset. A poset A is linearly ordered if: ∀x, y ∈ A, x ≤ y or y ≤ x.

Example 2.27.
• (N,≤) is a linear ordered poset
• (R,≤) is a linear ordered poset
• (N, |) is not a linear ordered poset, because:

a|a
a|b, b|c⇒ a|c
a|b ∧ b|a⇒ a = b

But: 2 6 |3 ∧ 3 6 |2.
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x

(a) Reflexive

x y z

(b) Transitive

=⇒

x

y

x

(c) Anti-symmetric

Figure 2.3: Posets, rules

• (2A,⊆) is a partial order and if there is at most one element, the set is a linear ordered
poset:

B ⊆ B
B ⊆ C ⊆ D ⇒ B ⊆ D
B ⊆ C ∧ C ⊆ B ⇒ B = C.

Definition 2.4. Given a poset (A,≤). An element x ∈ A is a minimal element if y ≤ x
implies: x = y. In the same way the maximal element can be defined. A linearly ordered set
has only one minimal (and one maximal) element.

Distinct minimal elements of a poset are not comparable. Let x and x′ be two minimal
elements. Then either x = x′ or x, x′ are not comparable. If x ≤ x′ or x′ ≤ x then x = x′.

An element x ∈ A is:

• A minimal element if y ≤ x⇒ x = y.
• A maximal element if x ≤ y ⇒ x = y.
• The (unique) 0-element if ∀y ∈ A: x ≤ y, every 0-element is minimal and if there is

such an element, it is the only element.
• The 1-element if ∀y ∈ A : y ≤ x.

minimal elements

maximal elements

Figure 2.4: Poset, minimal and maximal elements

An interval on a partial order is defined as: [x, y] = {z ∈ A mod x ≤ z ≤ y}. A poset (A,≤)
is locally finite if: ∀x, y ∈ A : |[x, y]| <∞.

Each poset can be visualized by a Hasse diagram.
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∅

x y z

x, y, z

Figure 2.5: Hasse-diagram

Example 2.28.

• (N,≤) has a 0-element (zero), there is no 1-element and it is locally finite.
• (N+, |) is locally finite, the 0-element is 1 and there is no maximal element. In (N, |),

the 1-element is 0.
• (R,≤) is not locally finite.

Definition 2.5. Let (P,≤) be all the locally finite posets, let f : P → R be a function and
define the sum function as follows:

Sf (X) =
∑
z≤x

f(z).

Example 2.29.

• Take the poset (N,≤), then f ↔ (an) and Sf ↔
∑

k≤n ak.

0

a b

x

Figure 2.6: Poset, sum, example

• From the picture it can be concluded that:

Sf (x) = f(0) + f(a) + f(b) + f(x)

an =
∑
k≤n

ak −
∑
l≤n−1

ak = Sf (n)− Sf (n− 1).

The problem that follows from these definitions and examples: given Sf , find f .

2.3.1 Möbius functions

Definition 2.6. Let (P,≤) be a locally finite poset with a 0-element. Define the Möbius func-
tion of P as a mapping µ : P × P → R if ∀x, y ∈ P :

∑
z∈[x,y]

µ(z, y) = δx,y =

{
1 if x = y

0 otherwise
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Remark: The Möbius function µ is uniquely determined. x 6≤ y implies that µ(x, y) = 0.

Example 2.30.

[x, x] = {x} µ(x, x) = 1

[x, y] = {x, y} µ(x, y) + µ(y, y) = 0

µ(y, y) = 1⇒ µx, y = −1.

Example 2.31. Look at the poset (N,≤). From the previous example it follows that

µ(n, n) = 1

µ(n, n+ 1) = −1. Then:

[n, n+ 2] = {n, n+ 1, n+ 2} : =

= µ(n, n+ 2)︸ ︷︷ ︸
0

+mu(n+ 1, n+ 2)︸ ︷︷ ︸
−1

+µ(n+ 2, n+ 2)︸ ︷︷ ︸
1

= 0

From this it can be concluded that if m ≥ n+ 2 then µ(n,m) = 0.

x

a

b c d

y

Figure 2.7: Poset, Möbius function, example

Example 2.32. Now a more specific example. Take a look at the poset given in Figure 2.7.
From this Figure we can see the following:

µ(x, x) = µ(a, a) = µ(b, b) = µ(c, c) = µ(d, d) = µ(y, y) = 1

µ(x, a) = µ(x, c) = µ(x, d) = µ(a, b) = µ(b, y) = µ(c, y=µ(d, y) = −1

µ(x, b) = µ(a, y) = 0

µ(x, y) :µ(x, y)︸ ︷︷ ︸
2

+µ(a, y)︸ ︷︷ ︸
0

+µ(b, y)︸ ︷︷ ︸
−1

+µ(c, y)︸ ︷︷ ︸
−1

+µ(d, y)︸ ︷︷ ︸
−1

+µ(y, y)︸ ︷︷ ︸
1

= δx,y = 0.

Theorem 2.7. Let (P1,≤1) and (P2,≤2) be two locally finite posets, each with a 0-element.
Define (P,≤) as follows:

P = P1 × P2

(x1, x2) ≤ (y1, y2)⇔ x1 ≤1 y1 and x2 ≤2 y2.

(P,≤) is a locally finite poset, with a 0-element: (01, 02) and the Möbius function µ : P ×P →
R:

µ((x1, x2), (y1, y2)) = µ1(x1, y1) · µ2(x2, y2)

(P,≤) = (P1,≤1) · (P2,≤2).
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Example 2.33. Given a set M = {a1, . . . , an}, look at the following claim:

(2M ,⊆) ∼= ({0, 1},≤)n.

For example, take n = 5 and A = {a2, a5}, B = {a1, a2, a3, a5}, with A,B ∈ 2M . Then:

A=̂(0, 1, 0, 0, 1)

B=̂(1, 1, 1, 0, 1)

A ⊆ B=̂(0, 1, 0, 0, 1) ≤ (1, 1, 1, 0, 1).

Let x ∈ A, then ex,A = 1, which implies that ex,B = 1, which is the case if and only if x ∈ B.
Notice that ex,A = 1⇒ ex,B = 1 is equal to ex,A ≤ ex,B. Now look at the Möbius function in
({0, 1},≤):

µ(0, 0) = µ(1, 1) = 1

µ(0, 1) = −1

µ(1, 1) = 0.

This implies, for the example with A and B that:

µ(A,B) = µ(01001, 11101) = µ(0, 1) · µ(1, 1) · µ(0, 1) · µ(0, 0) · µ(1, 1)

= −1 + 1− 1 + 1 + 1

= 1

Which means: if A 6⊆ B, then µ(A,B) = 0 and if A ⊆ B then µ(A,B) = −1.

Theorem 2.8 (Möbius inversion). Let (P,≤) be a locally finite poset, with a 0-element and
let µ : P × P → R be the Möbius function on (P,≤). Let for f : P → R the sum function
Sf : P → R of f : P → R be given by:

Sf (x) =
∑
z∈[0,x]

f(z).

This implies:

f(x) =
∑
z∈[0,x]

Sf (z) · µ(z, x).

Example 2.34. Take (N,≤) and f : N → R, with Sf (n) =
∑n

k=0 f(k). Then it follows, by
the theorem that:

f(n) =

n∑
k=0

Sf (k)

µ(k, n) = Sf (n)− Sf (n− 1).
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Proof. ∑
z∈[0,x]

Sf (z) · µ(z, x) =
∑
z∈[0,x]

∑
u∈[0,z]

f(u) · µ(z, x)

=
∑
u∈[0,x]

∑
z∈[u,x]

f(u) · µ(z, x)

=
∑
u∈[0,x]

f(u) ·
∑
z∈[u,x]

µ(z, x)

=
∑
u∈[0,x]

f(u) · δu,x. = f(x).

Example 2.35. Let A1, . . . , Am ⊆M , now take the powerset of the set of indices: (2{1,2,...,m},⊆),
the relation ⊇ would give the same Möbius function: this function only depends on the struc-
ture of the order:

µ(A,B) =

{
(−1)|B|−|A| if A ⊇ B
0 otherwise

Now suppose I ⊆ {1, . . . ,m} and:

f(I) =

∣∣∣∣∣∣
⋂
i∈I

Ai ∩
⋂

j∈{1,...,m}\I

Aj

∣∣∣∣∣∣ .
Then for the sum function it follows:

Sf (I) =
∑
J⊇I

f(J) =

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .Sf (x) =
∑
z≤x

f(z)


The Möbius inversion gives:

f(I) =
∑
J⊇I

Sf (I)µ(J, I)

=
∑
J⊇I

(−1)|J |−|I| ·

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣
f(∅) =

∣∣∣∣∣∣
⋂

j∈{1,...,m}

Aj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃
j

Aj

∣∣∣∣∣∣
=

∑
J⊂{1,...,m}

(−1)|J |

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣
= |M | − |A1| − . . .− |Am|+ |A1 ∩A2|+ . . .− |A1 ∩A2 ∩A3| − . . .
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Example 2.36. An example from Number Theory. Take a look at the poset (N+, |). Suppose

n is the product: n = pg11 . . . pgrr and m is the product: m = pf11 . . . pfrr . This implies:

m|n⇔ ∀fi ≤ gi.

It could be said that (N+, |) ∼= (N × N × . . . ,≤), the number theoretical order of the poset is
isomorphic to (N× N× . . . ,≤). For the Möbius function it follows:

µ(n) = µ(1, n) = µ≤(0, g1) · µ≤(0, g2) · . . . · µ≤(0, gr)

=


1 if n = 1

(−1)r if n = p1 · . . . · pr
0 if ∃p ∈ P : p2|n.

Notice: if m|n then µ(m,n) = µ(1, 1
m), if m - n then µ(m,n) = 0. It follows that for

f : N+ → R:

Sf (n) =
∑
d|n

f(d)⇒ f(n) =
∑
d|n

Sf (d)µ
(n
d

)
.

2.3.2 Lattices

Definition 2.7. Let (P,≤) be a poset, with x, a, b ∈ P , such that a ≤ x ≤ b, this means: a
is a lower bound for x and b is an upper bound for x. For x = x1, . . . , xl, a is called a
common lower bound and b is called a common upper bound of x. Now the following
holds:

• The smallest common upper bound of x, y ∈ P : x ∨ y: x join y.
• The greatest common lower bound of x, y ∈ P : x ∧ y: x meet y.

X ⊆ P :
∨
x∈X

x join of X,
∧
x∈X

x meet of X.

Definition 2.8. A poset (L,≤) is a lattice if ∀x, y ∈ L: the join and the meet exist: x ∨ y
and x ∧ y exist. If only x ∧ y (the meet) exists, it is a meet-semilattice. If only x ∨ y (the
join) exists, it is a join-semilattice. If ∀X ⊆ L, both:∧

x∈X
x and

∨
x∈X

x

exists, L is said to be a complete lattice.

Example 2.37.

• (2M ,⊆) with A ∧B = A ∩B and A ∨B = A ∪B.
• (N+, |) with x ∧ y = gcd(x, y) and x ∨ y = lcm(x, y).
• (L,∨,∧) can be seen as an algebra. Where ∨,∧ are bot associative, commutative and

idempotent (a ∧ a = a and a ∨ a = a). The absorption laws also hold:

(a ∧ (a ∨ b)) =a = (a ∨ (a ∧ b))
0 ∨ a =a = 1 ∧ a.
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• Furthermore, (L,∧) and (L,∨) are semigroups.

Lemma 2.3. Let L be a lattice, with x, y, s, t ∈ L, such that x ≤ s and y ≤ s: s is a common
upper bound. This implies: x ∨ y ≤ s. Also: x ≥ t and y ≥ t, this implies: x ∧ y ≥ t.

Remark: a ≤ b⇔ a ∨ b = b⇔ a ∧ b = a.

Proof. The lemma has an easy proof, using the previous definitions of lattices.

Lemma 2.4. Suppose x ≤ s, y ≤ s, x ≤ t and y ≤ t. This implies: x ≤ s ∧ t and y ≤ s ∧ t.

Proof. By definition: s∧ t is the greatest common lower bound of s and t. x and y are lower
bounds of s and t. This implies: x ≤ s ∧ t and y ≤ s ∧ t.

Lemma 2.5. If L is a finite meet-semilattice, with an 1-element, then L is a lattice.

Proof. Assume x, y ∈ L, set B = {u ∈ L | x ≤ u ∧ y ≤ u}. If x ≤ 1 and y ≤ 1 then 1 ∈ B,
which implies that B 6= 0. Since |B| <∞ it follows: B = {u1, u2, . . . , um}. Define:

u = u1 ∧ u2 ∧ . . . ∧ um.

This implies: u ∈ B. Now ui ≥ x and ui ≥ y implies: ui ≥ x ∧ y. But u ≤ ui, which
means that u = minB = x ∨ y and this join exists! From which it follows that L is indeed a
lattice.

Example 2.38. Let Πn be the set of partitions of {1, 2, . . . , n}. Then:

(Πn,≤) : A ≤ B ⇔ A is a refinement of B.

