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1 Introduction

Convex geometry is an area of mathematics between geometry, analysis and discrete mathema-
tics. Classical discrete geometry is a close relative of convex geometry with strong ties to the
geometry of numbers, a branch of number theory. Both areas have numerous relations to other
fields of mathematics and its applications. While it is out of reach to describe on one or two
dozen pages the main features of convex and discrete geometry, it is well possible to show the
flavor of these areas by describing typical ideas, problems and results. This will be done in the
following. In particular, we consider

Mixed volumes and the Brunn-Minkowski theorem,
Polar bodies in high dimensions,
Valuations,
Euler’s polytope formula,
Lattice polytopes and lattice point enumerators,
Theorems of Minkowski and Minkowski-Hlawka,
Sums of moments,
Koebe’s representation theorem.

There is a huge literature on convex and discrete geometry. We mention the books of Fejes
Tóth [5], Gruber and Lekkerkerker [14], Erdös, Gruber and Hammer [4], Webster [23], Ziegler
[24], Matoušek [19], Barvinok [1], Grünbaum [17], the books in the red Cambridge series by
Schneider [21], Gardner [6], Groemer [8], Thompson [22], McMullen and Schulte [20], the green
collection of surveys [15], the Handbooks of Convex Geometry [16] and of Computational and
Discrete Geometry [7] and the overviews of Klee [18], Gruber [11] and Berger [2]. Two articles
of Gruber [10, 12] on convexity are in a similar spirit as the present report.

For precise references for the results considered below, additional material, comments and
historical remarks see the author’s [13] forthcoming book. To give the reader an idea of the
development of convex and discrete geometry, we add for each author the year of publication
of the result in question.

2 Mixed Volumes and the Brunn-Minkowski Theorem

A convex body is a compact convex set in d-dimensional Euclidean space Ed. The space C = C(Ed)
of all convex bodies is endowed with (Minkowski) addition + which is defined as follows:

C + D = {x + y : x ∈ C, y ∈ D} =
⋃

x∈C

(x + D) for C,D ∈ C.

It is easy to show that C +D is again a convex body. With this definition of addition, the space
of convex bodies is an Abelian semigroup with cancellation law.

A major problem of the Brunn-Minkowski theory is to obtain information on the volume
V (C + D) of C + D in terms of information on C and D. The first pertinent result is Steiner’s
formula for the volume of parallel bodies (1840). Let Bd be the solid Euclidean unit ball of Ed.
For a convex body C and λ ≥ 0 the convex body C +λBd is the parallel body of C at distance λ.
Steiner’s formula then says, that there are coefficients W0(C), . . . ,Wd(C), the quermassintegrals



of C, such that

V (C + λBd) = W0(C) +
(

d

1

)
W1(C)λ + · · ·+

(
d

d

)
Wd(C)λd for λ ≥ 0.

W0(C) = V (C), W1(C) = S(C)/d, the surface area of C, and Wd(C) = V (Bd). It is an
unsolved problem of Blaschke (1916) to characterize the d + 1 tuples of real numbers which are
quermassintegrals of convex bodies, or, in other words, to describe the set{(

W0(C), . . . ,Wd(C)
)

: C ∈ C(Ed)
}
⊂ Ed+1.

A substantial refinement of Steiner’s formula is Minkowski’s theorem on mixed volumes
(1911): Given convex bodies C1, . . . , Cn ∈ C, there are coefficients V (Ci1 , . . . , Cid

), called mixed
volumes, such that

V (λ1C1 + · · ·+ λnCn) =
n∑

i1,...,id=1

V (Ci1 , . . . , Cid
) λi1 · · ·λid

for λ1, . . . , λn ≥ 0.

Clearly, the following equalities hold: V (C, . . . , C) = W0(C) = V (C), V (C, . . . , C, Bd) = W1(C)
= S(C)/d, . . . , V (C,Bd, . . . , Bd) = Wd−1(C), V (Bd, . . . , Bd) = Wd(C) = V (Bd) for C ∈ C.

There are several relations among mixed volumes, including the fundamental inequality of
A.D.Alexandrov and Fenchel (1937/36) which says that

V (C,D,D3, . . . , Dd)2 ≥ V (C,C,D3, . . . , Dd)V (D,D,D3, . . . , Dd)

for C,D,D3, . . . , Dd ∈ C. This inequality is one of the most important geometric inequalities.
It is an unsolved problem to determine the equality cases in the Alexandrov-Fenchel inequality.

