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Abstract. In this article we first prove a stability theorem for coverings in IE 2 by congruent solid
circles: if the density of such a covering is close to its lower bound 2π/

√
27, then most of the centers of

the circles are arranged in almost regular hexagonal patterns. A version of this result then is extended
to coverings by geodesic discs in two-dimensional Riemannian manifolds.

Given a sufficiently differentiable convex body C in IE 3, the following two problems are closely
related: (i) Approximation of C with respect to the Hausdorff metric, the Banach–Mazur distance and
a notion of distance due to Schneider by inscribed or circumscribed convex polytopes. (ii) Covering
of the boundary of C by geodesic discs with respect to suitable Riemannian metrics.

The stability result for Riemannian manifolds and the relation between approximation and cover-
ing yield rather precise information on the form of best approximating inscribed convex polytopes Pn

of C with respect to the Hausdorff metric: if the number n of vertices is large, then most of the vertices
are arranged in almost regular hexagonal patterns. Consequently, the majority of facets of Pn are
almost regular triangles. Here ‘regular’ is meant with respect to the Riemannian metric of the second
fundamental form. Similar results hold for circumscribed polytopes and also for the Banach–Mazur
distance and Schneider’s notion of distance.

1991 Mathematics Subject Classification: 41A60, 46B28, 52A15, 52A27, 52A41, 52A41, 52C15, 52C20,
53B21; 41A40.

1 Introduction and statement of results

1.1 The aim of this article is twofold. First, stability results for coverings in the
Euclidean plane IE 2 by congruent solid circles and in two-dimensional Riemannian
manifolds by geodesic discs will be proved. Second, given a convex body in IE 3, infor-
mation on the form of best approximating inscribed or circumscribed convex polytopes
will be obtained, where approximation is with respect to the Hausdorff metric, the
Banach–Mazur distance and a notion of distance due to Schneider.

1.2 A classical result of L. Fejes Tóth [?] which refines an earlier result of Kershner
[?] says the following: the density of a covering of a compact convex disc in IE 2 with



non-empty interior by two or more congruent solid circles is greater than 2π/
√

27. This
lower bound is best possible. (By the density of a family of sets which cover a given
set we mean the sum of the areas of the sets of the family divided by the area of the
given set.) If the number of circles is large and the covering has minimum density,
then L. Fejes Tóth [?], p. 61, indicated that the centers of the circles, in essence, are
arranged almost hexagonally.

In recent years many stability problems have been investigated in convex geometry.
These either belong to the area of geometric inequalities, or are of a more geometric
type, see the survey of Groemer [?] and the references in Gruber [?]. Our first result
lies somewhere between these two types.

Let ‖ · ‖ denote the Euclidean norm on IE 2. By C(c, %) we denote the solid circle
with center c and radius % in IE 2. In a set C in IE 2 a point c ∈ C is the center of a
regular hexagon up to δ > 0 if there are a constant σ > 0, the size of the hexagon, and
points c1, . . . , c6 ∈ C, its vertices, such that

| ‖ck − c‖ − σ|, | ‖ck+1 − ck‖ − σ| ≤ σδ (c7 = c1),

C(c,
3

2
σ) ∩ C = {c, c1, . . . , c6}.

Theorem 1. Let S be a convex 3, 4, 5, or 6-gon and ε > 0 sufficiently small. Then
for all coverings of S by, say, m congruent solid circles of sufficiently small radius and
density less than

2π√
27

(1 + ε)

holds: in the set of centers of these circles, each center, with a set of less than 50ε1/3m
exceptions, is the center of a regular hexagon up to 500ε1/3. All these hexagons have
the same size.

Remark 1. In the proof explicit bounds for ε and the radius of the circles will be given.
The choice of the exponents of ε and of the coefficients in the Theorem is somewhat
arbitrary.

Remark 2. Several natural extensions of Theorem 1 suggest themselves. First, to
coverings of the whole plane which is easy and left to the reader; compare the remark
of L. Fejes Tóth, p. 61, for coverings of the plane of density 2π/

√
27. Second, to

Riemannian manifolds of dimension two. A pertinent result of this type is Theorem 2
below. Third, to higher dimensions. Since in this case not even the densities of the
thinnest coverings of space by congruent balls are known, it seems at present to be out
of reach, to extend Theorem 1 in a precise form to dimensions greater than two.

1.3 In recent years a series of results of Euclidean geometry have been extended to more
general spaces. Our second result is a (weak) version of Theorem 1 in this context. We
have chosen this version because of its applicability to approximation problems; see
Theorem 3.

For exact definitions of the following notions compare section 3. Let M be a two-
dimensional Riemannian manifold of class C2 with metric of class C0 and let γM and ωM
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be the corresponding geodesic metric and Jordan area measure on M . The geodesic
disc DM(c, %) with center c and radius % in M is the set {x ∈M : γM(c, x) ≤ %}.

Consider a sequence of sets Cn in M such that the number #Cn of points of Cn

is n. As n → ∞, the set Cn is asymptotically a regular hexagonal pattern in M if the
following hold: for each n there is a constant σn > 0 such that for all points c ∈ Cn,
with a set of o(n) exceptions, there are points c1, . . . , c6 ∈ Cn such that

|γM(c, ck)− σn|, |γM(ck+1, ck)− σn| = σn · o(1) as n→∞ (c7 = c1),

DM(c, 1.1σn) ∩ Cn = {c, c1, . . . , c6}.