A refinement is a partition of partitions. If A ≤ B it is said that A is finer than B and B
is coarser than A. (Πn,≤) is a lattice because:

• It is easy to see that (Πn,≤) is a poset.
• There is an 1-element: the partition existing of one block.
• There is a 0-element: every block has size 1.

Another way to see that Πn is a lattice is the following: let α, β ∈ Πn, such that α ∧ β. Now
i, j ∈ {1, 2, . . . , n} are in the same block, if and only if they are in the same block of both α
and β.

Theorem 2.9. Let L be a lattice with a 0-element and an 1-element. Then b ∈ L\{1} implies
the equation (∗):

µ(0, 1) = −
∑

x:x∧b=0,x 6=0

µ(x, 1).
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Proof. (∗)⇔
∑

x:x∧b=0

µ(x, 1) = 0, since 0 ∧ b = 0. Let y ≤ b and define:

N(y) =
∑

x:x∧b=y
µ(x, 1)

S(b) =
∑
y:y≤b

N(y)

=
∑
y:y≤b

∑
x:x∧b=y

µ(x, 1)

=
∑

x,y,x∧b=y
µ(x, 1).

Note: ∀x ∈ L there exists exactly one y ∈ L such that x ∧ b = y. This implies that ∀x ∈ L,
µ(x, 1) occurs exactly once in S(b). From which it follows:∑

y∈[0,b]

N(y) = S(b) =
∑
x∈L

µ(x, 1)

=
∑
x∈[0,1]

µ(x, 1)

= δ0,1 = 0.

Now apply the Möbius inverse function to this formula. This gives:

N(b) =
∑
y≤b

S(y)µ(y, b) = 0

N(0) = 0 but:

N(0) =
∑

x:x∧b=0

µ(x, 1) = 0.

With the note in mind, for the previous example the following can be computed:

µ(0Πn , 1Πn) = (−1)n−1(n− 1)!
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Chapter 3

Number Theory

3.1 Divisibility and Factorization

Definition 3.1. Let a, b ∈ Z, then a|b if and only if ∃c ∈ Z such that a · c = b. In general,
let a, b ∈ R in which R is a ring (e.g. polynomials R = Z[x]), then a|b if and only if ∃c ∈ R
such that a · c = b.

Definition 3.2. Let a, b ∈ Z, then d = gcd(a, b) if and only if:

• d|a and d|b.
• t|a and t|b implies: t|d.

Notice that the greatest common divisor is not unique. For example: gcd(2, 4) = {2,−2}. In
this definition as well: it is possible to replace Z by any ring R.

Definition 3.3. Let a, b ∈ Z, such that b > 0. Then ∃q, r such that a = b · q + r, with
0 ≤ r < b.

Theorem 3.1 (Euclidean algorithm). Given a and b, what is the greatest common divisor
of those two integers? The Euclidean algorithm is an algorithm that calculates the gdc of
two integers. Look at the following sequence of equations:

a = bq0 + r0

b = r0q1 + r1

r0 = r1q2 + r2

...

rk−2 = rk−1qk + rk

rk−1 = rlqk1 + 0.

It follows, from the previous formulas, that b > r0 > r1 > r2 > . . . > rk > 0. Hence:
rk = gdc(a, b).

Proof. The proof consists of two parts:

74



1. Start with proving that rk is indeed a common divisor of a and b:

rk|rk−1 ⇒ rk| rk−1qk + rk︸ ︷︷ ︸
rk−2

⇒ . . .⇒ rk|a ∧ rk|b.

2. The second part is to show that this is the greatest common divisor. Does t|a∧t|b imply
t|rk? Suppose that t|a and t|b it follows that ⇒ t| a− bq0︸ ︷︷ ︸

r0

⇒ t|r1 ⇒ . . .⇒ t|rk.

Remark: If
rj = rj+1 · qj+2︸︷︷︸

≥1

+rj+2 ≥ rj+1︸︷︷︸
>rj+2

+rj+2 > 2rj+2

then it follows that
∀j : rj+2 <

rj
2
.

Theorem 3.2. Let a, b ∈ Z and suppose that d = gcd(a, b). Then ∃e, f ∈ Z such that
d = ae+ bf .

Proof. To prove the theorem: just reverse the Euclidean algorithm.

Definition 3.4. Let R be a commutative ring, with a 1-element. Then:

• (R,+) is an Abelian group, which means: there is a 0-element and ∀a there is an
inverse −a.
• (R, ·) is a semigroup, which means, there exists an neutral element 1 and the distribu-

tive laws hold.
• R is an integral domain if and only if @a, b ∈ R\{0}, such that a · b = 0.

Example 3.1. (R,+, ·), (Zm,+, ·), for m ∈ P. Where P are the prime numbers and Zm are
the integers, modulo m.

If m /∈ P then m = n · k and n · k = m = 0. Take m = 6, then: Z6 : 2 · 3 = 0. Furthermore:

Z[x] = ({a0 + a1x+ a2x
2 + . . .+ anx

n | ai ∈ Z, n ∈ N},+, ·).

Definition 3.5. A ring R is called an Euclidean ring if R is an integer domain and there
is an Euclidean function n: n : R→ N such that ∀a, b ∈ R, if b 6= 0, ∃q, r ∈ R:

1. a = b · q + r with r = 0 or n(r) < n(b).
2. ∀a, b ∈ R\{0}: n(a) ≤ n(a · b).

Definition 3.6. A field (K,+, ·) is a commutative group, with two operations: addition and
multiplication, such that:

• (K,+) is an Abelian group (it is associative, there is a 0-element and ∀a, ∃ − a).
• (K\{0}, ·) is an Abelian group.
• The distributive laws hold.
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Example 3.2. Take a look at the integers Z, with n(a) = |a|. K is a field, such that

K[x] = ({a0 + a1x+ a2x
2 + . . .+ anx

n | ai ∈ K,n ∈ N},+, ·).

Where n is the degree of the whole polynomial over ring K.

If K[x] is an Euclidean ring, then for p(x) ∈ K[x]: n(p(x)) = deg(p(x)).

Example 3.3.

x4 +3x3 −3x2 −7x +6 : (x3 + x2 − x+ 15) = x+ 2
−x4 −x3 +x2 −15x

2x3 −2x2 −22x +6
−2x3 −2x2 +2x −30

−4x2 −20x −24

p(x) = (x+ 2) · q + (−4x2 − 20x− 24)︸ ︷︷ ︸
r(x)

If p(x), q(x) ∈ K[x], then gcd(p(x), q(x)) = a · d(x), for a ∈ K[x]\{0}.
Definition 3.7. Let p ∈ Z and p > 1. Now p is called a prime number if and only if ±1
and ±p are the only divisors of p. The set of all prime numbers is denoted by P.

Theorem 3.3. Let p ∈ P. If p|(a · b) then p|a ∨ p|b.

Proof.

Case 1: p|a, then the proof is done.

Case 2: p - a, then gcd(p, a) = 1, which means: ∃e, f ∈ Z such that ep + fa = 1. Now it
follows that: b = b · 1 = bep︸︷︷︸

multiple of p

+ bfa︸︷︷︸
multiple of p

from which it follows that p|b.

Theorem 3.4. Let n ∈ N+, then ∃p1, . . . , pr ∈ P such that n = p1 · . . . · pr, for r ≥ 0.(∏
i∈∅ a1 = 1

)
.

Proof. The proof will be by induction, with base case: n ∈ P, in which case the proof follows
immediately.

Now suppose n /∈ P. This means, ∃n1, n2 ∈ Z such that n = n1 · n2, where n1, n2 < n. By
induction hypothesis it follows that: n1 = p1 · . . . · pr and n2 = q1 · . . . · qs. From which the
proof follows.

Definition 3.8. νp(n) is the multiplicity of p in the factorization of n. From this the
following follows:

pνp(n)|n
pνp(n)+1 - n

gcd(a, b) =
∏
p∈P

pmin(νp(a),νp(b))

lcm(a, b) =
∏
p∈P

pmax(νp(a),νp(b))

a|b⇔ ∀p ∈ P : νp(a) ≤ νp(b).
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Notice that νp(x) might also be zero: not every prime number has to be a factor of an integer.

Remark: Factorization is unique up to the order of the factors. This implies:

n =
∏
p∈P

pνp(n).

Theorem 3.5. There are infinitely many prime numbers: |P| =∞.

Proof. To get a contradiction, assume there are only finitely many prime numbers:

P = {p1, . . . , pr}.

Construct, from these prime numbers a new prime number: N , such that:

N = p1 · . . . · pr + 1.

There are two possible cases:

1. N is a not yet known prime number, but that is a contradiction, since it is not part of
the defined set P.

2. It is possible to factor N into prime numbers. However, by construction of N , this is
not possible: every element of P is certainly not a prime factor of N . But then should
N be a new prime number. Which is again a contradiction.

Since in both cases a contradiction is derived, it follows that P contains not all the prime
numbers: it is always possible to find a new prime number.

3.2 Congruence Relations and Residue Classes

Definition 3.9. Let m ∈ N+ be the modulus. Then a residue class is defined as: a+m ·Z =
a. Where a+m · Z = {a+ k ·m | k ∈ Z} notice: a ⊆ Z and a = a+m.

Remark:

a ∈ a, a ≡ b⇔ m|a− b
a ≡ b mod m⇔ m|a− b

a ≡ b(m)⇔ a = b.

Furthermore:
Zm = {0, 1, 2, . . . ,m− 1} ⇒ 0 ∪ 1 ∪ 2 ∪ . . . ∪m− 1 = Z.

Definition 3.10. Let a and b be two residue classes then define the following two equivalences:

a+ b := a+ b

a · b := a · b.

Remark: Let a ≡ c(m) and b ≡ d(m) then it follows that:

a+ b ≡ c+ d(m)

ab ≡ cd(m).
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+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Figure 3.1: Definition of addition and multiplication in the binary residue classes

Example 3.4. Take a look at the binary residue classes, the definition of addition and mul-
tiplication in those classes is defined as shown in figure 3.1.

Theorem 3.6. The structure (Zm,+, ·) is a commutative ring, with a 1-element.

Definition 3.11. Let a ∈ Zm. The inverse element is defined as follows: let x ∈ Zm such
that: x · a = 1. Then x = a−1.

Example 3.5. Take m = 5, then 2
−1

= 3. Now take m = 6, then 2 · 3 = 0, which implies
that (x · 2) · 3 = 0 and if: x · 2 6= 1 then @2

−1
.

Theorem 3.7. Let a ∈ Zm, then there exists an inverse element a−1 if and only if a and m
are co-prime, which means: gcd(a,m) = 1.

Proof. ” ⇒ ” Let a · x = 1 then ∃k ∈ Z such that ax = 1 + km, from which follows that:
ax− km = 1. Let d = gcd(a,m) then:

d| ax− km︸ ︷︷ ︸
1

⇒ d = 1.

” ⇐ ” Now assume that gcd(a,m) = 1, then ∃e, f ∈ Zm such that ae + mf = 1. From here
it follows that: ae = 1 + (−f)m and hence:

a · e = 1⇒ e = a−1.

Definition 3.12. Define the set of prime residue classes, modulo m as follows:

Z∗m = {a ∈ Zm | gcd(a,m) = 1}.

This set contains all invertible elements of Zm, which means it can also be defined as:

Z∗m = {x ∈ Zm | ∃x−1 : x · x−1 = 1}.

The set is sometimes also called a group of units.

Example 3.6. Start with m = 5 and m = 6 again. Then the prime residue classes are:

Z∗5 = {1, 2, 3, 4}
Z∗6 = {1, 5}.
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Example 3.7. Look at the case where m = 17, the question is: what is the inverse element
of 13? Start with 13x ≡ 1(17). Using the Euclidean algorithm it follows:

17 = 13 · 1 + 4

13 = 4 · 3 + 1 then:

1 = 13− 4 · 3
= 13− (17− 13) · 3
= 17 · 3 + 4 · 13

x ≡ 4(17).

The solution to this problem is: x ≡ 4(17) which means that 13
−1

= 4.

Example 3.8. Take a look at 3b ≡ 3c(5), to solve this: multiply both sides with 2, then divide

by three. Since 2
−1

= 3 it follows that the system becomes b ≡ c(5), which can be solved.

Example 3.9. Now look at the system 3b ≡ 3c(6). Then ∃k ∈ Z such that: 3b = 3c + k · 6,
divide both sides by three. This gives b = c+ k · 2, from which it follows that b ≡ c(2), which
can be solved.

Some rules:

ab ≡ ac(am)⇒ b ≡ c(m)

ab ≡ ac(m)⇒ b ≡ c(m) if ax ≡ 1(m) has a solution⇔ gcd(a,m) = 1.

3.3 Systems of congruences

Theorem 3.8. Suppose m = m1 ·m2 and gcd(m1,m2) = 1. Then:

x ≡ y(m)⇔

{
x ≡ y(m1)

x ≡ y(m2)

Proof. ”⇒ ” Since x ≡ y(m)⇔ x = y + k ·m it follows that x = y + k ·m1 ·m2 and hence{
x ≡ y(m1)

x ≡ y(m2)

”⇐ ” Now assume that {
x ≡ y(m1)

x ≡ y(m2)

then ∃l such that x − y = l · m1 ≡ 0(m2). From here it follows that if l ≡ 0(m2) then
x− y = l′ ·m1 ·m2 which implies: x ≡ y(m).