Numerous other geometric inequalities are simple consequences of the Alexandrov-Fenchel
inequality. We state two. First, the isoperimetric inequality:

S(C)d

V (C)d−1
≥ S(Bd)d

V (Bd)d−1

for C ∈ C with non-empty interior. Here equality holds precisely in case where C is a Euclidean
ball. There is no corresponding upper bound for the isoperimetric quotient

S(C)d

V (C)d−1
,

but Ball (1991) proved the following reverse isoperimetric inequality: Let C be an o-symmetric
convex body with non-empty interior, where o is the origin. Then there is a non-singular linear
transfomation T : Ed → Ed such that

S(TC)d

V (TC)d−1
≤ (2d)d.

Secondly, the Brunn-Minkowski inequality (1887/96):

V (C + D)
1
d ≥ V (C)

1
d + V (D)

1
d

for C,D ∈ C. Here equality holds precisely if C and D are in parallel hyperplanes or are positive
homothetic. The Brunn-Minkowski inequality, which also yields the isoperimetric inequality,
has led to numerous generalizations. We mention the Prékopa-Leindler inequality for integrals
(1971/72) and the so-called generalized isoperimetric inequalities together with the related
concentration of measure phenomenon on metric probability spaces.

The modern theory of mixed volumes deals with surface and curvature measures.
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In the last decades it turned out that there are several bridges between convex and algebraic
geometry. Bridgeheads on the convexity side are mixed volumes and the Alexandrov Fenchel
inequality, other ones are Newton polytopes of systems of algebraic equations.

3 Polar Bodies in High Dimensions

Given a convex body C in Ed with the origin in its interior, its polar body C∗ is defined by

C∗ = {y : x · y ≤ 1 for all x ∈ C}.

It is easy to see that C∗ is again a convex body with the origin in its interior.
In view of applications in the geometry of numbers, it is of interest to give upper and lower

bounds for the quantity
V (C)V (C∗).

Blaschke (1917) for d = 3 and Santaló (1949) for general d, showed that for convex bodies C
which are symmetric in o,

V (C)V (C∗) ≤ V (Bd)2,

where equality holds precisely in case where C is a Euclidean ball. Thinking of applications in
the geometry of numbers, Mahler (1939) conjectured that for an o-symmetric convex body C
with non-empty interior the following inequality holds:

4d

d!
≤ V (C)V (C∗).

He could prove this only with the smaller constant 4d/d!2. While Mahler’s conjecture is still
open, Bourgain and Milman (1989) showed that there is an absolute constant c > 0 such that
in all dimensions d for all o-symmetric convex bodies C with non-empty interior one has,

cd

d!
≤ V (C)V (C∗).

We have chosen this result as a typical one for the local theory of normed spaces. This
theory started with a striking theorem of Dvoretzky (1961) which says that any normed space
of sufficiently large finite dimension has comparatively large subspaces which are almost Eucli-
dean. Characteristically, local theory results deal with properties of convex bodies, which are
independent of the dimension. In many cases this means that the phenomenon in question is
determined by an absolute constant.

4 Valuations

A real valuation on the space of convex bodies is a function φ : C → R with the following weak
additivity property:

φ(C ∪D) + φ(C ∩D) = φ(C) + φ(D) for C,D,C ∪D,C ∩D ∈ C

and φ(∅) = 0.

Besides real valuations on C, valuations on certain families of sets with values in an Abelian
group have been studied. Valuations can be found at many corners of convex and discrete
geometry, but it was only Blaschke (1935/37) who first defined valuations and started their
systematic study. Examples of valuations are the volume and the surface area, more generally
the quermassintegrals, the affine surface area, lattice point enumerators and certain Hamel
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functions on the space of convex polytopes. Mixed volumes also give rise to valuations. Measure
and Jordan measure are valuations on the space of measurable, resp. Jordan measurable sets.

The space C of convex bodies is endowed with a natural topology. The main problem in
the theory of valuations is the following: given properties such as continuity or semi-continuity,
monotony, translation or rigid motion invariance, describe all valuations with these properties.
Here, a function φ : C → R is rigid motion invariant if

φ(ρC) = φ(C) for each C ∈ C and each rigid motion ρ : Ed → Ed.