In [?] the following result was proved: Let J ⊂ M be Jordan measurable with
ωM(J) > 0 and consider for n = 1, 2, . . . , a covering of J by n geodesic discs of
minimum radius. Then the densities of the coverings tend to 2π/

√
27 as n→∞. The

following result gives, in particular, information about the distribution of the centers
of such coverings.

Theorem 2. Let J be a Jordan measurable set in M with ωM(J) > 0. For each
n = 1, 2, . . . , consider a covering of J by n geodesic discs of the same radius such that
the densities of these coverings tend to 2π/

√
27 as n → ∞. Then, as n → ∞, the set

of centers of the nth covering is asymptotically a regular hexagonal pattern.

Remark 3. At present it seems to be difficult to extend Theorem 2 to higher dimen-
sions, see Remark 2.

1.4 A convex body C in IE d is a compact convex subset of IE d with non-empty interior.
Given C, denote by P i

n and Pc
(n) the spaces of inscribed and of circumscribed convex

polytopes having at most n vertices, resp. facets. The Hausdorff metric δH on the space
of all convex bodies in IE d is defined as follows: for convex bodies C,D let δH(C,D)
be the maximum Euclidean distance which a point of one of the bodies can have from
the other body. Call a polytope Pn ∈ P i

n best approximating of C with respect to δH if

δH(C,Pn) = δH(C,P i
n) = inf{δH(C,P ) : P ∈ P i

n}.

A basic problem is to determine or estimate δH(C,Pn) and to describe Pn as n→∞.
Let (the boundary bdC of) C be (a surface) of class C2 with Gauss curvature

κC > 0. McClure and Vitale [?] showed for d = 2 that the set vertPn of vertices of
Pn is almost equally spaced along bdC as n → ∞, if a suitable notion of length is
used. Their result was substantially refined by Ludwig [?]. For general d Glasauer and
Schneider [?] proved that vertPn is uniformly distributed in bdC with respect to the
density

√
κC as n→∞ in the sense of uniform distribution theory. This result gives a

rough idea about the distribution of vertPn in bdC.
For d = 3 we will describe the (local) form of Pn and of the best approximating

polytopes Qn ∈ Pc
(n) for large n in a more precise way. This will be done using the

Riemannian metric of the second fundamental form on bdC which in a natural sense
corresponds to δH . Similar results hold also for the notions of distance δBM and δSCH .
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The Banach–Mazur distance δBM is defined for convex bodies C,D which are sym-
metric with respect to the origin o:

δBM(C,D) = inf{λ > 1 : C ⊂ l(D) ⊂ λC for suitable linear l : IE d → IE d}.

Let Ps,2n and Ps,(2n) be the spaces of convex polytopes which are o-symmetric and have
at most 2n vertices, resp. facets. Given a convex body C which is symmetric in o, let
P i

s,2n be the set of those polytopes in Ps,2n which are inscribed into C; similarly for
Pc

s,(2n). It is easy to see that

δBM(C,Ps,2n) = δBM(C,P i
s,2n), δBM(C,Ps,(2n)) = δBM(C,Pc

s,(2n)).

The Riemannian metric on bdC corresponding to δBM is that of central affine differ-
ential geometry. See Gruber [?].

Given a convex body C and a convex polytope P contained in C, Schneider’s
distance δSCH(C,P ) is the maximum volume of a cap of C determined by a halfspace
which contains a facet of P in its boundary, but does not contain P . The center of a
cap of C determined by a facet of P is the point of the cap with maximum Euclidean
distance from the hyperplane containing the facet. Let capcenterP denote the set of
all centers of caps. The Riemannian metric on bdC which corresponds to Schneider’s
distance is that of equiaffine differential geometry. See Schneider [?].

Theorem 3. Let C be a convex body in IE 3 of class C2 with positive Gauss curvature.
Consider sequences (Pn), . . . , (Tn) of best approximating polytopes

Pn ∈ P i
n, Qn ∈ Pc

(n) with respect to δH ,

Rn ∈ P i
s,2n, Sn ∈ Pc

s,(2n) with respect to δBM ,

Tn ∈ P i
(n) with respect to δSCH ,

where for δBM we assume that C is symmetric in o. Then the sets

vertPn, (bdQn) ∩ C for δH ,

vertRn, (bdSn) ∩ C for δBM ,

capcenterTn for δSCH

are asymptotically regular hexagonal patterns on bdC with respect to the corresponding
Riemannian metrics.

Remark 4. A consequence of this result is that for large n most facets of Pn and Rn

are almost regular triangles, approximately of the same size, and the facets of Qn, Sn,
and Tn are almost regular hexagons, approximately of the same size; the metrics being
the corresponding Riemannian metrics on bdC.

Remark 5. As may be seen from the proof, Theorem 3 holds also for the more general
asymptotically best approximating polytopes, where, for example, in the case of the
metric δH and for inscribed polytopes this means a sequence (Un) where Un ∈ P i

n such
that

δH(C,Un) ∼ δH(C,P i
n) as n→∞.
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2 Proof of Theorem 1

2.1 Choose

(2.1) 0 < ε < 10−9 and 0 < % <
|S|

2p(S)
ε.