Corollary 3.1. Let m =
∏r
i=1mi such that ∀i 6= j : gcd(mi,mj) = 1. Then x ≡ y(m) if and

only if ∀i = 1, . . . , r: x ≡ y(mi).
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Theorem 3.9 (Chinese remainder theorem). Given a system of congruence equations

x ≡ ai(mi)

where 1 ≤ i ≤ r(∗) and if i 6= j then gcd(mi,mj) = 1, then the system has a unique solution,
modulo m =

∏r
i=1mi. The solution is given by:

x ≡
r∑
j=1

m

mj
· bj · aj(m).

Where bj =
(
m
mj

)−1
mod mj.

Example 3.10. Given the following system of congruence equations:

3x ≡ 2(5)

2x ≡ 7(11).

It can be shown that this system is equivalent to:

x ≡ 4(5)

x ≡ 9(11).

From this system the following can be calculated:

m1 = 5,m2 = 11⇒ m = 55 b1 · 11 = 1(5)⇒ b1 = 1

a1 = 4, a2 = 9 b2 · 5 = 1⇒ b2 = 9.

Then the solution to the whole system can be calculated as follows:

x ≡ 11 · 1 · 4 + 5 · 9 · 9(55)

x ≡ 449(55)

x ≡ 9(55)

The set of solutions is then:
{. . . ,−46, 9, 64, 119, . . .}.

Proof. The proof exists of two parts: proving that x is indeed a solution and then proving
that x is the unique solution modulo m:

1. x is a solution: It is known that the m′is, for i = 1, 2, . . . , r are pairwise co-prime.

This implies that gcd
(
m
mj
,mj

)
= 1 which guarantees that ∃bj and ∀i 6= j: m

mj
≡ 0(mi).

This implies:

r∑
j=1

m

mj
bj · aj ≡

m

mj
· bi︸︷︷︸(

m
mj

)−1

mod mi

·ai(mi)

≡ ai(mi).

This proves the existence of x.
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2. x is the unique solution, modulo m: For all i = 1, . . . , r it holds that:

x ≡ ai(mi)

y ≡ ai(mi)

x ≡ y(mi).

Then it follows that x ≡ y(m). This proves the whole theorem.

3.4 Euler-Fermat Theorem and RSA-Algorithm

Theorem 3.10. Take a look at the group (Z∗m), where |Zm| = m and Z∗m = ϕ(m). The
function ϕ(m) is Euler’s totient function. E.g.: ϕ(5) = 4 and ϕ(6) = 2. Consider two
cases for this function:

1. Suppose m ∈ P then ϕ(m) = m− 1.
2. Let m = pe, for p ∈ P and e ≥ 1. Now it holds that:

a ∈ Zm ⇒ gcd(a, pe) =

{
1 if a ∈ Z∗m
pf 1 ≤ f < e

a ∈ Z∗m ⇔ p - a.

Now look at the first pe natural numbers: 0, 1, 2, . . . , pe − 1. Then

pe − pe−1 = ϕ(pe) = pe−1(p− 1) = ϕ(m).

And: ϕ(m) = m
(

1− 1
p

)
.

Theorem 3.11. Let m = pe11 p
e2
2 . . . perr then:

ϕ(m) = m

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pr

)
.

Proof. Let r = 2 and M = {1, 2, . . . ,m}, define two sets A and B as:

A = {n ∈M | p1|n} = {p1, 2p1, 3p1, . . . ,m− p1,m}
B = {n ∈M | p2|n} = {p2, 2p2, 3p2, . . . ,m− p2,m}.

Notice that |M | = m, |A| = m
p1

, |B| = m
p2

and |A ∩B| = m
p1p2

. Then the totient function of m
will be:

ϕ(m) = |M\(A ∪B)|
= |M | − |A| − |B|+ |A ∩B|

= m

(
1− 1

p1

)(
1− 1

p2

)
.

For the case that r > 2 the principle of inclusion and exclusion has to be applied.
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Theorem 3.12 (Theorem of Euler-Fermat). If gcd(a,m) = 1 then aϕ(m) ≡ 1(m). In partic-
ular:

p ∈ P, p - a⇒ ap−1 ≡ 1(p).

This is Fermat’s Little Theorem.

Proof. Let Z∗m = {a1, a2, . . . , ak} and k = ϕ(m). Multiply everything by a, then the claim is
that this gives the following set:

Z∗m{aa1, aa2, . . . , aak}.

Since aai = aaj ⇒ ai = aj ⇒ i = j it follows that:

a1, a2, . . . , ak︸ ︷︷ ︸
∈Z∗m

= ak · a1, a2, . . . , ak︸ ︷︷ ︸
∈Z∗m

.

Which implies that: ak = 1 = aϕ(m).

Theorem 3.13. Let p, q ∈ P such that p 6= q and both are odd. Let m = p · q and v =
lcm(p− 1, q − 1), then:

∀a, k ∈ Z : akv+1 ≡ a(m).

Proof. It has to be shown that pq|akv+1 − a. This is the case, if and only if:

p | akv+1 − a
q | akv+1 − a.

There are two possible cases:

1. p | a, in this case the proof is done.
2. p - a, then it follows that: ap−1 ≡ 1(p) which implies akv ≡ 1(p). Multiply both sides

with a gives: akv+1 ≡ a(p). Do the same for q, then it follows that akv+1 ≡ a(m).

3.4.1 RSA-algorithm

Let p, q ∈ P such that m = p · q and v = lcm(p− 1, q − 1) then

gcd(e, v) = 1⇒ ∃d : d · e ≡ 1(v).

Suppose there is a message a1, a2, a3, . . ., with 0 ≤ ai < m, that can be encrypted and
decrypted as follows:

• Encryption: E(aj) = bj := aej mod m.

• Decryption: D(bj) = aj := bdj mod m.

It can be shown that this really works:

bdj ≡ (aej)
d mod m

≡ ae·dj mod m

≡ akv+1
j mod m

≡ aj mod m.
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A public key (m, e) can be provided, this means: everyone can do the encryption. However
a private key d is needed to decrypt the message. If someone, who does not have the private
key, wants to decrypt the message, the right factorization of m = p · q has to be found. The
time needed to find the factorization grows exponentially with the number of digits of m.

e-Signature: Let (ej , dj) be given, where ej are public: ej is public =̂Ej , Dj . User i sends a
message to user j as follows:

Ej(Di(x)) = xdiej (m).

User j has the private key and can decrypt the message:

Dj(Ej(Di(x))) = Di(x).

Then for Ei holds afterward: Ei(Di(x)) = x.

Caveat: (warning), (x) may have many fixed points. If the order is low, it is possible to find
x.

Recall of some group-theory:

• Group: Let G be a group and x ∈ G, then ordG(x) = min{i ∈ N+ | xi = e}. If e is the
neutral element, then: ordG(e) = 1, since e1 = e. If a 6= e it follows that ordG(a) > 1.
• Cyclic group: Let 〈x〉 denote the group generated by x. For example:

〈e〉 = {e} this is the trivial group

〈x〉 = {e, x, x2, x3, . . .}.

Suppose G is finite and let U be a subgroup of G: U ≤ G, then |U | | |G|, where |G|
is the order of the group G. If〈x〉 = {e, x, . . . , xordG(x)−1} then | 〈x〉 | = ordG, which
implies: ordG(x) | |G|.
The group G is a cyclic group if and only if ∃x ∈ G such that 〈x〉 = G if and only if
∃x ∈ G : ordG(x) = |G|.
Notice that a group is always a subgroup of itself: G ≤ G.

Definition 3.13. Let a ∈ Z∗m, then 〈a〉 = Z∗m is called a primitive root mod m. If a is a
primitive root mod m, then

Z∗m = {a, a2, a3, . . . , aϕ(m)︸ ︷︷ ︸
=1

}.

Example 3.11.

Z∗2 = {1̄} = 〈1̄〉
Z∗3 = {1̄, 2̄} = 〈2̄〉 = {2̄, 2̄2} = {2̄, 1̄}
Z∗4 = {1̄, 3̄} = 〈3̄〉
Z∗5 = {1̄, 2̄, 3̄, 4̄} = 〈2̄〉 = 〈3̄〉 6= 〈4̄〉 = {1̄, 4̄}
Z∗8 = {1̄, 3̄, 5̄, 7̄} has no primitive roots =⇒ Z∗8 is not a cyclic group

〈1̄〉 = {1̄} 〈3̄〉 = {3̄, 3̄2} = {3̄, 1̄}
〈5̄〉 = {5̄, 5̄2} = {5̄, 1̄}
〈7̄〉 = {7̄, 7̄2} = {7̄, 1̄}
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Theorem 3.14. Z∗m is cyclic:

⇔ ∃ primitive root mod m

⇔ m ∈ {2, 4} ∪ {pe | p ∈ P\{2}, e ≥} ∪ {2pe | p ∈ P, e ≥ 1}.

Proof. Define: Z∗p = {1, 2, . . . , p = 1}. Assume g is a primitive root mod p. Then:

〈g〉 = Z∗p ⇔ gp−1 ≡ 1(p) ∧ ∀1 < r < p− 1 : gr 6≡ 1(p).

This is an equivalent formulation for being a primitive root. Now define: s : ordZ∗
p2

(g) which

implies: gs ≡ 1(p2). In particular this implies:

gs ≡ 1(p)⇒ s ≥ p− 1.

Claim: gp−1 ≡ 1(p2) or (g + p)p−1 6≡ 1(p2).

Proof of the claim: If gp=1 ≡ 1(p2) then (g + p)p−1 ≡ gp−1 + p · gp−2(p2), because all the
other terms contain a factor p2. It is known that gp−1 = 1. Now from p · gp−1 follows that
gcd(g, p) = 1 which means p · gp−2 6= 0(p2) and hence gp−1 + p · gp−2 6= 1.

If (g+ p)p−1 ≡ 1(p2) then gp−1 + p · gp−2 ≡ 1(p2) and gp−1 + p · gp−2 6≡ 0. Which implies that
gp−1 6≡ 1(p2). This proves the claim.

To complete the proof of the theorem both cases of the claim have to be considered:

1. Suppose gp−1 6≡ 1(p2) then s ≥ p, where s denotes the order of gp2. Note: ϕ(p2) =
p(p−1) which implies that s|p(p−1). Now s = p− l, where p−1 = k · l for (k, l < p−1).
Then gp·l ≡ 1(p2) and gp·l = (gp)l ≡ gl ≡ 1(p). This is a contradiction for l < p− 1.
From this contradiction it follows that s = p(p− 1) and hence: the order of g in Z∗p2 is

a generator of this group, with g a primitive root mod p2.
2. The proof of the case where (g + p)p−1 6≡ 1(p2) is similar to the first case. Again:
s = p(p− 1).

Lemma 3.1. Let g be a primitive root mod p, for p ∈ P\{2}. Then either g or g + p is a
primitive root mod pe, for e ≥ 2.

Lemma 3.2. Let h be a primitive root mod pe. Then h or h + pe is a primitive root mod
2pe.

3.4.2 The Order of Elements of an Abelian Group G With Neutral Ele-
ment e

Theorem 3.15. If ord(a) = r, ord(b) = s and gcd(r, s) = 1 then ord(ab) = rs.

Proof. Take (ab)rs, since this is an Abelian group, it is allowed to change the order. Then:

abrs = ( ar︸︷︷︸
e

)s( bs︸︷︷︸
e

) = e.
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Which implies that: ord(ab)︸ ︷︷ ︸
n

|rs. From here it follows that e = (ab)n = anbn and then

of course: an = (b−1)n. Call the following equation (∗): e = ar·n = (b−1)n·r. But then:
(b−1)k = e ⇔ bk = e, by (∗) it follows that bn·r = e. Since n · r is a multiple of ord(b) = s,
s|n · r and hence s|n.

To prove that r|n, both a and b have to be changed. The proof is similar to the proof
above.

Corollary 3.2. The following follows directly from the theorem above:

ord(ak)− ord(a)⇔ gcd(k, ord(a)) = 1.

Theorem 3.16. If a, b ∈ G, ord(a) = r and ord(b) = s, then ∃c ∈ G : ord(c) = lcm(r, s).

Proof. Assume that for ei, fi ≥ 0 the following holds:

r =
∏
i∈I

peii

s =
∏
i∈I

pfii .

With these prime factorizations the lcm and the gdc of r and s can be expressed as:

lcm(r, s) =
∏
i∈I

p
max(ei,fi)
i

gcd(r, s) =
∏
i∈I

p
min(ei,fi)
i

A consequence of this is: lcm(r, s) · gcd(r, s) = r · s.

Define : I1 = {i ∈ I | ei ≤ fi} and I2 = I\I1. Then for r and s it holds:

r =
∏
i∈I1

peii ·
∏
i∈I2

peii

s =
∏
i∈I1

pfii ·
∏
i∈I2

pfii .

Define the integers d1 and d2 as:

d1 =
∏
i∈I1

peii

d2 =
∏
i∈I2

pfii

d1 · d2 = gcd(r, s).