The functional theorem of Hadwiger (1951), anticipated in vague form by Blaschke (1935/37),
can be stated as follows: The continuous, rigid motion invariant valuations on C are precisely
the functions φ : C → R which have a representation of the form

(1) φ = λ0W0 + · · ·+ λdWd with λ0, . . . , λd ∈ R.

A recent functional theorem of Ludwig and Reitzner (1999) shows that the upper or lower semi-
continuous valuations on C which are invariant with respect to volume-preserving affinities on
Ed are precisely the functions φ : C → R of the form

φ = λ0χ + λ1A + λ2V with λ1, λ2, λ3 ∈ R.

Here χ and A denote the Euler characteristic and the affine surface area on C. The latter is a
notion of surface area which is invariant with respect to volume-preserving affinities. Originally
it was introduced in affine differential geometry. In recent years it turned out to be a valuable
tool in convex geometry, for example for the problem of approximation of convex bodies by
convex polytopes.

These and similar results are satisfying from an aesthetic point of view. Rota even considered
Hadwiger’s functional theorem to be one of the ten most beautiful theorems of mathematics in
the 20th century.

Typical applications of such functional theorems are as follows: Let f be a real function
on C. If it can be shown that f is, say, continuous and rigid motion invariant, the functional
theorem implies that it is of the form (1). Possibly, a homogeneity property then yields that
f is a multiple of the volume or of some other quermassintegral. The latter may be a relevant
geometric result. In this way easy proofs of the principal kinematic formula in integral geometry
and of a qualitative form of the Minkowski-Hlawka theorem in the geometry of numbers can be
achieved.

5 Euler’s Polytope Formula and Related Topics

Given a convex polytope in E3 with v vertices, e edges and f facets, Euler’s polytope formula
(1752/53) says that

v − e + f = 2

It is surprising that this simple result was not known already in antiquity. A hundred years
before Euler, Descartes gave a result of which Euler’s formula is an easy consequence. Euler’s
proof has been criticized since it used implicitly an argument of the type of the Jordan curve
theorem. This criticism should not be taken too seriously, since for the proof Jordan’s theorem
is needed only in the easy case of polygonal curves. Legendre gave a beautiful alternative proof,
using the well-known area formula for spherical polygons.

Schläfli (1850/52) extended Euler’s formula to all dimensions: Consider a convex polytope
P in Ed and let fi be the number of its i-dimensional faces for i = 0, . . . , d − 1. The vector
f(P ) = (f0, . . . , fd−1) is called the f -vector of P . Then

(2) f0 − f1 +− · · ·+ (−1)d−1 = 1 + (−1)d−1.
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Unfortunately, Schläfli’s proof contained a serious gap, which was filled only in 1970 by means
of the shelling theorem of Bruggesser and Mani. A topological proof of Poincaré (1893/99) also
had a gap, which could be filled by tools from algebraic topology achieved only by the 1930s.
The first elementary proof of (2) is due to Hadwiger (1955).

Considering Euler’s polytope formula, the problem arises to characterize the integer vectors
(f0, . . . , fd−1) which are f -vectors of convex polytopes. For d = 3 this was solved by Steinitz
(1906): An integer vector (v, e, f) is an f -vector of a convex polytope in Ed precisely in case
where

v − e + f = 2, 4 ≤ v ≤ 2f − 4, 4 ≤ f ≤ 2v − 4.

The problem remains unsolved in dimensions greater than 3. For the important special case of
convex polytopes where all faces are simplices, McMullen (1971) stated his g-conjecture which
characterizes the f -vectors. This conjecture was confirmed by Stanley (1980), Billera and Lee
(1981) and McMullen (1993), using deep algebraic tools.

Even questions about the f -vectors of convex polytopes which, presumably, are less de-
manding remain open. An example is the following question of Ziegler: Give precise bounds
for

f1 + f2

f0 + f3 + 20
,

where (f0, f1, f2, f3) ranges over all f -vectors of convex polytopes in E4.
Given a convex polytope, its faces of all dimensions, including the empty face, form a

polytopal cell complex in the sense of algebraic topology, the boundary complex of the polytope.
The problem arises, to characterize the polytopal cell complexes which are (isomorphic to)
boundary complexes of convex polytopes. For d = 3 this problem was solved by Steinitz (1922).
His result is usually stated in the following form: Each 3-connected planar graph is isomorphic
to the edge graph of a convex polytope in E3. In higher dimensions this problem is far from a
solution.