(Here | · | and p(·) stand for Euclidean area and perimeter in IE 2, respectively.) The
proof of Theorem 1 is split into several steps.

2.2 In a first step two elementary properties of convex hexagons will be proved.

2.2.1

(2.2) Let D be a convex hexagon such that C(
√

3
2
− ε1/3) 6⊂ D ⊂ C(1). Then

|D| ≤
√

27

2
(1− ε2/3

3
).

(Here C(%) denotes the solid circle in IE 2 with center o and radius %.)
Elementary arguments show that |D| is bounded above by the area of a convex

hexagon with the following properties: all of its vertices are on bdC(1); the hexagon

contains C(
√

3
2
− ε1/3); one of its edges is tangent to C(

√
3

2
− ε1/3) and the five other

ones have equal length. Let

π

3
+ 2ϕ and

π

3
− 2ϕ

5
, 0 < 2ϕ <

π

3
,

be the angles under which the edges of the hexagon appear from o (note (2.1)). Then

√
3

2
− ε1/3 = cos(

π

6
+ ϕ) = cos

π

6
− sin(

π

6
+ ξϕ) · ϕ ≥

√
3

2
−
√

3

2
ϕ ≥

√
3

2
− ϕ

by Taylor’s theorem, where ξ ∈ (0, 1) is chosen suitably. Thus

ε1/3 ≤ ϕ.

Then

|D| ≤ sin(
π

6
+ ϕ) cos(

π

6
+ ϕ) + 5 sin(

π

6
− ϕ

5
) cos(

π

6
− ϕ

5
)

=
1

2
sin(

π

3
+ 2ϕ) +

5

2
sin(

π

3
− 2ϕ

5
)

=
1

2
sin

π

3
+

1

2
cos

π

3
· 2ϕ− 1

4
sin(

π

3
+ 2ηϕ) · (2ϕ)2

+
5

2
sin

π

3
+

5

2
cos

π

3
· −2ϕ

5
− 5

4
sin(

π

3
− 2ζϕ

5
) · (−2ϕ

5
)2

≤ 3
√

3

2
− 1

4
sin

π

3
· (2ϕ)2 =

3
√

3

2
−
√

3

2
ϕ2 ≤

√
27

2
(1− ε2/3

3
),

where η, ζ ∈ (0, 1) are chosen suitably, concluding the proof of (2.2).
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2.2.2

(2.3) Let D be a convex hexagon such that C(
√

3
2
− ε1/3) ⊂ D ⊂ C(1) and let

d1, . . . , d6 be the mirror images of o in the lines containing the edges of D in
counter clockwise ordering. Then

(i) −2ε1/3 ≤ ‖dk‖ −
√

3 ≤ 22ε1/3,

(ii) | ‖dk+1 − dk‖ −
√

3| ≤ 810ε1/3

and there are points h1, . . . , h6 forming the vertices of a regular hexagon of
edgelength

√
3 and center o such that

(iii) ‖dk − hk‖ ≤ 405ε1/3.

Let
π

6
+ ϕ and

π

6
− ψ, 0 ≤ ϕ ≤ π

12
,

be the maximum and the minimum angle with apex o between the exterior normal of
an edge of D and an endpoint of this edge (note (2.1)). Then

(2.4) 0 ≤ ϕ ≤ 2ε1/3, 0 ≤ ψ ≤ 22ε1/3.

To see this note that by the assumption of (2.3) and the concavity of cos in [0, π
2
],

√
3

2
− ε1/3 ≤ cos(

π

6
+ ϕ) ≤ cos

π

6
− sin

π

6
· ϕ =

√
3

2
− ϕ

2
,

which implies the first statement in (2.4). The second one follows from

π

6
− ψ ≥ 2π − 11(

π

6
+ ϕ) ≥ π

6
− 22ε1/3.

The inclusion C(
√

3
2
− ε1/3) ⊂ D yields the first inequality in (2.3)(i). To see the

second inequality note that D ⊂ C(1). The definition of ψ, the concavity of cos in
[0, π

2
], and (2.4) then imply,

‖dk‖ ≤ 2 cos(
π

6
− ψ) ≤ 2 cos

π

6
− 2 sin

π

6
· (−ψ) =

√
3 + ψ ≤

√
3 + 22ε1/3.

Next we prove (2.3)(iii). Let hk be chosen as follows: h1 is a positive multiple of
d1 and ‖h1‖ =

√
3. h2, . . . , h6 are obtained from h1 by rotations by angles π

3
, . . . , 5π

3

about o. If ϕk is the angle with apex o between dk and hk, then the definitions of ϕ
and ψ and (2.4) together yield,

|ϕk| ≤ 44(k − 1)ε1/3 ≤ 220ε1/3.

This combined with (2.3)(i), ‖hk‖ =
√

3, and (2.1) shows that

‖dk − hk‖ ≤ max{‖dk‖, ‖hk‖} · |ϕk|+ | ‖dk‖ − ‖hk‖ |

≤ (
√

3 + 22ε1/3)220ε1/3 + 22ε1/3 ≤ 405ε1/3.
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This proves (2.3)(iii) which in turn yields (2.3)(ii).