Notice that in all cases the smaller component is taken. From these d1 and d2 it follows that:

ord(ad1) =
r

gcd(r, d1)
=

r

d1

ord(bd2) =
s

gcd(s, d2)
=

s

d2
.
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Observe that gcd( rd1 ,
s
d2

) = 1, this follows from the definition of r and s with I1 and I2. Using
this observation and the above theorem it follows that:

ord(ad1bd2) =
rs

d1d2
= lcm(r, s).

Corollary 3.3. Let a1, . . . , ar such that ord(ai) = ki. Then ∃a ∈ G such that

ord(a) = lcm(k1, k2, . . . , kr).

3.4.3 Carmichael Function

Definition 3.14. The Carmichael function is defined as:

λ(m) = max{a | a ∈ Z∗m} · ordZ∗m(a).

Remark

a) λ(m) | ϕ(m)

b) p ∈ P\{2} =⇒ λ(pe) = ϕ(pe) = pe−1(p− 1)
λ(1) := ϕ(1) = 1
λ(2) = ϕ(2) = 1
λ(4) = ϕ(4) = 2

c) λ(2e) = 2e−2 for e ≥ 3
λ(2e) = ordZ∗2e (5)

Take a look at the function λ(n) for n =
∏r
i=1 p

ei
i with ei > 0, these are the real prime factors

of n. Let ai ∈ Z∗
p
ei
i

such that there exists an element of maximal possible order:

ord(ai) = ϕ(peii ) = λ(peii ).

Let bi ∈ Zn such that bi ≡ 1(p
ej
j ), ∀j 6= i and bi ≡ ai(p

ei
i ). Does such a bi exist? The answer

to this question follows from the Chinese remainder theorem: it exists.

Claim:
ordZ∗n(bi) = ordZ∗

p
ei
i

(bi) = λ(peii )

Proof. For bki ≡ 1(n) it must be the case that, ∀j = 1, . . . , r: bki ≡ 1(p
ej
j ). Then:

bi = c · n+ 1 = c · c1 · p
ej
j + 1.

For j = i it holds that: bki ≡ aki ≡ 1(peii ). Take a look at the following:

kmin = λ(peii ) =⇒ ordZ∗n(bi) ≥ λ(peii )

bkmin
i ≡ 1(p

ej
j ) ∀j =⇒ bkmin

i ≡ 1(n).
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From here it can be concluded that both equations are true. Up until now the following has
been found: b1, b2, . . . , br ∈ Zn such that ordZ∗n(bi) = λ(peii ), ∀i = 1, . . . , r. This implies:

∃b ∈ Z∗n : ordZ∗n(b) = lcm(λ(pe11 ), λ(pe22 ), . . . , λ(perr )).

Call this number K. It is known that λ(n) ≥ K, it is left to show that λ(n) = K.

Let a ∈ Zn : ak ≡ 1(n)⇔ ak ≡ 1(pi)
ei , ∀i = 1, . . . , r. That means: λ(peii ) is the maximal order

in Z∗
p
ei
i

. By the theorem above it follows that: ordZ∗
p
ei
i

(a)|λ(peii ). Therefore ordZ∗
p
ei
i

(a)|K, by

transitivity of |.

This means that: ak ≡ 1(peii ) ∀i if and only if ak ≡ 1(n) and therefore ordZ∗n(a)|K.

It was already shown that ∃b that has order K, now it is also shown that every element has
order K. From there it follows that λ(n) = K.

Theorem 3.17. Let G be an Abelian group, if a ∈ G, such that ordG(a) is maximal, then
∀b ∈ G : ordG(b)|ordG(a). This is also true for non-cyclic groups.

Proof. That ordG(a) is maximal means: ordG(a) = max{ordG(ai) | ∀ai ∈ G}, it has to be
shown that ∀b ∈ G : ordG(b)|ordG(a). This can be proven by contradiction. Assume that
∃x ∈ G : ordG(x) - ordG(a). By definition of the order of a group it follows that:

∃y ∈ G : ordG(y) = lcm(ordG(x), ordG(a)).

Since ordG(x) - ordG(a) it follows that lcm(ordG(x), ordG(a)) > ordG(a). But that is not
possible, since this would meand that ordG(y) > ordG(a), from which it follows that ordG(a)
is not the maximal order. Hence: such an x cannot exist.

Theorem 3.18. The Carmichael function λ(n) obeys the following values and rules:

• λ(1) = 1, λ(2) = 1, λ(4) = 2
• λ(2e) = 2e−2 for e ≥ 3
• λ(pe) = pe−1(p− 1) for p ∈ P\{2}

• λ

(
r∏
i=1

peii

)
= lcm(λ(pe11 ), . . . , λ(perr ))

Example 3.12.

λ(100) = λ(22 · 52) = lcm(λ(4), λ25) = lcm(2, 20) = 20.

The Carmichael function and RSA: Attack by encryption iteration. Let n = p · q, with
public key (n, e) and private key (n, d). Suppose x is the message. Define:

y0 = x

y1 = xe(n)

yi = yei−1(n).
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To search for k, do the following:

yk = x

yi = x(ei)(n)

ed ≡ 1(v)

v = lcm(p− 1, q − 1) = λ(n)

xv+1 ≡ x(n).

The minimal k such that yk = x is k0 = ordZ∗v(e) = ordZ∗
λ(n)

(e), this means k0|λ(λ(n)). Look

for p, q such that λ(λ(n)) is large. It can be shown that if p and q are such that p−1
2 , p−3

4 ,
q−1

2 , q−3
4 are primes tho, then:

λ(pq) = lcm(p− 1, q − 1) = 2 · p− 1

2

q − 1

2
=

(p− 1)(q − 1)

2

λ (λ(pq)) = lcm

(
λ(2), λ

(
p− 1

2

)
, λ

(
q − 1

2

))
=

(p− 3)(q − 3)

8
.

From which it follows that λ(λ(pq)) is of the same order of n. Which implies Θ(n) ∼ n
8 .
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Chapter 4

Polynomial over Finite Fields

4.1 Rings

Definition 4.1. A structure (R,+, ·) is called a ring if:
• (R,+) is an Abelian group, with neutral element 0.
• (R, ·) is a semigroup, where only associativity holds.
• The distributive laws hold: ∀a, b, c ∈ R :

a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c.

Definition 4.2. An integral domain is a commutative ring, with a 1-element (the neutral
element) and no zero divisors: if a · b = 0 then a = 0 or b = 0.

Definition 4.3. An Euclidean ring is an integral domain with n : R\{0} → N, an Euclidean
function such that, ∀a, b ∈ R, b 6= 0 : ∃q, r ∈ R :

a = b · q + r

n(r) < n(b) or r = 0

n(a) ≤ n(ab).

Notice that there are rings on which such a function cannot be defined.

Example 4.1. Some valid functions n in the respective fields are:

n(x) = |x| x ∈ Z
n(p(x)) = deg(p(x)) x ∈ K[x]

Definition 4.4. Assume there is an integral domain (R,+, ·) such that t|a⇔ c : a = t·c = c·t.
Define the greatest common divisor (gcd) as:

d = gcd(a, b) if d|a ∧ d|b
t|a ∧ t|b⇒ t|d.

Remember: in Z: d = gcd(a, b)⇒ −d = gcd(a, b).
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Definition 4.5. Let R be an integral domain and suppose a, b ∈ R. Then a and b are called
associated, denoted by a ∼ b if and only if, there exists a unit r ∈ R∗, such that a = r · b.

Recall the set (group) of units: R∗ = {x ∈ R | ∃x−1 : x · x−1 = 1}. Notice that (R∗, ·) is a
group, since:

• There is a neutral element: 1−1 = 1 which implies: 1 ∈ R∗.
• For every element there is an inverse: x ∈ R∗ implies: x−1 ∈ R∗.

Theorem 4.1. Let R be an Euclidean ring, with a, b ∈ R. Then:

a|b⇒ n(a) ≤ n(b).

Proof. There exists a c such that: b = ac with n(a) ≤ n(ac) = n(b).

Corollary 4.1. Given two gcd’s of a and b: d and d′ then n(d) = n(d′).

Proof. d|d′ and d′|d.

Remark: Suppose x = a · b and a, b /∈ R∗ ∪ {0} then n(a) < n(x), n(b) < n(x), this follows
by symmetry.

Remark: In general, for integral domains it holds:

d = gcd(a, b), d′ = gcd(a, b)⇒ d ∼ d′.

It is known that d′|d and d|d′, this implies: d = c1 ·d′ and d′ = c2 ·d. Then: d = c1 ·c2 ·d which
means that d(1 − c1 · c2) = 0 from which it follows that c1 · c2 = 1. Therefore: c1, c2 ∈ R∗,
they are units.

4.1.1 Generalization of prime numbers

Definition 4.6. Let R be an integral domain and let a ∈ R\({0} ∪R∗), i.e. @a−1, then a is
irreducible if and only if a = b · c always implies that either b ∈ R∗ or c ∈ R∗.

For Z it holds that Z∗ = {−1, 1} and p = p · 1 = (−p) · (−1).

The element a is called a prime element if and only if a|b · c implies that a|b or a|c. In
general these are two different concepts.

Example 4.2. Let R = Z, then x ∈ R is irreducible if and only if x ∈ P or −x ∈ P if and
only if x is a prime element.

Theorem 4.2.

1. Every prime element is irreducible.
2. In Euclidean rings, the converse is true as well.

Proof.
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1. Suppose a is a prime element and a = b · c, this implies a|b or a|c. To show that b or c
is a unit. Assume that a|b then a|b and b|a implies that a = b · c and b = a · c = b · c · c.
Now use the distributive laws:

b(1− c · c) = 0⇒ c · c = 1.

From which it follows that c, c ∈ R∗ hence a ∼ b and it follows that a is irreducible.
Since a is irreducible it follows that b ∈ R∗ (a ∼ c) or c ∈ R∗ (a ∼ b).

2. Suppose a is irreducible, a|b · c and a - b. Let d = gcd(a, b) this means: a = d · c1 and
b = d · c2. Since a is irreducible it has to hold that either d or c1 is a unit. This gives
two options:
• c1 ∈ R∗ then it follows that ∃c−1

1 for which it holds that d = a · c−1
1 but then

b = a · c−1
1 · c2 which suggests that a|b, but that is a contradiction!

• Let c1 /∈ R∗ then it has to hold that d ∈ R∗. Suppose, without loss of generality,
that d = 1. Since R is an Euclidean ring, it follows that ∃x, y ∈ R such that
1 = a · x+ b · y. Multiplying by c gives:

c = a · c · x+ b · c · y = a · c · x+ a · y = a(c · x+ y)

From this it follows that a|c.
In the same way it is possible to prove that a|b if it is assumed that a - c.

Example 4.3. Let R = Z[i
√

5] = {a+b·i·
√

5 | a, b ∈ Z} ⊆ C, where i =
√
−1. Is R = Z[i

√
5]

an Euclidean ring?

Notice that (R,+, ·) ≤ (C,+, ·) where ≤ denotes the subring relation. Since R is an Abelian
group, multiplication is defined as follows:

(a+ bi
√

5)(c+ di
√

5) = ac− 5bd︸ ︷︷ ︸
∈Z

+ (ad+ bc)︸ ︷︷ ︸
∈Z

i
√

5 ∈ Z[i
√

5].

The ring is closed with respect to multiplication. There is also a neutral element:

1 + 0 · i
√

5 ∈ R.

There is however no unique decomposition in R, take for example the integer 6:

6 = 2 · 3 =(1 + i
√

5)(1− i
√

5)

2|6 ∧ 2 - (1 + i
√

5) : 1 + i
√

5 = 2 · c = 2 · (a+ bi
√

5)

2a = 1 ∧ 2b = 1

a /∈ Z.

In the same way 2 - (1− i
√

5). However 2|(1 + i
√

5)(1− i
√

5), which implies that 2 is not a
prime element of R. This means:

2 = (a+ bi
√

5)︸ ︷︷ ︸
r

(c+ di
√

5)︸ ︷︷ ︸
s

⇒ 2

a+ bi
√

5
· a− bi

√
5

a− bi
√

5
= c+ di

√
5 =

2a

a2 + 5b2︸ ︷︷ ︸
∈Z

−i
√

5
2b

a2 + 5b2︸ ︷︷ ︸
∈Z

.
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But a2 + 5b2 > 4b2 > 2|b|, except if b = 0. Which implies that d /∈ Z except if b = 0. Because,
if b = 0 then:

c =
2a

a2
=

2

a
⇒ a ∈ {±1,±2}.

And hence r = ±1. Which implies r ∈ R∗ or r = ±2 and furthermore implies s ∈ R∗. But
then 2 is irreducible, which means that Z[i

√
5] is not an Euclidean ring.

Example 4.4. Let K be a field, then (K,+) is an Abelian group, (K\{0}, ·) also is an Abelian
group and the distributive law a · (b + c) = a · b + a · c apply: this means ∀x ∈ K : 0 · x = 0,
then K[x] is an Euclidean ring.