The Euler polytope theorem and its extensions have numerous applications in many fields
of mathematics, in particular in convex and discrete geometry. We state two. First, the average
number of edges of a facet of a convex polytope in E3 is less than 6. This shows that, in
particular, there is no convex polytope in E3 having only hexagonal facets. Second, Cauchy’s
rigidity theorem (1813): Consider a closed, convex polyhedral surface in E3, such that all facets
are rigid and such that the facets are connected along common edges by hinges. Then the
surface is still rigid. Minor errors in Cauchy’s proof were corrected later on. Connelly (1978)
showed that the rigidity does not hold if the convexity assumption is abandoned: There are
(non-convex) flexible polytopal spheres. Recently, Sabitov (1998) proved that the volume of a
flexible polytopal sphere remains constant while flexing, thus confirming the bellows conjecture.

6 Lattice Polytopes and Lattice Point Enumerators

Let Zd denote the integer lattice in Ed, i.e. the set of all points with integer coordinates. A
convex polytope is a lattice polytope if all its vertices are points of Zd. Define the lattice point
enumerators L and Lo and L· on the space of all convex lattice polytopes P by

L(P ) = #(P ∩ Zd), Lo(P ) = #((relative interior of P ) ∩ Zd), L·(P ) = L(P )− Lo(P ),

where # stands for cardinal number.
A simple theorem of Pick (1899) is the following: Let P be a Jordan lattice polygon, that

is a planar, not necessarily convex polygon whose boundary is a Jordan polygon and such that
all vertices of P are in Z2. Then

V (P ) = L(P )− 1
2
L·(P )− 1.

Here, by V we mean the area in E2. Examples show that no direct extension of this result to
higher dimensions is possible. Considering, besides the lattice polytope P , lattice polytopes of
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the form nP where n = 1, . . . , d, Reeve (1957/59) and Macdonald (1963) proved the following
result: Let P be a convex lattice polytope with non-empty interior. Then

(i) d!V (P ) = L(dP )−
(d

1

)
L

(
(d− 1)P

)
+− · · ·+ (−1)d−1

( d

d− 1

)
L(P ) + (−1)d,

(ii)
(d− 1)d!

2
V (P ) = M

(
(d− 1)P

)
−

(d− 1
1

)
M

(
(d− 2)P

)
−+ · · ·

· · ·+ (−1)d−2
(d− 1

d− 2

)
M(P ) +

1
2

+
1
2
(−1)d,

where M(P ) = L(P )− 1
2
L·(P ) =

1
2
(
L(P ) + Lo(P )

)
.

These results lead to the study of the quantities L(nP ), Lo(nP ), L·(nP ) for n ∈ N, where
P is a lattice polytope. Ehrhart (1967) proved the following polynomiality theorem:

L(nP ) is a polynomial of degree d in n ∈ N.

The constant term in this polynomial is 1 and the leading coefficient equals V (P ). More general
is the lattice point theorem of McMullen and Bernstein (1975/76). It resembles Minkowski’s
theorem on mixed volumes: Let P1, . . . , Pm be convex lattice polytopes. Then

L(n1P1 + · · ·+ nmPm) is a polynomial in n1, . . . , nm ∈ N.

The above lattice point enumerators are valuations on the space of all lattice polytopes in Ed

which, in addition, are integer unimodular invariant. This means: If U is an integer d×d matrix
with determinant ±1 and u ∈ Zd, then L(UP + u) = L(P ) for each convex lattice polytope
P , and similarly for Lo and L·. The valuation theorem of Betke and Kneser (1985) describes
these valuations: The integer unimodular valuations on the space of convex lattice polytopes
in Ed with ordinary addition and multiplication with real numbers form a real vector space of
dimension d + 1. This space has a basis {L0, . . . , Ld} such that

Li(nP ) = niLi(P ) and L(nP ) = L0(P ) + L1(P )n + · · ·+ Ld(P )nd

for convex lattice polytopes P and n ∈ N.
These results indicate the rich structure of the space of lattice polytopes. Lattice polyto-

pes play a prominent role in several areas of mathematics and its applications, for example in
optimization and crystallography. Newton polytopes, that is convex lattice polytopes determi-
ned by polynomials and systems of polynomials in one or several variables, convey important
information on the polynomials, resp. on the systems of polynomials.