2.3 Let a covering of S by m solid circles of radius % with density less than

2π√
27

(1 + ε)

be given. Second, we will consider the intersections of the Dirichlet–Voronoi cells of
the set C of centers with S and classify them according to their shape.

For each c ∈ C let

D(c) = {x : ‖x− c‖ ≤ ‖x− d‖ for each d ∈ C} ∩ S.

IfD(c) has non-empty interior we call it a cell with center c. Since the Dirichlet–Voronoi
cells of C form an edge-to-edge tiling of IE 2 (see e.g. [?]),

(2.5) the cells D(c) form an edge-to-edge tiling of S.

Our aim is to show that for most c ∈ C the cell D(c) is close to a regular hexagon:

(2.6) Each c ∈ C, with a set of less than 4ε1/3m exceptions, has the following prop-
erties:

(i) D(c) is a hexagonal cell,

(ii) C(c, (
√

3
2
− ε1/3)%) ⊂ D(c) ⊂ C(c, %) ⊂ S.

Such centers and the corresponding cells are called good, the others bad. The proof of
(2.6) will be presented in subsections 2.3.1 – 2.3.5.

2.3.1 For i = 3, 4, . . . , let mi be the number of i-gons among the cells D(c). Since S
is a 3, 4, 5, or 6-gon, proposition (2.5) and a simple consequence of Euler’s polytope
formula (see e.g. [?], p. 16) together imply that

3m3 + 4m4 + . . . ≤ 6(m3 +m4 + . . .) = 6m0, say, where m0 ≤ m.

Thus

(2.7) 3m3 + . . .+ 5m5 + 7m7 + . . . ≤ 6(m3 + . . .+m5 +m7 + . . .) = 6m 6=6, say.

Since among all convex i-gons in C(%) the regular ones have maximum area, it follows:

(2.8) if the cell D(c) is an i-gon, then
|D(c)|
%2

≤ i

2
sin

2π

i
.

Proposition (2.3) shows:

(2.9) if the cell D(c) is a 6-gon and C(c, (
√

3
2
− ε1/3)%) 6⊂ D ⊂ C(c, %), then

|D(c)|
%2

≤
√

27

2
(1− ε2/3

3
).
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By (2.5) and (2.8) we have,

(2.10)
|S|
%2

=
∑
i≥3

{
∑
{|D(c)|

%2
: c ∈ C the cell D(c) is an i-gon }}

≤
√

27

2
m6 +

∑
i≥3, 6=6

mi
i

2
sin

2π

i
.

2.3.2 See (2.7) for the definition of m 6=6. We show that

(2.11) m 6=6 ≤ 64εm.

Considering derivatives, it is easy to prove that the function f defined by

f(x) =
x

2
sin

2π

x
, x ≥ 3,

is concave and non-decreasing. Hence the function g whose graph is the polygon
connecting the points

(3, f(3)), . . . , (5, f(5)), (7, f(7)), . . . ,

in this order, is also concave and non-decreasing. Thus Jensen’s inequality together
with (2.7) implies,

(2.12)
1

m 6=6

∑
i≥3, 6=6

mi
i

2
sin

2π

i
=

∑
i≥3, 6=6

mi

m 6=6

g(i) ≤ g(
1

m 6=6

∑
i≥3, 6=6

mi · i)

≤ g(6) = 2.5570257 . . . <

√
27

2
(1− 1

64
) <

√
27

2
.

From (2.10) and (2.12) we conclude that

|S|
%2

≤
√

27

2
m6 +

√
27

2
m 6=6 −

√
27

128
m 6=6 ≤

√
27

2
m−

√
27

128
m 6=6 =

√
27

2
(1− m 6=6

64m
)m

(note that m6 + m 6=6 = m0 ≤ m). This yields a lower bound for the density of the
given covering of S:

%2πm

|S|
≥ 2π√

27
(1− m 6=6

64m
)−1 ≥ 2π√

27
(1 +

m 6=6

64m
).

Since by assumption this density is less than

2π√
27

(1 + ε),

we obtain (2.11).

2.3.3 Let

mnr6 = #{D(c) : the cell D(c) is a 6-gon, C(c, (

√
3

2
− ε1/3)%) 6⊂ D(c) ⊂ C(c, %)},

where # means cardinal number. Then the following estimate holds:
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(2.13) mnr6 ≤ 3ε1/3m.

Applying (2.10), (2.9) and (2.12) gives

|S|
%2

≤
√

27

2
(m6 −mnr6) +

√
27

2
(1− ε2/3

3
)mnr6 +

√
27

2
m 6=6 ≤

√
27

2
(1− ε2/3mnr6

3m
)m

and thus
%2πm

|S|
≥ 2π√

27
(1 +

ε2/3mnr6

3m
).

Since the density of our covering is less than

2π√
27

(1 + ε),

this yields (2.13).

2.3.4 Finally we estimate

mbd = #{D(c) : D(c) is a cell, C(c, %) ∩ T = ∅},

where T is the inner parallel set of S at distance 2%:

(2.14) mbd ≤ 2εm.