Recall that n(p(x)) = deg(p(x)) and deg(p(x)) ≤ deg(p(x) · q(x)), this implies that the
prime elements are the irreducible elements, irreducible polynomials: a(x) = b(x) · c(x), with
deg(b(x)) = 0 or deg(c(x)) = 0. With as a side remark:

r(x) ∈ K[x]∗, 1 = 1 · x0 + 0 · x1 + . . .

r(x) ∈ K[x]∗ ⇔ r(x) 6= 0,deg(r(x)) = 0.

In C[x] it holds that deg(p(x)) = n which implies that ∃n not necessarily different zeros
a1, a2, . . . , an and p(x) = (x − a1)(x − a2) . . . (x − an) which is a fundamental theorem of
algebra. It follows that p(x) is irreducible if and only if p(x) = ax+ b is a linear polynomial.

In R[x]: x4 = (x2 +
√

2+1)(x2−
√

2+1) it can be shown that without zeros the only irreducible
polynomials are: ax+ b and ax2 + bx+ c. If p(a) = 0 then p(a) = 0. Which implies that:

(x− a)(x− a) = x2 − a+ a︸ ︷︷ ︸
Re(a)

x+ aa︸︷︷︸
|a|2

.

A factor like this always exists in a polynomial.

Definition 4.7. Let R be an integral domain, such that ∀a ∈ R\({0} ∪ R∗) there exists an
unique representation a = εp1p2 . . . pk, where ε ∈ R∗ and p1, . . . , pk are prime elements. Here
uniqueness means that if:

εp1 . . . pk = ηq1 . . . qk

then k = l and there is a permutation pi such that pi ∼ qπ(i) ∀i = 1, . . . , k where pi = εiqπ(i)

and εi ∈ R∗. For example:

15 = 1 · 3 · 5 = (−1) · (−5) · 3
3 ∼ 3, 5 ∼ (−5) : 5 = (−1)︸︷︷︸

∈Z∗

(−5).

Then R is called a factorial ring (Also called a ZPE-Ring).

Theorem 4.3. Every Euclidean ring is a factorial ring.

Proof. To prove this theorem existence and uniqueness have to be proven.

• Existence: There are two cases: a is irreducible, or it is not irreducible.
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1. Suppose that a is irreducible, this is the case if and only if a is a prime element.
From which it follows that a = 1 · a. This is a representation as desired.

2. Now suppose that a = bc, with b, c /∈ R∗, then n(b) < n(a) and n(c) < n(a).
Suppose that a does not have a representation of the form a = εp1 . . . pk and that
a(n) is minimal. This suggests that b and c have a prime representation as follows:

b = ε1p1 . . . pk

c = ε2q1 . . . ql.

But then a = ε1ε2p1 . . . pkq1 . . . ql with ε1ε2 ∈ R∗. This is a contradiction.
With this the existence if proven.
• Uniqueness: Suppose a = εp1 . . . pk = ηq1 . . . ql for k ≥ 2. This suggests that
p1|ηq1 . . . ql and since p1 /∈ R∗ it follows that p1 - η and hence p1|q1 . . . ql. This means:
∃i : p1|qi.
Without loss of generality suppose i = 1, then p1|q1, from which it follows that p1 ∼ q1

and p1 = ε1q1, with ε1 ∈ R∗. Then it follows that:

εp2 . . . pk = ηε1q2 . . . ql.

Where ηε1 ∈ R∗. Now, without loss of generality, suppose that p2|q2. If l > k at the
end it is found that ε = ε̃qk+1 . . . ql but this is a contradiction: l = k follows from this.
Which proves the uniqueness.

4.1.2 Ideals in Rings

Recall: (G, ∗) is a group, let U be a subgroup: U ≤ G: a ∗ U = {a ∗ x | x ∈ U}. These sets
form a partition of the group. If a 6= a′ then either a ∗ U = a′ ∗ I or (a ∗ U) ∩ (a′ ∗ U) = ∅.
Define the left cosets to be the elements a ∗ U , with a ∈ G and the right cosets to be the
elements U ∗ a, with also a ∈ G.

If U ≤ G, such that ∀a ∈ G : a ∗ U = U ∗ a, then U is called a normal subgroup, denoted
by U EG. If U EG then:

(a ∗ U) ∗ (b ∗ U) = (a ∗ b) ∗ U
(a ∗ U) = (a′ ∗ U) ∧ (b ∗ U) = (b′ ∗ U)⇒ (a′ ∗ b′) ∗ U.

The group (G/U, ∗) is called the quotient group. Where G/U , read as ”G modulo U”, is
defined as: G/U = {a ∗ U | a ∈ G}.

Definition 4.8. Let R and S be rings, with a mapping ϕ : R→ S. The mapping ϕ is called
a (ring) homomorphism if ϕ is compatible with the ring operations:

ϕ(a+ b) = ϕ(a) + ϕ(b)

ϕ(a · b) = ϕ(a) · ϕ(b).

The kernel of ϕ is defined as: kernϕ = {x ∈ R | ϕ(x) = 0}.

Theorem 4.4.

(kernϕ,+)E (R,+) and a · kernϕ ⊆ kernϕ
(kernϕ) · a ⊆ ϕ.
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Proof. This theorem can easily be proven:

x ∈ kernϕ⇒ ϕ(ax) = ϕ(a) · ϕ(x)︸︷︷︸
=0

= 0

⇒ ax ∈ kernϕ, xa ∈ kernϕ.

Definition 4.9. Let R be a ring, I ⊆ R is an ideal if:

1. (I,+) is a (normal) subgroup of (R,+) (it is then also an Abelian group).
2. a · I ⊆ I, I · a ⊆ I.

Since every subgroup of an Abelian group is a normal subgroup, the (normal) is not necessary.

Remark: Let ϕ : R→ S be a homomorphism, then kernϕ is an ideal of R.

Theorem 4.5. Let R be a ring and I ⊆ R an ideal. Define + and · on R/I = (R,+)/(I,+),
R modulo I, as follows:

(a+ I) + (b+ I) := (a+ b) + I

(a+ I) · (b+ I) := (a · b) + I.

With this definition (R/I,+, ·) is a ring, called the quotient ring R modulo I.

Example 4.5. Let R = Z, I = n ∗ Z = {n · z | z ∈ Z}, is this set an ideal?

Define U ⊆ G as follows:

U ⊆ G⇒1) U 6= ∅
2) a, b ∈ U ⇒ a ∗ b−1 ∈ U.

It has to be verified. If x, y ∈ n ·Z, such that x = k · n and y = l · n then x− y = (k− l) · n ∈
n · Z. Now n · Z E Z, what are the cosets? Take a ∈ Z and the group operation +. Then
a+ n · Z = {a+ nz | z ∈ Z}. And furthermore:

a+ nZ = a in Zn
a · n · Z ⊆ n · Z.

From this it follows that it is indeed an ideal. Look at the quotient: Z/n ·Z = Zn here it holds
that:

a+ b = a+ b

a · b = a · b.

Furthermore: a+ b ≡ a+ b(n) and a · b ≡ a · b(n).

Remark: Let R be a ring, then there are two trivial ideals: {0} and R.
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Definition 4.10. Let R be a ring and I ⊆ R an ideal. Define an equivalence relation ∼ on
R, i.e. ∼⊆ R×R. The relation ∼ is compatible with + and · if:

a ∼ b ∧ c ∼ d⇒ a+ c ∼ b+ d

⇒ a · c ∼ b · d.

An equivalence relation ∼ that is compatible with + and · is called a congruence relation,
e.g. ≡ mod n. In particular a ∼ b if and only if a + I = b + I which suggests that ∼ is a
congruence relation.

Theorem 4.6. Let R be a ring with a 1 element, let I ⊆ R be an ideal and ε ∈ R∗ ∩ I. Then
R = I.

Proof. Since ε ∈ I ∩ R∗ it follows that ∃ε−1. By definition of an ideal it is known that
∀r ∈ R : r · I ⊆ I. In particular: ε−1 · I ⊆ I, from which it follows that 1 ∈ I.

r · I ⊆ I implies that r · 1 = r ∈ I from which it follows that R ⊆ I. Since also I ⊆ R it has
to be that R = I.

Corollary 4.2. A field K has only the trivial ideals {0} and K.

Remark: Let R be a ring, let (Ij)j∈J denote the family of ideals. Then
⋂
j∈J Ij is an ideal

as well.

Definition 4.11. Let R be a ring and M ⊆ R, such that:

(M) :=
⋂

I⊆R,I ideal,M⊆I
I.

This is the ideal generated by M . It is the smallest ideal, which contains M , with respect
to ⊆.

Definition 4.12. An ideal generated by only one element a (−(a)) is called a principal
ideal.

Theorem 4.7. Let R be an Euclidean ring. Then every ideal is a principal ideal, i.e. R is a
principal ideal domain.

Remark: Euclidean ring ( principal ideal domain ( factorial ring ( integral domain.

Example 4.6. Let R = Z and (n) = n ·Z. If M = {m1, . . . ,mk} ⊆ Z, what is (M), the ideal
generated by M?

Start with two elements, m1 and m2, then a·m1+b·m2 ∈ (M), which implies that gcd(m1,m2)·
Z ⊆ (M). Since M ⊆ gcd(m1,m2) · Z, it follows that (M) = gcd(m1,m2) · Z.

Example 4.7. x ∈ R∗ ⇒ (x) = R

Example 4.8. The rational numbers Q are a subring (and even a subfield) of R it is however
not an ideal of R.
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4.2 Fields

Recall the properties of a field:

• (K,+) is an Abelian group, with neutral element 0.
• (K\{0}, ·) is an Abelian group, with neutral element 1.
• ∀a, b, c ∈ K: a · (a+ b) = a · b+ a · c and (a+ b) · c = a · c+ b · c.
• 0 · x = (0 + 0) · x = 0 · x+ 0 · x⇒ 0|0 · x and x · 0 = 0.

If (Ki)i∈I is a family of fields, then
⋂
i∈I Ki is a subfield.

Definition 4.13.
⋂

K′ subfield of K

K ′ is called the prime field of K, denoted by P (K). {0} is

not a field, because every field has at least two elements and in every field 0 ≤ 1 holds.

Definition 4.14. ord(K,+)(1) is called the characteristic of K, denoted by char(K), where
ordG(a) = min{i > 0 | ai = e}. Notice:

1, 1 + 1, 1 + 1 + 1, . . . , 1 + 1 + 1 + . . .+ 1︸ ︷︷ ︸
char(K)

= 0 if it is finite.

If ord(K,+)(1) =∞ then char(K) = 0.

Example 4.9.

(R,+, ·) : char(R) = 0

char(Q) = 0

char(C) = 0

(Z,+, ·0 : char(Z2) = 2

char(Zp) = p if p ∈ P.

Properties of P (K): Two cases have to be distinguished:

• Case 1: char(K) = 0. Let K ′ denote a subfield of K, then ∀K ′: 0, 1 ∈ K ′ implies
0, 1 ∈ P (K). From there it follows:

1, 1 + 1, 1 + 1 + 1, . . . = k − 1, k ∈ N
− 1, (−1) + (−1), . . . = k(−1) = −(k · 1) = (−k) · 1
k · 1, (−k) · 1, (k · 1) · (l · 1)−1 ∈ P (K), k ∈ Z, l ∈ N\{0}
{(k · 1)(l·)−1 | k, l ∈ Z, l > 0} ∼= Q
P (K) ∼= Q⇒ |K| =∞

• Case 2: char(K) 6= 0.

Lemma 4.1. Let p = ord(K,+)(1) <∞ then:

1. ∀a ∈ K\{0} : ord(K,+)(a) = p.
2. p ∈ P.

Proof.
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1. Notice that

p · 1 = 1 + 1 + 1 + . . .+ 1︸ ︷︷ ︸
p times

= 0

p · a = a+ a+ a+ . . .+ a︸ ︷︷ ︸
p times

= 0

a · (1 + 1 + 1 + . . .+ 1)︸ ︷︷ ︸
=0

= a · 0 = 0

ord(a) ≤ p.

Assume that ord(a) = m then:

(m · a) · a−1 =

−1︷ ︸︸ ︷
a · a−1 +

−1︷ ︸︸ ︷
a · a−1 + . . .+

−1︷ ︸︸ ︷
a · a−1︸ ︷︷ ︸

m times

m · 1.

This implies that m ≥ p, but also m ≤ p, hence it follows that m = p and hence
ord(a) = p.

2. Assume p = a · b, then:

0 = p · 1 = 1 + 1 + . . .+ 1︸ ︷︷ ︸
a times

+a · 1 + a · 1 + . . .+ a · 1

︸ ︷︷ ︸
b times

.

From there it follows that: b · (a ·1) = a ·1+a ·1+ . . .+a ·1 and hence: ord(a ·1) = b < p
However, that is a contradiction!

A consequence of the lemma is that char(K) = P implies that P (K) ∼= Zp.

Corollary 4.3. Let K be a field, the characteristic cannot be 0. Then ∃p ∈ P such that for
n ∈ N+: |K| = pn. (There are no fields with 6 or 10 elements).

Proof. That P (K) is finite means that ∃p ∈ P such that |P (K)| = p, in particular: P (K) ∼= Z + p.
The following can be done. Since P (K) ⊆ K, regard K as a vector space over P (K), where
the scalars are taken from P (K). Since it is a finite vector space, dim(K) = n, it follows that
there exists a basis:

{a1, a2, . . . , an} ⊆ K ⇒ dim 〈K,P (K)〉 = n.