7 Theorems of Minkowski and Minkowski-Hlawka

Let f : Ed → [0,∞), say, a positive definite quadratic form, and let c > 0 be a constant. The
problems arise, first, to find out whether the inequality

f(u) ≤ c

has integer solutions different from o and, secondly, to determine in the positive case such
solutions. These are questions of Diophantine approximation which led to the development
of the geometry of numbers and which, in recent years, have been studied in the context of
algorithmic geometry.

A lattice L in Ed is the system of all integer linear combinations of d linearly independent
vectors. These vectors are said to form a basis of L and the absolute value of their determinant
is the determinant d(L) of L. An example of a lattice is the integer lattice Zd. It has determinant
1. The first of the above problems amounts to the question whether the set C = {x : f(x) ≤ c}
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contains a point u 6= o of the integer lattice. An answer, which in many cases is satisfactory, is
given by the fundamental theorem of Minkowski (1893): Let C be a convex body with center
o and let L be a lattice in Ed. If V (C) ≥ 2dd(L), then C contains at least one pair of points
±l 6= o of L. On the other hand, we have the following theorem of Minkowski-Hlawka (1944):
Let J be a Jordan measurable set in Ed where V (J) ≥ 1. Then there is a lattice L with d(L) = 1
such that J contains no point l 6= o of L.

In order to state more geometric versions of these results, we need the following definitions:
Let C be a convex body with center o and L a lattice in Ed. The family {C + l : l ∈ L} of
translates of C by lattice vectors is said to be a lattice packing of C with packing lattice L if no
two of the translates overlap. Its density then is the proportion of space covered by the bodies
of the packing. In this terminology the fundamental theorem of Minkowski is almost trivial. It
simply says that the density of a lattice packing of C is at most one. The Minkowski-Hlawka
theorem readily implies that for each convex body C with center o there is a lattice packing
with density at least 2−d.

For many years it was thought that the tiny lower bound 2−d for the maximum density of
a lattice packing of a convex body with center o was far from the truth. Now it is believed by
many mathematicians that for general C no essential refinement of this bound is possible, not
even in the case where C is a solid Euclidean ball. This is even more surprising, since all known
proofs of the Minkowski-Hlawka theorem are based on mean value arguments, so one is led to
think - presumably erroneously - that essential refinements are feasible.

Considering the results of Minkowski and Minkowski-Hlawka, in recent years the questions
were considered to specify algorithms to find points of a given lattice in a given convex body
and to find lattices which provide dense lattice packings.

A surprisingly efficient algorithm of Betke and Henk (2000) finds densest lattice packings of
convex polytopes in dimension 3. As a consequence of the LLL-reduction algorithm for positive
definite quadratic forms, Lenstra, Lenstra and Lovász (1982) specified a polynomial algorithm
to find lattice points in a convex body of large volume in Ed. Good binary error-correcting codes
may be considered as subsets of the set of vertices of the unit cube in Ed such that any two
vertices of such a subset have large distance. Thus suitable balls with centers at these vertices
do not overlap, hence give rise to a finite packing of balls. This packing may be continued
periodically to give a packing of balls in Ed which, in some cases, is even a lattice packing.
This relation between error-correcting codes and periodic or even lattice packing of balls was
discovered by Leech and Sloane (1964/71) and culminated in the work of Rush (1989), who
finally constructed in this way lattice packings of balls with density 2−d+o(d) as d → ∞, thus
reaching the Minkowski-Hlawka bound. Unfortunately, the codes used by Rush are not given
in an constructive manner.

We believe that the following heuristic principle holds in many contexts: If a situation is
sufficiently complicated, then - cum grano salis - the average object is extremal. Here ’sufficiently
complicated’ may mean ’of sufficiently high dimension’ or ’with sufficiently many parameters’.
It seems that the Minkowski-Hlawka density bound for lattice packings of balls provides one
such example, other examples can be found in the local theory of normed spaces.