Consider the m0−mbd cells D(c) where C(c, %)∩T 6= ∅, that is, C(c, %) ⊂ S. Since
then D(c) ⊂ C(c, %), it follows from (2.5) that the corresponding circles cover T (⊂ S).
Thus L. Fejes Tóth’s [?] theorem cited in 1.2 says that for the density of this family of
circles we have that

%2π(m0 −mbd)

|T |
≥ 2π√

27
.

Noting that p(S) is the perimeter of S, we obtain

|T | ≥ |S| − 2%p(S).

By assumption, the density of the given covering of S satisfies

%2πm

|S|
≤ 2π√

27
(1 + ε).

Combining these three inequalities and (2.1) then yields (2.14):

%2π(m−mbd)

|S| − 2%p(S)
≥ %2π(m0 −mbd)

|T |
≥ 2π√

27
≥ %2πm

|S|
(1 + ε)−1,

or
mbd

m
≤ 1− (1− 2%p(S)

|S|
)(1− ε) ≤ 1− 1 +

2%p(S)

|S|
+ ε ≤ 2ε.

2.3.5 Finally, (2.11), (2.12), (2.14) and (2.1) together yield (2.6):

m 6=6 +mnr6 +mbd ≤ (64ε+ 3ε1/3 + 2ε)m ≤ 4ε1/3m.

2.4 Third, we choose from the set of good centers a still large set of centers having one
additional property:
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(2.15) Each c ∈ C, with a set of less than 50ε1/3m exceptions, has the property that
all centers in C(c, 2%) ∩ C are good.

Such centers will be called very good.
By (2.6) the number of bad centers is less than 4ε1/3m. For each bad center consider

all good centers at distance at most 2% from it. For any of these good centers take
the circle of radius (

√
3

2
− ε1/3)% centered at it. Since these circles are contained in the

corresponding cell (see (2.6)), they do not overlap. Comparing areas, we thus see that
the number of good centers at distance at most 2% from a given bad center is at most

(2 +
√

3
2
− ε1/3)2%2π

(
√

3
2
− ε1/3)2%2π

≤ 11

by (2.1). Cancelling all bad centers and for each bad center at most 11 good centers
amounts to the omission of less than

4ε1/3m · 12 ≤ 50ε1/3m

centers. Clearly, the remaining centers all are very good. The proof of (2.15) is com-
plete.

2.2 We come to the final step of the proof.

(2.16) Let c ∈ C be very good. Then there are c1, . . . , c6 ∈ C such that

(i) |‖ck − c‖ −
√

3%| ≤ 22ε1/3% ≤ 13ε1/3
√

3%,

(ii) |‖ck+1 − ck‖ −
√

3%| ≤ 500ε1/3
√

3%,

(iii) C(c, 3
2

√
3%) ∩ C = {c, c1, . . . , c6}.

The definition of cells in 2.3, the fact that c is a very good and thus a good center,
and propositions (2.6) and (2.3) show that there are centers c1, . . . , c6, satisfying (2.16)
(i), (ii). In addition we see that there are points h1, . . . , h6 forming the vertices of a
regular hexagon of edgelength

√
3% and center at o such that

(2.17) ‖ck − (c+ hk)‖ ≤ 810ε1/3% ≤ 500ε1/3
√

3%.

For the proof of (2.16)(iii) we proceed as follows: the definition of cells in 2.2 and
(2.6), (2.3) yield the following:

(2.18) Let d be a good center. Then C(d, (
√

3− 2ε1/2)%) contains no center except d.

The centers ck satisfy (2.16)(i) and thus are contained in C(c, 2%). Since c is a very
good center, each ck is a good center, see (2.5). Clearly, c is good too. Now apply
(2.18) to each of c, c1, . . . , c6. Taking into account (2.17), we see that the union of the
circles

C(c, (
√

3− 2ε1/3)%), C(c+ hk, (
√

3− 812ε1/3)%), k = 1, . . . , 6,

contains precisely the centers c, c1, . . . , c6. Noting (2.1), an elementary calculation then
shows that the circle C(c, 3

2

√
3%) is contained in this union. This proves (2.16)(iii), and

thus concludes the proof of (2.16).

2.6 Having shown (2.15) and (2.16), the proof of Theorem 1 is complete.
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3 Proof of Theorem 2

3.1 To make this article more self-contained, we repeat the relevant parts of the defi-
nitions in [?].

Let M be a two-dimensional Riemannian manifold of class C2 with metric of class
C0. Then for any p ∈ M there are a neighborhood U of p in M and a homeomor-
phism h =“ ′ ” of U onto an open solid circle U ′ = h(U) in IE 2. To any u ∈ U ′

there corresponds a positive quadratic form qu(s) = qp,u(s) on IE 2 with continuous
coefficients.

A curve in U is of class C1 if it has a parametrization x : [µ, ν] → U such that
u = h ◦ x is of class C1. Its length is

ν∫
µ

qu(τ)(u̇(τ))dτ.

If a curve is not contained in a single neighborhood, dissect it suitably. For x, y ∈M , let
γM(x, y) be the infimum of the lengths of the curves of class C1 in M which connect x, y.
The metric γM(·, ·) induces the original topology on M . The geodesic disc DM(c, %) in
M with center c ∈M and radius % is the set {x ∈M : γM(c, x) ≤ %}.