This implies that K can be defined as:

K =

{
n∑
i=1

λiai

∣∣∣∣∣ λi ∈ P (K), i = 1, 2, . . . , n

}

Where P (K) has p elements, from there it follows that |K| = pn.

Remark: Given p and n it follows that:

1. ∃K : |K| = pn.
2. Let K and K ′ be fields with |K| = |K ′| = pn, then K ∼= K ′.
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Let K be a field, then K[x] is an Euclidean ring and every ideal of K is a principal ideal.
Furthermore K[x] is a factorial ring, there is a unique factorization into primes.

Suppose P (x) = xn + an−1x
n−1 + . . . + a1x + a0 with a0, a1, . . . , an−1 ∈ K. Then it

can be said that: I(P (X)) is an ideal in K[x], from which it follows that P (x) ∈ I and
Q(x)P (x) ∈ Q(x) · I ⊆ I.

Now look at the set {R(x) | ∃Q(x) ∈ K[x] : P (x)Q(x) = R(x)}, this set is already an ideal
and it is also a subset of I and it is the smallest ideal of I, which means that it is equal to I.

Take a look at the ring K[x]/P (x) which is defined as the ideal K[x] modulo the ideal
generated by P (x). Then it holds that, for ≡ a congruence relation:

A(x) ≡ B(x) mod P (x)⇔ P (x)|A(x)−B(x)

A(x) ≡ B(x) ∧ C(x) ≡ D(x) mod P (x)

⇒ A(x) + C(x) ≡ B(x) +D(x) mod P (x)

⇒ A(x) · C(x) ≡ B(x) ·D(x) mod P (x).

Notice that ≡ is compatible with the ring operations. This means that K[x]/P (x) is a quotient
ring. What are the residue classes? Notice that P (x) ≡ 0 mod P (x), this means:

xn ≡ −an−1x
n−1 − an−2x

n−2 − . . .− a1x− a0 mod P (x).

Where each polynomial Q(x) fulfills: Q(x) ≡ Q̃(x) mod P (x) and deg Q̃(x) < n.

Example 4.10. Let R[x]/x2 − 1 and look at the following polynomial:

x4 − 3x3 + 2x2 − 5x+ 1 ≡ x2 − 3x+ 2− 5x+ 1

≡ x2 − 8x+ 3

≡ −8x+ 4.

With the residue classes:

R[x]/x2 − 1 = {ax+ b | a, b ∈ R}

There are zero-divisors: x− 1 and x+ 1 from which it follows that R[x]/x2 − 1 is not an
integral domain.

In general: K[x]/P (x) = {
∑n−1

i=0 bixi | bi ∈ K}. If P (x) = Q(x)R(x), where deg(Q(x)) ≥ 1
and deg(R(x)) ≥ 1, it follows that K[x]/P (x) is not an integral domain.

Theorem 4.8. Let K be a field and P (x) ∈ K[x]. Then K[x]/P (x) is a field if and only if
P (x) is irreducible.

Proof.

” ⇒ ” : Assume that K[x]/P (x) is a field. This means that the polynomial P (x) must be
irreducible, otherwise K[x]/P (x) would have zero-divisors.

” ⇐ ” : Assume that P (x) is irreducible, clearly K[x]/P (x) is a commutative ring, with
a 1-element: 1 = 1 + (P (x)). To show that every non-zero element has an inverse. Let
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A(x) 6≡ 0 mod P (x). Without loss of generality, assume that deg(A(x)) < deg(P (x)) then it
follows that gcd(A(x), P (x)) = 1.

Using the Euclidean algorithm, it is possible to find B(x) and C(x) such that:

A(x)B(x) + P (x)C(x) = 1.

Take 1 ≡ A(x)B(x) mod P (x). From this it follows that B(x) = (A(x))−1 in K[x]/P (x),
but A(x) 6≡ 0 mod P (x). Now (K[x]/P (x))∗ = K[x]/P (x)\{x} where (K[x]/P (x))∗ is the
set of units. This implies that K[x]/P (x) is a field.

Remarks: If P (x) is irreducible and deg(P ) > 2, then P (x) has no zeros, since otherwise,
say P (a) = 0, then x− a|P (x), which would be a contradiction.

K is a subfield of K[x]/P (x) and K=̂ constant polynomials.

4.2.1 Algebraic extensions of a field K

Let P (x) be irreducible over K, this means that P (x) = 0 has no solutions in K. Suppose
P (a) = 0, then a /∈ K, but a ∈ L ) K, P (x) is monic: i.e.:

P (x) = xn + an−1x
n−1 + . . .+ a1x+ a0.

Theorem 4.9. Let K and L be fields, such that K ⊆ L and let a ∈ L be a zero of some
polynomial in K[x]. Now, if a /∈ K then ∃! monic and irreducible polynomial in K[x] having
a as a zero.

Proof. Again existence and uniqueness have to be proven. The existence follows trivially,
since K[x] is a factorial ring and an integral domain.

For the proof of uniqueness assume that there are two polynomials P1(x) and P2(x) which
are monic and irreducible, such that P1(x) 6= P2(x) and P1(a) = P2(a) = 0, then d(x) =
gcd(P1(x), P2(x)) = A(x)P1(x)+B(x)P2(x) which implies that d(a) = 0, but d(x) = 1, which
gives a contradiction. From the contradiction it follows that P (x) is unique and has a minimal
degree among all Q(x), with Q(a) = 0.

As a consequence to the above proof the following can be shown. Let

P (x) = xn +

n−1∑
i=0

pix
i

Take the second part (remainder term) and plug in a for x. This produces the term
∑n−1

i=0 pia
i 6= 0,

with degree smaller than deg(P (x)). By definition we know that: an +
∑n−1

i=0 pia
i = 0. This

corresponds to
∑n−1

i=0 cix
i in K[x]/P (x).

It follows that xn +
∑n−1

i=0 pix
i = 0. Which suggests an isomorphism, with:

L =

{
n−1∑
i=0

cia
i

∣∣∣∣∣ ci ∈ K
}

This is the smallest field with a ∈ L and moreover: L ∼= K[x]/P (x).
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Definition 4.15. Let P (x) be monic and irreducible over K, with degree deg(P ) = n and
P (a) = 0. Define L = {

∑n−1
i=0 cia

i | ci ∈ K}. Then a is algebraic over K, P (x) is a minimal
polynomial of a over K and L is an algebraic extension of K. Now L = K(a), which
means that ”K adjoined a”.

Example 4.11. Let C = R(i) ∼= R[x]/x2 + 1 = {a+ bx | a, b ∈ R}, some calculations that
can be carried out here are:

(a+ bx)(c+ dx) ≡ ac+ (ad+ bc)x+ bd x2︸︷︷︸
≡−1

≡ ac− bd+ (ad+ bc)x

(a+ bi)(c+ di) ≡ ac+ (ad+ bc)i+ bdi2

≡ ac− bd+ (ad+ bc)i

Notice: this is the same as the complex numbers!

Example 4.12. Take a look at Q[x]/x2 − 2 ∼= Q(
√

2) = {a+ b
√

2 | a, b ∈ Q}. It follows that
x2 − 2 = 0, from which it follows that x = ±

√
2 and hence

√
2 is a zero of the irreducible

polynomial x2 − 2 which implies:
√

2 is irrational and algebraic.

However, π is a non algebraic number, it is part of the transcendent numbers: @P (x) ∈ Q[x]
such that P (π) = 0. Other examples of transcendent numbers are ln(2) and e. Notice that
n
√
a is algebraic, since xn − a is a possible polynomial.

Example 4.13. Now look at K[x]/ax+b ∼= K, where a, b ∈ K and a 6= 0. Then x = a−1b. It
is also possible to ajoin the square roots of the primes, this gives a chain of field, for example
Q(
√

2) and Q(
√

2,
√

3).

Some remarks:

1. A maximal field has only irreducible polynomials of degree 1. This means, there is no
proper algebraic extension. Such fields are called algebraically closed. An example of
such a field is C.

2. Let K be a field, then there exists a field L, where K ⊆ L and L is algebraically closed.
Every field has an algebraically closure.

3. Suppose |K| = p ∼= Zp and p ∈ P then for every n ∈ N+, there is an irreducible
polynomial P (x) ∈ K[x]. Therefore:

|K[x]/P (x)| =

∣∣∣∣∣∣

n−1∑
i=1

cixi

∣∣∣∣∣∣ ci ∈ K

∣∣∣∣∣∣ = pn.

A field with exactly pn elements is Zp[x]/P (x), with P (x) irreducible and of degree n,
such a field is of order pn and is called a Galois field denoted by GF (pn).

Proposition 4.1. Let M(x) be the minimal polynomial of a ∈ K and f(x) ∈ K[x] such that
f(a) = 0. Then M(x)|f(x). Obviously: if g(x) = M(x) · h(x) then g(a) = 0.

Proof. Let f(x) = M(x)p(x) + q(x), with deg(q(x)) < deg(M(x)). It is known that f(a) = 0
and also that g(a) = 0 + q(a). From there it follows that q(a), which can only be the case if
q(x) = 0.
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4.2.2 Finite Fields

Let K be a finite field. Then char(K) = p, for p ∈ P,P (K) ∼= Zp and |K| = pn, |K∗| =
|K\{0}| = pn − 1. Let a ∈ K∗, with ordK∗(a) = r is maximal, then r|pn − 1 and for y ∈ K∗,
ordK∗(y)|ordK∗(a) = r.

∀y ∈ K∗ : yr = 1, then all y ∈ K∗ are zeros of xr − 1. In a field the number of zeros of
a polynomial P (x) is bounded by the degree of P (x), which is in this case r. This means
the number of elements in K∗ has to be bounded by r: pn − 1 ≤ r and from here it can be
concluded that pn − 1 = r.

Theorem 4.10. Let K be a finite field, then (K∗, ·) is an acyclic group (this means: it has
a generator).

Corollary 4.4. ∀a ∈ K: ap
n

= a, for the polynomial xp
n − x, which has every element of

the field as a zero. It holds that xp
n − x =

∏
a∈K

(x− a).

Definition 4.16. A generator of K∗ is called a primitive element of K, its minimal
polynomial over Zp is called a primitive polynomial.

Theorem 4.11. Let q(x) ∈ Zp[x] be a monic, irreducible polynomial of degree n. Then q(x)
is a primitive polynomial of K = GF (pn) if and only if q(x)|xpn−1 − 1 and ∀k : 1 ≤ k ≤
pn − 1 : q(x) - xk − 1.

Proof.
” ⇒ ” : Suppose q(x) is a minimal polynomial of a, where 〈a〉 = K∗, with a a primitive
element. Since ap

n−1 − 1 = 0 it follows that q(x)|xpn−1 − 1. Since k < pn − 1 it follows that
ak − 1 6= 0, because ord(K∗,·)(a) = |K∗| = pn− 1. But then q(x) - xk − 1, which proofs the ⇒
side.

” ⇐ ” : Suppose q(a) =, then a ∈ L ) Zp which implies: ord(a) in Zp(a). Certainly:
ap

n−1 − 1 = 0 and ord(a) = k < pn − 1 : ak − 1 = 0, but xk − 1 must then be a multiple of
g(x) which is a contradiction.

It has to be shown that q(x) is a minimal polynomial of primitive element a. Then q(x) =
(x − a)(x − ap)(x − ap2) . . . (x − apn−1

), which suggests that there are n zeros. How many
primitive elements are there? |K| = pn and let l denote the number of primitive elements.
Then 〈a〉 = K∗ implies that ord(a) = pn − 1. This means:

ord(ak) =
pn−1

gcd(pn−1, k)
= pn−1 ⇔ gcd(pn − 1, k) = 1.

Let K∗ = {a0, a1, . . . , ap
n−2}, which generates all the primitive elements. It follows that

if ak is a primitive element then l = ϕ(pn − 1). And if a is a primitive element then ap,
ap

2
,. . .,ap

n−1
are primitve elements as well. Any zero that generates K∗ is primitve. This

implies that n|ϕ(pn − 1) and the number of primitive polynomials is: 1
nϕ(pn − 1).

Lemma 4.2. Let a, b ∈ K, p = char(K), then (ab)p = apbp and (a+ b)p = ap + bp.
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Proof. It is known that:

p · 1 = 1 + 1 + . . .+ 1︸ ︷︷ ︸
p times

.p · a = a+ a+ . . .+ a︸ ︷︷ ︸
p times

.

By the binomium from Newton it follows that: (a+b)p =

p∑
k=0

(
p

k

)
akbp−k. Where, by definition

as well,
(
p
k

)
= (p−1)!

p·k!·(p−k)! . However: (p−1)!
k!(p−k)! ∈ Z which suggest that

p∑
k=0

(p− 1)!

p · k! · (p− k)!
= 0.

If k = 0 or k = p, it is defined that
(
p
k

)
= 1. From this it follows that:

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k =

(
p

0

)
a0bp +

(
p

p

)
apb0 = bp + ap = ap + bp.

