VU Diskrete Mathematik Exercises for Oct 13, 2023

1) A simple undirected graph is called cubic if each of its vertices has degree 3 .
(a) Find a cubic graph with 6 vertices!
(b) Is there a cubic graph with an odd number of vertices?
(c) Prove that for all $n \geq 2$ there exists a cubic graph with $2 n$ vertices!
2) Use a suitable graph theoretical model to solve the following problems:
(a) Show that in every city at least two of its inhabitants have the same number of neighbours!
(b) 11 friends want to send postcards according to the following rules: (i) Each person sends and receives exactly 3 cards. (ii) Each one receives only cards from those to whom he or she sent a card and vice versa.
Tell how this can be done or prove that this is impossible!
(c) Determine all graphs in which all vertices have degree 1 .
(d) Determine all connected graphs having only vertices of degree 2 .
3) Show that each of the following statements is equivalent to the statement " T is a tree":
1. Every two nodes of T are connected by exactly one path.
2. T is connected and $\alpha_{0}(T)=\alpha_{1}(T)+1$.
3. T is a minimal connected graph, i.e., deleting an edge destroys connectivity.
4. T is a maximal acyclic graph, i.e., adding an edge generates a cycle.
4) Show by induction that a connected graph on n vertices has at least $n-1$ edges.
5) Given the undirected graph $G=(V, E)$ with $V=\{a, b, c, d\}$ and $E=\{a b, a c, b d, c d\}$. Use the adjacency matrix to determine the number of walks of length four from a to d.
6) Let $G=(V, E)$ be a simple, directed, and acyclic graph. Prove that $B=\left\{v \in V \mid d^{-}(v)=0\right\}$ is a vertex basis of G. Furthermore, prove that B is the only vertex basis of G.
7) Find the strongly connected components and the reduction G_{R} of the graph G below. Furthermore, determine all vertex bases of G.

8) Let $G=(V, E)$ be a simple and directed graph and G_{R} its reduction. Prove that G_{R} is acyclic!