A set J ⊂ M is Jordan measurable if its closure clJ is compact and for any p, U, h
and any neighborhood V of p with clV ⊂ U for which V ′ is Jordan measurable in
IE 2, also (J ∩ V )′ is Jordan measurable in IE 2. If M is compact, then it is Jordan
measurable and so are geodesic discs. Finite unions, intersections and differences of
Jordan measurable sets are again Jordan measurable. If J ⊂ U is Jordan measurable,
then

ωM(J) =
∫
J ′

(detqu)
1/2du (du = du1du2)

is its Jordan area; otherwise dissect J suitably. Clearly, ωM may be extended to a Borel
measure on M . Then, equivalently, a set in M may be defined Jordan measurable, if
its closure is compact and its boundary has Borel measure 0.

3.2 Next, some tools are collected.
The definition of geodesic discs and the compactness of the closure of a Jordan

measurable set yield the following well-known result:

(3.1) Let K ⊂ M be Jordan measurable. Then ωM(DM(c, %)) = %2π(1 + o(1)) for
c ∈ K as %→ 0, where o(·) may be chosen to be independent of c.

A consequence of Lemma 1 in [?] is the following:

(3.2) Let K ⊂ M be Jordan measurable with ωM(K) > 0 and for m = 1, 2, . . . , let
σm(K) be the minimum radius σ > 0 such that m suitable geodesic discs of
radius σ cover K. Then

mσm(K)2π

ωM(K)
→ 2π√

27
as m→∞.

11



3.3 Let J be the Jordan measurable set of Theorem 2 and let {DM(c, %n) : c ∈ Cn} be
the corresponding coverings of J . This subsection contains two auxiliary results on J .

First,

(3.3) σn ≤ %n ≤ σn(1 + o(1)) as n→∞, where σn = σn(J).

The left hand side inequality follows from the definition of σn (see (3.2)) and the
assumption of Theorem 2. To see the right hand side inequality note that by the
assumption of Theorem 2, and (3.1), (3.2), both applied for K = J ,

n%2
nπ

ωM(J)
→ 2π√

27
,
nσ2

nπ

ωM(J)
→ 2π√

27
as n→∞.

Second,

(3.4) let K ⊂ J be Jordan measurable with ωM(K) > 0 and let

n(K) = #{c ∈ Cn : DM(c, %n) ∩K 6= ∅}.

Then
n(K)%2

nπ

ωM(K)
→ 2π√

27
as n→∞.

For assume not. Then the definition of n(K) together with (3.2) shows that

n(K)%2
nπ

ωM(K)
≥ (1 + α)

2π√
27

for infinitely many n,

where α > 0 is chosen suitably. Next take a compact Jordan measurable set L in the
interior int(J\K) of J\K such that

(1 + α)ωM(K) + ωM(L) > ωM(J).

By our choice of L, the sets K and L have positive distance with respect to γM . Since
%n → 0 as n→∞ (see (3.3) and note that σn → 0 by (3.2)), we thus have

n(K) + n(L) ≤ n for sufficiently large n,

by the definition of n(·) in (3.4). The definition of n(L) and (3.2) imply:

n(L)%2
nπ

ωM(L)
≥
n(L)σn(L)(L)2π

ωM(L)
→ 2π√

27
as n→∞.

Finally, (3.2) and (3.3) show that

n%2
nπ

ωM(J)
→ 2π√

27
as n→∞.

We now apply these relations:

n%2
nπ

ωM(J)
≥ (n(K) + n(L))%2

nπ

ωM(J)
=
n(K)%2

nπ

ωM(K)
· ωM(K)

ωM(J)
+
n(L)%2

nπ

ωM(L)
· ωM(L)

ωM(J)
,

12



and thus
2π√
27

≥ (1 + α)
2π√
27

ωM(K)

ωM(J)
+

2π√
27

ωM(L)

ωM(J)
,

which is a contradiction.

3.4 Let

(3.5) 0 < ε < 10−9,

(3.6) λ > 1 so small that λ7 < 1 + ε, 2(500ε1/3 + λ− 1)λ ≤ ε1/4, λ− 1 < ε.

Given p ∈ M , we may choose U, h =“ ′”, where U is so small that for q = qp,p the
following hold:

1

λ
q(x′ − y′)1/2 ≤ γM(x, y) ≤ λq(x′ − y′)1/2 for x, y ∈ U,

1

λ
(detq)1/2|K ′| ≤ ωM(K) ≤ λ(detq)1/2|K ′| for Jordan measurable K ⊂ U

(see section 2 in [?]). Let V be a Jordan measurable, open neighborhood of p with
clV ⊂ U .

As p ranges over the compact set clJ , the neighborhoods V form an open covering of
clJ . Thus there is a finite subcover. Hence we may choose points pl ∈ clJ, l = 1, . . . ,m,
say, and corresponding neighborhoods Ul, Vl, homeomorphisms hl =“′”, and quadratic
forms ql, such that

(3.7)
1

λ
ql(x

′ − y′)1/2 ≤ γM(x, y) ≤ λql(x
′ − y′)1/2 for x, y ∈ Ul,

(3.8)
1

λ
(detql)

1/2|K ′| ≤ ωM(K) ≤ λ(detql)
1/2|K ′| for Jordan measurable K ⊂ Ul.