Properties of homomorphism: Let ϕ : K → K, where x 7→ xp (a field homomorphism).
Then kernϕ is an ideal of K, but K is a field, which means that {0} and K are the only
ideals. Take a look at the following:

ϕ(1) = 1p 6= 0⇒ 1 /∈ kernϕ⇒ kernϕ{0}.

From this it follows that ϕ is injective, it is bijective and ϕ is an automorphism.

Theorem 4.12. Let K = GF (pn) then ϕ : K → K and x 7→ xp is an automorphism.

Remark: The following functions are automorphisms:

ϕ,ϕ ◦ ϕ,ϕ ◦ ϕ ◦ ϕ, . . .
ϕ, ϕ2, . . . , ϕn−1, ϕn = idK .

Where the second row gives all automorphisms.

Definition 4.17. ({ψ : K → K | ϕ automorphism}, ◦) = 〈ψ〉 is a cyclic group and it is the
automorphism group of K: Aut(K). The following properties hold for such a group:

∀x, y ∈ K : ψ(x+ y)ψ(x) + ψ(y)

ψ(xy) = ψ(x)ψ(y).

Consequence: K = Zp(a) ∼= GF (pn) if the minimal polynomail of a, q(x) ∈ Zp[x] has degree
n. By definitions, q(a) = 0, ψ ∈ Aut(K) and b = ψ(a), this implies that q(b) = q(ψ(a)) =
ψ(0) = 0. Notice ψ(a) ∈ {a, ap, . . . , apn−1}. Therefore: q(x) = (x− a)(x− ap) . . . (x− apn−1

).

4.3 Applications

4.3.1 Linear code

Definition 4.18. Let K = GF (q) and define f : Kk → Kn to be a linear (a homomorphsim
on the level of vector spaces), injective image of the whole set C = f(Kk), which is a subspace
of Kn (C ≤ Kn), with dim(C) = k, this is called a (n, k)-linear code.
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The elements of Kk are: x1, . . . , xk ∈ Kk and of Kn are: c1, c2, . . . , cn ∈ Kn, written as
words or messages. c denotes the word c.

Let c ∈ Kn, the Hamming weight of c is defined as:

w(c) = w(c1c2 . . . cn) = |{i | ci 6= 0}| .

The base of C is: c1, c2, . . . , ck. The generating matrix of C, G, is an k × n-matrix:

G =


c1

c2
...
ck

 .

A code C is called systematic if: v = v1v2 . . . vk, which implies that v·G = v1v2 . . . vkck+1 . . . cn.

Let f : Kk → Kn and x 7→ x ·G, then x ∈ Kk can be written as:

x = λ1 ∗ 100 . . . 0 + λ2 · 010 . . . 0 + . . .+ λk · 0 . . . 001.

This implies that 000 . . . 010 . . . 0 ∗G = cj. Furthermore:

x ·G =
k∑
i=1

λici ⇒ f(Kk) = [c1, c2, . . . , ck] = C.

Theorem 4.13. Every (n, k)-linear code has an equivalent (with respect to error detection
and correction) systematic (n, k)-linear code. For a systematic (n, k)-linear code the gener-
ating matrix has the form: G = (Ik×kAk×(n−k)). Then: xG = x1x2 . . . xkvk+1 . . . vn. With
d(v, w) = w(v − w) the Hamming distance.

Now look at the minimal Hamming distance: wmin. Let wmin(x), x ∈ C\{00 . . . 0}, then
wmin = d: up to d − 1 errors can be detected and up to d

2 − 1 errors can be corrected. Now
look at wmin(x), x ∈ C\{0}, with wmin = dmin = min d(x, y) : x, y ∈ C, which implies that
x− y ∈ C.

Now d(x, y) = w(x−y) implies that dmin ≥ wmin, x ∈ C implies: w(x = d(x, 0), where 0 ∈ C.
Then dmin ≤ wmin. And hence dmin = wmin.

Definition 4.19. The dual code C⊥ is defined as: C⊥ = {v ∈ Kn | uv = 0,∀u ∈ C}, the
dual code has a generating matrix as well, this is H and H is called a check matrix of C,
because:

G ∗HT =


c1

c2
...
ck

 · (hT1 hT2 . . . hTn−k
)

= 0k×(n−k).

Remark: c ∈ C ⇔ c ·HT = 0.

Let C be a system, then G = (Ik×kAk×(n−k)), which implies that H = (−AT I(n−k)×(n−k)).
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Definition 4.20. Let SH(v) = v ·HT be the syndrome of v. Now SH(v) = 0⇔ v ∈ C.

Theorem 4.14. Let C ≤ Kn be a (n, k)-linear code, with check matrix H and (C,+)E (Kn,+),
then u, v are in the same coset a+ C of Kn/C if and only if SH(u) = SH(v). Furthermore:
|Kn| = qn, |C| = qk and |Kn−k| = |Kn/C︸ ︷︷ ︸

coset

| = qn−k.

Proof. u+ C = v + C ⇔ u− v ∈ C ⇔ SH(u− v) = 0⇔ SH(u) = SH(v).

Example 4.14.

G =

(
1 0 1 1 0
0 1 1 0 1

)
H =

1 1 1 0 0
1 0 0 1 0
0 1 0 0 1


Code C = {00000, 10110, 01101, 11011}

Coset Syndrome

00000 + C = C 000
00001 + C = {00001, 10111, 01100, 11010} 001
00001 + C = {00010, 10100, 01111, 11001} 010
00001 + C = {00011, 10101, 01110, 11000} 011
00001 + C = {00100, 10010, 01001, 11111} 100
00001 + C = {01000, 11110, 00101, 10011} 101
00001 + C = {10000, 00110, 11101, 01011} 110
00001 + C = {01010, 11100, 00111, 10001} 111

s 000 001 010 011 100 101 110 111

w̃(s) 00000 00001 00010 00011 00100 01000 10000 01010

B B

4.3.2 Polynomial codes

Let K = GF (q) and let Kn−1[x] = {p(x) ∈ K[x] | deg(p(x)) ≤ n− 1} be a vector space over
K, with dim(Kn−1[x]) = n and Kn−1[x] ∼= Kn. Take g(x) ∈ K[x] such that deg(g(x)) = n−k.
Define the following injective, linear mapping F :

F : F (p(x)) = p(x) · g(x), p(x) ∈ Kk−1[x]

F : Kk−1[x]→ Kn−1[x].

It follows that C = {p(x)g(x) | p(x) ∈ Kk−1[x]} where of course: C ≤ Kn−1[x] and
dim(C) = K. Define the span to be:

C = [g(x), x · g(x), . . . , xk−1 · g(x)].
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Where g(x) is called the generating polynomial of C. Define the check polynomial as
follows: c(x) · h(x)=̂0 and f(x) : K[x]/f(x):

c(x) ∈ C ⇔ c(x) · h(x) ≡ 0 mod f(x)

⇔ c(x) = p(x)g(x)

⇔ c(x)h(x) = p(x)g(x)h(x) ≡ 0 mod f(x), ∀p(x) ∈ Kk−1[x].

Where deg(g(x)) = n − k, deg(f(x)) = n and deg(h(x)) = k, it should be the case that
g(x)h(x) ≡ 0 mod f(x), which implies that f(x) = λg(x)h(x). If f, g and h are monic, then
f(x) = g(x)h(x) and f(x) is a principal polynomial of C. Furthermore:

v(x)h(x) ≡ 0 mod f(x)⇔ f(x) = g(x)h(x)|v(x)h(x)⇔ g(x)|v(x)⇔ v(x) ∈ C.

Syndromes. Take a look at the following equivalences:

v(x) + C = w(x) + C ⇔ v(x)− w(x) ∈ C
⇔ (v(x)− w(x))h(x) ≡ 0 mod f(x)

⇔ v(x)h(x) ≡ w(x)h(x) mod f(x)

⇔ v(x) ≡ w(x) mod g(x).

With these equivalences a syndrome can be defined as: S(v(x)) = v(x) mod g(x), possible
syndromes are therefore all the polynomials p(x) ∈ Kn−k−1[x].

Definition 4.21. A code C is cyclic if c = c1c2 . . . cn ∈ C and every cyclic permutation is
also in C. This means:

c = c1c2 . . . cn ∈ C ⇒ cnc1c2 . . . cn−1 ∈ C
⇔ c1 + c2x+ . . .+ cnx

n−1 ∈ C ⇒ cn + c1x+ . . .+ cn−1x
n−1 ∈ C

This is nothing else than x · c(x) mod (xn − 1).

Theorem 4.15. A (n, k)-polynomial code is cyclic if and only if g(x)|xn − 1.

Proof.
” ⇐ ” : f(x) = xn − 1 can be chosen as principal polynomial of C. From there this side of
the proof follows immediately.

”⇒ ” : Let c(x) = c0 + c1x+ . . .+ cn01x
n−1 ∈ C and let π be a cyclic permutation, such that:

π(c(x)) = cn−1 + c0x+ . . .+ cn−2x
n−1 ∈ C. However: π(c(x)) = xc(x)− cn−1(xn− 1) implies

that πc(x) = xc(x) in K[x]/xn − 1 and then πic(x) = xic(x) in K[x]/xn − 1.

If g(x) ∈ C, then πig(x) ∈ C which implies that xig(x) mod xn − 1 ∈ C. In particular:

(xk g(x)︸︷︷︸
deg(g(x))=n−k

mod xn − 1) = xkg(x)− (xn − 1) ∈ C

which implies that g(x)|xn − 1.
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4.3.3 BCH-codes

The BCH-codes are named after Bose, Chaudhuri and Hocquenghem. Take a, the n-th prim-
itive root of unity (an−1 = 0, | 〈a〉 | = n) in GF (q). Let A denote the set: A = {ai1 , . . . , aim},
with i1, . . . im ≤ n− 1 and let M(A) be the following m× n-matrix:

M(A) =


1 ai1 . . . a(n−1)i1

1 ai2 . . . a(n−1)i2

...
...

...
...

1 aim . . . a(n−1)im


If ij = i+ j− 1, then A = {ai, ai+1, . . . , ai+n−1}, where A is called gap-free, which means in
some way simple.

Theorem 4.16. Let a be a primitive n-th root of unity in GF (q) and let A = {ai, ai+1, . . . , ai+m−1}
with i+m− 1 < n be gap-free. Then any m columns of M(A) are linear independent.

Proof. Let j 6= k it follows that aj 6= ak. With this the following can be done:

det


aj1∗i aj2∗i . . . ajm∗i

aj1∗(i+1) aj2∗(i+1) . . . ajm∗(i+1)

...
...

. . .
...

aj1∗(i+m−1) aj2∗(i+m−1) . . . ajm∗(i+m−1)



=a(j1+j2+...jm)i ∗ det



1 1 . . . 1
aj1 aj2 . . . ajm

aj1∗2 aj2∗2 . . . ajm∗2

aj1∗3 aj2∗3 . . . ajm∗3

...
...

. . .
...

aj1∗(m−1) aj2∗(m−1) . . . ajm∗(m−1)


Vandermonde
6= 0

Remember: the determintante of a Vandermonde-matrix can easily caltulated:

det


1 1 . . . 1
t1 t2 . . . tm
t21 t22 . . . t2m
...

...
. . .

...

tm−1
1 tm−1

2 . . . tm−1
m

 =
∏

1≤i<j≤m
(tj − ti)

Which concludes the proof.

Theorem 4.17. Let C be a cyclic (n, k)-polynomial code over GF (q), with generating polyno-
mial g(x) and a an n-th primitive root of unity in GF (q). If there exists an b such that b ≥ 0
and there exists an δ, such that δ ≥ 2 and g(ai+b) = 0 for 0 ≤ i ≤ δ − 2, then wmin(C) ≥ δ.
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Proof. Suppose c = c0c1 . . . cn−1 ∈ C=̂c0 + c1x + . . . + cn−1x
n−1 = c(x) = g(x) · c̃(x). If

g(x0) = 0 then c(x0) = 0 and in particular: c(ai+b) = 0 for 0 ≤ i ≤ δ − 2. Let (∗) denote
c(ai+b) =

∑n−1
l=0 cla

l·(i+b).

Let A = {ab, ab+1, . . . , ab+δ−2} then c ·M(A)T is:

c ·M(A)T = (c0, c1, . . . , cn−1)


1 1 . . . 1
ab ab+1 . . . ab+δ−2

(a2)b (a2)b+1 . . . (a2)b+δ−2

...
...

...
...

(an−1)b (an−1)b+1 . . . (an−1)b+δ−2


= (c(ab), c(ab+1), . . . , c(ab+δ−2))

= (0, 0, . . . , 0)︸ ︷︷ ︸
δ−1

Assume that d is a code word different from zero: d = d0d1 . . . dn−1 ∈ C\{0}, with w(d) < δ
and the positions in dij 6= 0 are ij for 1 ≤ j ≤ w(d).

Take a column number ij , for j = 1, . . . , w(d) of M(A) → M . Claim: d ·MT = d ·M(A)T .
Notice that (di1 , di2 , . . . , diw(d)

) ·MT = d ·M(A)T = 0. But this is a contradiction, since at
most δ − 1 columns of M(A) are taken and |A| = δ − 1, since A is gap free. Therefore, any
δ − 1 columns are linearly independent and di1 . . . diw(d) 6= 0 is a linear combination of those
columns.