8 Sums of Moments

Let J be a Jordan measurable subset of Ed. We consider the problems to determine or, at least,
to estimate for n = 1, 2, . . . the minimum

min
{c1,...,cn}⊂Ed

∫
J

min
{c1,...,cn}

{||x− ci||2} dx

and to describe the n-tuples {c1, . . . , cn} for which it is attained, the minimizing configurations.
The integral may be interpreted as the volume above sea level of a mountain landscape with n
valleys which have the form of pieces of paraboloids of revolution and with deepest points at
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c1, . . . , cn.
Over the last 60 years different versions of these problems appeared in various fields. We

state three pertinent results. The first is the inequality for sums of moments of L.Fejes Tóth
(1952) which is as follows: Let f : [0,∞) → [0,∞) be monotone increasing and let H be a
convex 3,4,5 or 6-gon. Then

min
{c1,...,cn}∈E2

∫
H

min
{c1,...,cn}

{f(||x− ci||)} dx ≥
∫

Hn

f(||x||) dx,

where Hn is a regular hexagon with center at the origin and area equal to V (H)/n. The
second result is due to the author (2004) and refines an earlier result of Zador (1982): Let
f : [0,∞) → [0,∞) satisfy a certain growth condition. Then there are positive constants div
and α depending on f and d, resp. on f , such that

min
{c1,...,cn}∈Ed

∫
J

min
{c1,...,cn}

{f(||x− ci||)} dx ∼ div V (J)
d+α

d f
( 1
n

1
d

)
as n →∞.

Third, let Cn = {c1, . . . , cn}, n = 1, 2, ..., be a sequence of minimizing configurations for d = 2.
Then a result of Gruber (2001), reproved by G.Fejes Tóth (2001), shows that asymptotically
as n →∞, Cn is a ’regular hexagonal pattern’. This confirms a conjecture of Gersho (1979) in
case d = 2. For d > 2 Gersho’s conjecture remains open. We doubt that it is true for sufficiently
large dimensions.

These results have numerous applications. We mention two, one in discrete and one in convex
geometry: The maximum density of a packing in E2 with circular discs, all of the same radius,
equals

π√
12

.

The convex polytopes Pn in E3 with n facets and minimum isoperimetric quotient have isope-
rimetric quotient

S(Pn)d

V (Pn)d−1
∼ 36π + 20

√
3π2 1

n
= 113.09... +

341.98...

n
as n →∞

and in an asymptotic sense their facets are regular hexagons, all of the same size. (The simple
consequence of Euler’s polytope formula on the average number of edges of a facet of a convex
polytope in E3 mentioned in Section 5 shows that not all facets can be hexagons.) Other
applications deal with data transmission, numerical integration, probability and approximation
theory.

9 Koebe’s Representation Theorem for Planar Graphs

Given a (finite) planar graph G, Koebe (1936) showed in his representation theorem for planar
graphs that one may assign to each vertex of G a circular disc such that these discs form a packing
in E2. Two discs touch precisely in the case where the corresponding vertices are connected by
an edge. This result was re-discovered by Andreev (1970) and by Thurston (1978). The latter
specified an algorithm how to find such packings. An essential refinement of Koebe’s theorem
is due to Brightwell and Scheinerman (1993): Let G be a 3-connected planar graph. Then to
each vertex there corresponds a circular disc. These discs form a packing such that any two
discs touch precisely in the case where the corresponding vertices are connected by an edge.
Dually, to each country of the graph corresponds a circular disc such that these discs also form
a packing and any two discs touch precisely in the case where the corresponding countries have
a common edge. Finally, for any edge of G the discs corresponding to its vertices and the discs
corresponding to the adjacent countries have a common point where the vertex circles intersect
the country circles orthogonally.
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Koebe’s theorem, its generalizations and the algorithm of Thurston have numerous applica-
tions, in particular in graph theory. We consider two deep applications. First, by stereographic
projection, the Brightwell-Scheinerman theorem easily yields the Steinitz representation theo-
rem for convex polytopes mentioned in Section 5. Secondly, let D be a simply connected domain
in the complex plane. Then the algorithm of Thurston permits to construct arbitrarily precise
piecewise linear approximations to the analytic function which maps D onto the unit disc.
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