Vl is Jordan measurable and the inclusions clVl ⊂ intUl, and J = V1 ∪ . . . ∪ Vm hold.
Clearly,

Wl = J ∩ (Vl\(V1 ∪ . . . ∪ Vl−1)) is Jordan measurable,

Wl ⊂ intUl, and J is the disjoint union of W1, . . . ,Wm.

Next choose sets Sli ⊂ intWl ⊂ intUl, i = 1, . . . , il, with the following properties:

(3.9) S ′li ⊂ intU ′
l is a compact square; thus Sli is Jordan measurable,

(3.10) the sets Sli are pairwise disjoint,

(3.11) ωM(T ) < (λ− 1)ωM(J), where T = J\⋃
l,i
Sli.
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3.5

(3.12) Let Cnli = {c ∈ Cn : DM(c, %n) ∩ Sli 6= 0}. Then for all sufficiently large n the
n(Sli) geodesic discs DM(c, λ%n) : c ∈ Cnli are contained in Ul and the n(Sli)
ellipses {s : ql(s− c′)1/2 ≤ λ%n} : c ∈ Cnli form a covering of S ′li of density less
than

2π√
27

(1 + ε).

Since Sli is compact, Sli ⊂ intUl, and %n → 0 as n→∞, it follows from (3.7) that

(3.13) {s : ql(s− c′)1/2 ≤ %n

λ
} ⊂ DM(c, %n)′ ⊂ {s : ql(s− c′)1/2 ≤ λ%n}

⊂ {s : ql(s− c′)1/2 ≤ 2λ%n} ⊂ U ′
l for c ∈ Cnli for all sufficiently large n.

The geodesic discs DM(c, %n) : c ∈ Snli cover Snli. Thus the ellipses {s : ql(s− c′)1/2 ≤
λ%n} : c ∈ Cnli cover Snli by (3.13). We determine the density of this covering. By
(3.8) and (3.13) we have:

1

λ
(detql)

1/2|{s : ql(s− c′)1/2 ≤ %n

λ
}| ≤ 1

λ
(detql)

1/2|DM(c, %n)′| ≤ ωM(DM(c, %n)|
for c ∈ Cnli and all sufficiently large n

and
ωM(Sli) ≤ λ(detql)

1/2|S ′li|.
Propositions (3.1), (3.4) yield,∑{ωM(DM(c, %n)) : c ∈ Cnli}

ωM(Snli)
<

2π√
27
λ for all sufficiently large n.

(3.13) together with these inequalities and (3.6) gives the desired bound for the density
of our covering of S ′li by ellipses:

n(Sli)|{s : ql(s− c′)1/2 ≤ λ%n}|
|S ′li|

=
n(Snli)

1

λ
(detql)

1/2|{s : ql(s− c′)1/2 ≤ %n

λ
}|

λ(detql)1/2|S ′li|
· λ6

≤
∑{ωM(DM(c, %n)) : c ∈ Cnli}

ωM(Sli)
· λ6 <

2π√
27
λ7 ≤ (1 + ε)

2π√
27

for all sufficiently large n,

concluding the proof of (3.12).

3.6 Next we show that with an obvious extension of terminology from IE 2 to M ,

(3.14) for all sufficiently large n the following hold: each of the n(Sli) centers c ∈ Cnli,
with a set of at most 50ε1/3n(sli) exceptions, is contained in Sli and is the center
of a regular hexagon with vertices c1, . . . , c6, say, in Cnli which is regular up to
ε1/4 and has size

√
3%n. In addition, DM(c, 1.1

√
3%n) ∩ Cn = {c, c1, . . . , c6}.
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Consider the Euclidean norm q
1/2
l in the plane. By (3.12) the n(Sli) circles (in the

sense of the norm q
1/2
l ) {s : ql(s− c′)1/2 ≤ λ%n} : c ∈ Cnli form a covering of the square

S ′li of density less than 2π√
27

(1 + ε) for all sufficiently large n. Thus by Theorem 1 and

its proof we conclude that for all sufficiently large n all n(Sli) centers in C ′
nli, with a

set of less than 50ε1/3n(Sli) exceptions, are very good. Let c ∈ Cnli be such that c′ is
very good and thus good.

By (2.6)(ii) and (3.13) c′ ∈ DM(c, %n)′ ⊂ {s : ql(s− c′)1/2 ≤ λ%n} ⊂ S ′li and thus

(3.15) c ∈ DM(c, %n) ⊂ Sli.

Note (2.16). Let c1, . . . , c6 ∈ Cnli be such that c′1, . . . , c
′
6 form a hexagon with enter c′

which is regular up to 500ε1/3 of size
√

3λ%n and such that

(3.16) {s : ql(s− c′)1/2 ≤ 2λ%n} ∩ C ′
nli = {c′, c′1, . . . , c′6}.