Example 4.15. Let g(x) = x3 + x + 1 and f(x) = x7 − 1 over Z2 = GF (2), notice that
x7 − 1 = x7 + 1, since in this field + and − do not matter. Such a construction forms a
polynomial (linear) code, a (7, 4)-linear code C. Take a look at g(a) = 0. This means that it
must be the case that a3 = a+ 1. What happens if a3 is squared?

(a3)2 = (a2)3 = (a+ 1)2 = a2 + 1

⇒ g(a2) = 0.

This can be repeated for (a4)3, from which it follows that g(a4) = 0. Since g is a polynomial
of degree 3 and the number of zeros is bounded by the degree, it follows that all the zeros are
found. In Z2(a) g(x) has the zeros a, a2 and a4.

Notice that A = {a, a2} is a gap-free set. From which it follows that b = 1 and δ = 3. This
means that the minimal distance of C is minimal three: wmin(C) ≥ 3 and that there can be
three errors detected and one error corrected.

Example 4.16. The goal here is to construct a code over GF (16) = GF (24), with a minimal
distance of at least 5: wmin ≥ 5. Since n = 24 − 1 = 15, a cyclic code C is needed. A code
C is cyclic if and only if g(x)|x15 − 1. Since the field is of characteristic 2, it follows that +
and - do not matter, as in the previous example. It follows:

x15 − 1 = x15 + 1

= (x+ 1)(x2 + x+ 1) (x4 + x+ 1)︸ ︷︷ ︸
g1(x)

(x4 + x3 + 1) (x4 + x3 + x2 + x+ 1)︸ ︷︷ ︸
g2(x)
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This is the complete characterization of the code. Start by looking at g1(x). Then g1(a) =
0 = g1(a2) = g1(a4) = g1(ak), for k > 5. Here the largest gap-free subset is A = {a, a2}.
Now, if the polynomial g2(x) is chosen to look at, it turns out that g2(a3) = 0, of course
this polynomial was right chosen. But with the polynomials g1(x) and g2(x) it follows that
g1(x)g2(x) has zeros a, a2, a3, a4, which is the largest gap-free set, of size four. From which it
follows that b = 1 and δ = 5.

If g1(x)g2(x) is taken as a generating polynomial of C, then wmin(C) ≥ δ = 5. More gen-
eral: if there is a primitive element, then xp

n−1 − 1 =
∏pn−1
k=1 (x − ak). And for GF (pn):

xp
n − x =

∏
a∈K(x− a).

4.3.4 Reed-Solomon-Codes

These kind of codes depend on the parameters RS(s, k, t), where there are s bits in one
block and k blocks in one record. A record can be regarded as a word of k blocks of s
bits: b = b0b1b2 . . . bk−1 for bi ∈ GF (2s), with coding c = c0 . . . ck−1ckck+1 . . . ck+2t−1 and
ci ∈ GF (2s).

For a cyclic code: GF (2s)k → GF (2s)k + 2t, where s is free, k+2t ≤ 2s−1, g(x) =
∏2t
i=1(x− ai)

and a primitive element of GF (2s). An immediate consequence of this is the following theo-
rem.

Theorem 4.18. Let wmin(RS(s, k, t)) ≥ 2t + 1, then it is possible to detect 2t errors and
correct t errors.

On a CD a scratch will cause a burst error, a possible solution to this problem is inter-
leaving. Let there be t code words and store them in a t× n-matrix. Instead of reading row
by row, the codes are read column by column, which gives a (nt, nk)-code.

4.3.5 Linear shift registers

1 0 1

+ +

Figure 4.1: Example of a linear shift register, initialized with 101

Example 4.17. Let there be a set of three registers, with in every register one bit, see figure...
The example register generates the following code: 101, 010, 100, 001, 011, 111, 110. Since there
are only 23 = 8 states, the code has to be periodic.

More in general, there is a shift register of length k, taken over a field GF (q). This means:
there are qk possible states and qk − 1 non-zero states. In the general case as well, there is a
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R0 R1 R2 . . . Rk−1

a0 a1 a2 ak−1

+ + + +

Figure 4.2: A general linear shift register

finite number of possible states, from which it follows that a periodic sequence is generated.
The sequences are vectors:

s0 = (s0, s1, s2, . . . , sk−1) = (s
(0)
0 , . . . , s

(k−1)
0 )

s1 = (s1, s2, s3, . . . , sk−1,

k−1∑
i=0

aisi) = (s
(0)
1 , . . . , s

(k−1)
1 )

st+1 = (s
(1)
t , s

(2)
t , . . . , s

(k−1)
t ,

k−1∑
i=0

ais
(i)
t ).

Then s0, s1, s2, . . . , sn+k = a0sn+a1sn+1+. . .+ak−1sn+k−1 is a linear recurrence with constant
coefficients and order k. These can be described as a generating function, which is always
rational:

S(x) =
∑
n≥0

snx
n =

g(x)

f(x)
.

Where f(x), g(x) are polynomials, with f(x) = 1−ak−1x−ak−2x
2−. . .−a0x

k and deg(g(x)) < k.

Example 4.18. Start with the following shift register, over field K = GF (2), k = 4. Define
the sequence as: (a0, a1, a2, a3) = (1, 1, 0, 1), then f(x) = x4 + x3 + x + 1. Assume that the
initial vector is s0. With all this, take a look at the following four examples in table 4.1:

(a) period 6

s0 = 1000
0001
0011
0111
1110

(b) period 3

s0 = 1001
0010
0100

(c) period 2

s0 = 1010
0101

(d) period 1

s0 = 1111

Table 4.1: Different period-length with different initial vector s0

Now take another polynomial/shift register: f(x) = x4 + x3 + 1=̂(1, 1, 0, 0). And take s0 =
1000. Then the following sequence of codes are generated:
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s0 = 1000
0001
0010
0100
1001
0011
0110
1101
1010
0101
1011
0111
1111
1110
1100

Since the words are of length 4, it follows that the maximal period is 24 − 1 = 15, this is an
example of a initial vector that generates a code sequence of maximum period. Take a look at
the polynomial x4 + x3 + x+ 1:

x4 + x3 + x+ 1 = (x3 + 1)(x+ 1)

= (x+ 1)2(x2 + x+ 1)

However, the polynomial x4 + x3 + 1 is irreducible over GF (2). Is this why a sequence of
maximum period can be generated? This would suggest that if something has to look random,
a code with many bits and maximum period is needed. Can this be done with irreducible
polynomials?

Theorem 4.19. Let (sn) be a shift register sequence (SRS) and let f(x) be irreducible. Then
t is a period, i.e. sn+t = sn, ∀n ∈ N if and only if f(x)|xt − 1.

Proof.
”⇒ ”: Let sn+t = sn∀n ∈ N. Then for S(x) it follows:

S(x) = (s0 + s1x+ . . .+ st−1x
t−1)(1 + xt + x2t + . . .)

= (s0 + s1x+ . . .+ st−1x
t−1)︸ ︷︷ ︸

σ(x)

1

1− xt
=

σ(x)

1− xt

Notice that σ(x)
1−xt = g(x)

f(x) with f(x) irreducible. This implies: f(x)|xt − 1.

”⇐ ”: Assume that f(x)|xt − 1, this implies: ∃q(x) : f(x)q(x) = 1− xt, then S(x) = g(x)
f(x) =
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g(x)q(x)
1−xt and still deg(g(x)q(x)) < t, which implies that:

s(x) = g(x)q(x) + xtS(x)

s(x) =
∑

snx
n

g(x)q(x) =
∑

l = 0t−1hlx
l

S(x) =
∑

snx
n+t.

This means that sn+t = sn from which it follows that t is indeed a period.

Corollary 4.5. ∃t ≤ qn − 1 such that f(x)|xt − 1.

Theorem 4.20 (Fundamental theorem on SRS). Let (sn)n∈N be a shift register over GF (q),

with a register of length k and generating function: S(x) =
∑

n≥0 snx
n = g(x)

f(x) . Then the

minimal period of (sn)n∈N is qn − 1 (which is optimal) if and only if f(x) is a primitive
polynomial.

Proof. The polynomial f(x) is a primitive polynomial if and only if f(x) is irreducible and

∀t < qn−1 : f(x) - xt−1 and f(x)|xqk−1 if and only if ∀t < qk−1 t is not a period of (sn)n∈N
and qk − 1 is a period of (sn)n∈N. This means that the minimal period length is already the
maximal possible period length.
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Appendix A

Algebraic Structures

Definition A.1. A set R with the arithmetic operations + and · is called a ring (R,+, ·) if

• (R,+) is an Abelian group:
– closure: a, b ∈ R =⇒ (a+ b) ∈ R
– existence of zero element: a+ 0 = a, 0 + a = a
– additive inverses: ∀a ∈ R∃(−a) : a+ (−a) = 0
– commutativity: a+ b = b+ a
– associativity: (a+ b) + c = a+ (b+ c)

• (R, ) is a semigroup
– closure
– associativity: (a · b) · c = a · (b · c)

• distribute laws hold (· distributes over +)
– a · (b+ c) = a · b+ a · c
– (b+ c) · a = b · a+ c · a

Note, that since the multiplicative structure (R, ·) does not have to be commutative, both
of the constraints are needed.

This is a very basic structure, which can be equipped with further properties, like

• commutativity of the multiplication: a · b = b · a
• neutral element of the multiplication: a · 1 = 1 · a = a

If both properties are present in R, then R is called a commutative ring with 1 element.

Definition A.2. A commutative ring with 1 element is called an integral domain if it does
not contain zero-divisors.

a · b = 0 =⇒ a = 0 or b = 0

R is Inegral Domain⇔ @a, b ∈ R\{0} : a · b = 0

Example A.1.

• (R,+, ·)
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• (Zm,+, ·),m ∈ P
If m 6∈ P then m = n · k (factorization) and n̄ · k̄ = m̄ = 0̄. This means, for example,
that Z6 is not an integral domain since 2̄ · 3̄ = 0̄

• Z[x] = ({a0 + a1x+ axx
2 + . . .+ anx

n | ai ∈ Z, n ∈ N},+, ·)

Definition A.3. R is an Euclidean ring if R is an integral domain and there is an Euclidean
function n:

n : R→ N such that ∀a, b ∈ R, b 6= 0, ∃q, r ∈ R :

1. a = bq + r with n(r) < n(b) or r = 0
2. ∀a, b ∈ R\{0} : n(a) ≤ n(ab)

( =⇒ division with remainder)

Definition A.4. A set K with the arithmetic operations + and · is called a field (K,+, ·) if

• (R,+) is an abelian group
• (R, ·) is an abelian group
• · distributes over x

The algebraic structures discussed in this section have the following relations:

rings ⊂ commutative rings ⊂ integral domains ⊂ Euclidean rings ⊂ fields.

Example A.2. Every integral domain is a ring and every field is an integral domain, but not
vice versa.
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bridge, 9
directed, 3
loop, 3
multiple, 3
undirected, 3

edge set, 3
Euler’s totient function, 81
Eulerian tour, 32
Eulerian trail, 32

faces, 35
Fermat’s Little Theorem, 82
field, 75, 113

algebraically closed, 100
Galois, 100
prime, 96

flow, 24
network, 24

Ford-Fulkerson algorithm, 28
forest, 9

spanning, 10

generating function, 54
exponential, 54
ordinary, 54

generating matrix, 102
graph, 3

bipartite, 37
connected, 7
directed, 3
dual, 37
Eulerian, 32
Hamiltonian, 34
planar, 35
regular, 5
simple, 3
strongly connected, 7
subgraph, 6
undirected, 3
weakly connected, 8
weighted, 12

greedy algorithm, 16
GREEDY, 16
Kruskal’s algorithm, 12
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Prim’s algorithm, 12
group

Abelian, 75, 112
automorphism, 102
normal subgroup, 93
quotient, 93
semi, 75, 112

Hamilton cycle, 34
Hamming weight, 102
handshaking lemma, 4
hypercube, 5

ideal, 94
family, 95
principal, 95

independence sets, 16
independence systems, 16
integral domain, 75, 89, 112
irreducible, 90
isomorphism, 9

labeled structure, 63
lattice, 71

complete, 71
join, 71
join-semi, 71
meet, 71
meet-semi, 71

matching, 37
perfect, 37

matroid, 16
MST problem, 12

neighbors, 3
predecessor, 3
successor, 3

node base, 8

path
augmenting, 26

pigeon hole principle, 47
poset, 65
prime element, 90
principal polynomial, 104

Ramsey number, 42
Ramsey theory, 42

reduction, 8
ring, 74, 89, 112

commutative, 75
Euclidean, 75, 89, 113
factorial, 92
quotient ring, 94

shadow, 8
shortest path algorithm

Dijkstra’s, 18
Floyd-Warshall, 18
Moore’s, 18

Stirling numbers
first kind, 51
second kind, 51
signed, 51

strongly connected component, 7
subdivision, 35
syndrome, 103

tree, 9
leaf, 9
plane, 9
rooted, 9
spanning, 10

vertex set, 3

walk, 6
circuit, 6
trail, 6

weight function, 12

116