Then

(3.17) |γM(ck, c)−
√

3%n|
≤ |γM(ck, c)− ql(c

′
k − c′)1/2|+ |ql(c′k − c′)1/2 −

√
3λ%n|+

√
3(λ− 1)%n

≤ (λ− 1)ql(c
′
k − c′)1/2 + 500ε1/3

√
3λ%n +

√
3(λ− 1)%n

≤ (λ− 1)(500ε1/3 + 1)
√

3λ%n + 500ε1/3
√

3λ%n +
√

3(λ− 1)%n

≤ ((λ− 1)(500ε1/3 + 1) + 500ε1/3 + λ− 1)λ
√

3%n ≤ ε1/4
√

3%n,

|γM(ck+1, cn)−
√

3%n| ≤ . . . ≤ ε1/4
√

3%n for all sufficiently large n

by (3.7) and (3.6). By (3.7) again and (3.13) we have,

(3.18) DM(c, 2%n)′ ⊂ {s : ql(s− c′)1/2 ≤ 2λ%n}.

(3.15), (3.17), (3.5), the definition of Cnli in (3.12), (3.18) and (3.16) together yield

{c, c1, . . . , c6} ⊂ DM(c, 1.1
√

3%n) ∩ Cn ⊂ DM(c, 2%n) ∩ Cnli ⊂ {c, c1, . . . , c6}
for all sufficiently large n.

The proof of (3.14) is complete.

3.7 Since %n → 0 as n → ∞ and the compact sets Sli are disjoint by (3.10), the
definition of the sets Cnli in (3.12) shows that the sets Cnli are disjoint if n is sufficiently
large. Since n(Sli) = #Cnli, we thus see that

(3.19)
∑
l,i
n(Sli) ≤ n for all sufficiently large n.

In order to prove that

(3.20) n(T ) ≤ εn for all sufficiently large n

note that

n(T )

n
=
n(T )%2

nπ

ωM(T )
· ωM(J)

n%2
nπ

· ωM(T )

ωM(J)
< λ− 1 for all sufficiently large n

by (3.4) and (3.11). Now apply (3.6).

3.8 Combining (3.14), (3.19), (3.20) and noting (3.6), the following is obtained:
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(3.21) Let ε > 0 be sufficiently small. Then for all sufficiently large n hold: each
c ∈ Cn, with a set of at most 51ε1/3n exceptions, is the center of a hexagon in
Cn which is regular up to ε1/4, has size

√
3%n and DM(c, 1.1

√
3%n)∩Cn consists

precisely of c and the vertices of the hexagon.

Let k be so large that for ε = j−12, j = k, k + 1, . . . , proposition (3.21) holds
for n ≥ n(j), say. We clearly may assume that n(j) → ∞ as j → ∞. Now define
f, g : IIN → IR + by

f(n) = n, g(n) = 1 for 1 ≤ n ≤ n(k),

f(n) =
51

j4
n, g(n) =

1

j3
for n(j) ≤ n < n(j + 1), j = k, . . . .

Then

each c ∈ Cn, with a set of at most f(n) exceptions, is the center of a hexagon in
Cn which is regular up to g(n), has size

√
3%n and DM(c, 1.1

√
3%n)∩Cn consists

precisely of c and the vertices of the hexagon.

Since f(n) = o(n), g(n) = o(1) as n→∞, this concludes the proof of Theorem 2.

4 Proof of Theorem 3

4.1 The following is the proof for Pn.
Let M = bdC be endowed with the Riemannian metric γC of the second funda-

mental form and let ωC be the corresponding Jordan area measure. Then bdC is a
Riemannian manifold of dimension two of class C2 with metric of class C0.

The following proposition was first proved by Schneider [?]. Under the present
assumptions it is due to the author [?], (5.2).

(4.1) For n = 4, 5, . . . , let %n be the minimum radius such that the geodesic discs
DC(v, %n) : v ∈ vertPn cover bdC. Then

%n = (2δH(C,Pn))1/2(1 + o(1)) as n→∞.

Conversely, if for n = 4, 5, . . . , σn is the minimum radius such that n suitable
geodesic discs DC(w1, σn), . . . , DC(wn, σn), say, cover bdC, then

δH(C, conv{w1, . . . , wn}) ≤
σ2

n

2
(1 + o(1)) as n→∞.

(By conv the convex hull is meant.) As a consequence of (4.1) we have,

(4.2) σn ≤ %n ≤ σn(1 + o(1)) as n→∞.

Applying propositions (3.1) and (3.2) with K = M = bdC, yields the following:

(4.3) ωC(DC(v, %n)) = %2
nπ(1 + o(1)) as n→∞, where o(1) is independent of v,
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(4.4)
nσ2

nπ

ωC(bdC)
→ 2π√

27
as n→∞.

Combining (4.1) – (4.4) shows that

the density of the covering of bdC by the geodesic discs DC(v, %n) : v ∈ vertPn

converges to 2π/
√

27 as n→∞.

An application of Theorem 2 then yields Theorem 3 for Pn.

4.2 The proofs for Qn, . . . , Tn, in essence, are the same, where in place of (4.1) use is
made of analogous propositions; see [?] (5.4), [?] (3.5), (3.6), [?] (3.11), (3.13) and [?].

Final remark

In a subsequent article best approximating polytopes with respect to the symmetric
difference metric will be considered. The result is based on a stability version of
L. Fejes Tóth’s [?], p. 81, so-called moment lemma which has also other applications.
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[1] Fejes Tóth,G., Kuperberg,W.: Packing and covering with convex sets. In: P.M.Gruber,
J.M.Wills, eds.: Handbook of convex geometry B, 799–860. North-Holland, Amsterdam 1993
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