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1 Introduction and Statement of Results

1.1 Let C be a convex body in Euclidean d-space IE d, that is a compact convex
subset of IE d with non-empty interior and let δ(·, ·) be a metric or some other
measure of distance on the space of all convex bodies in IE d. For n = d+1, d+2,
. . . , consider a family Pn of convex polytopes in IE d, for example the families of
all convex polytopes with n facets, k-faces or vertices, respectively, which may or
may not be circumscribed or inscribed to C.

A main goal is to determine the quantity

δ(C,Pn) = inf{δ(C,P ) : P ∈ Pn}

and to describe the polytopes for which equality holds, the best approximating
polytopes of C in Pn. With the exception of trivial cases, such a goal is out
of reach. For the metrics and other measures of distance commonly used in
convex geometry, upper estimates for δ(C,Pn) of the right order are comparatively
easy to obtain. The proofs of asymptotic formulae for δ(C,Pn) as n → ∞ for
sufficiently differentiable convex bodies, are more difficult. It is highly plausible
that under additional differentiability assumptions one can obtain information on
the error of the asymptotic formulae and even extend the asymptotic formulae to
asymptotic series. For selected references see below. This topic, including initial
results on the form of the best approximating polytopes, is surveyed in [12, 14].



1.2 In this article we will consider the symmetric difference metric δV (·, ·) and
the family P c

(n) = P c
(n)(C) of all convex polytopes with at most n facets and

circumscribed to C.
In [11, 13] it was shown that for C (the boundary of which is) of class C2 with

Gauss curvature κC > 0, we have

(1) δV (C,P c
(n)) ∼

1

2
divd−1A(C)

d+1
d−1

1

n
2

d−1

as n→∞.

Here A(C) or A(bdC) is the equi-affine surface area measure of (the boundary
bdC of ) C,

(2) A(C) =
∫

bd C

κC(x)
1

d+1dσ(x),

where σ is the ordinary surface area measure in IE d. divd−1 is a constant in-
troduced in [13], depending only on d. The only explicitly known values are
div1 = 1/12 and div2 = 5/18

√
3. The case d = 2 of (1) was settled before by

Fejes Tóth [8]; for an alternative proof see [23]. Fejes Tóth [8] also conjectured
the case d = 3. Böröczky [3] showed that the assumption κC > 0 can be omitted.

For d = 2 Ludwig [22] specified the second term of an asymptotic series
development of δV (C,P c

(n)). The complete series was given by Tabachnikov [27]
in the form of a result on periodic trajectories of the “dual” or “exterior” billiard
determined by C.

For d = 3 and C of class C3 with κC > 0 the author [18] proved that

δV (C,P c
(n)) =

5A(C)2

36
√

3n
+O

( 1

n1+ 1
4

)
as n→∞,

using techniques which, at present, are available only for d = 3. Böröczky [4]
informs us that for C = B3, the solid Euclidean unit ball in IE 3, the error of
the asymptotic formula for δV (B3,P i

n) has a lower bound of the form f(n)/n2

where f(n) → ∞ as n → ∞. Here P i
n is the family of all convex polytopes

with n vertices inscribed to B3. This makes it plausible that under suitable
differentiability assumptions on C, the asymptotic series for δV (C,P c

(n)) in case
d = 3 should have the form

δV (C,P c
(n)) =

5A(C)2

36
√

3n
+
A2(C)

n
3
2

+ . . .

with appropriate coefficients A2(C), etc.
For general d Böröczky [2] proved that for C of class C3 with κC > 0,

δV (C,P c
(n)) =

1

2
divd−1A(C)

d+1
d−1

1

n
2

d−1

+O
( 1

n
2

d−1
+ 1

8d2

)
as n→∞.
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1.3 The aim of this article is to show the following result.

Theorem. Let C be a convex body in IE d of class C3 with Gauss curvature κC > 0
and equi-affine surface area A(C). Then, given ε > 0,

(3) δV (C,P c
(n)) =

1

2
divd−1A(C)

d+1
d−1

1

n
2

d−1

+O
( 1

n
2

d−1
+ 1

3(d−1)
−ε

)
as n→∞.

Actually, a slightly stronger result will be given, see (68) and (82). Scrutiny of
the proof shows that it is sufficient to assume that C is of class C2 with Lipschitz
second derivatives, as in Böröczky [2].

We remark that formulae of the type (3) also hold for the mean width distance
and Lp metrics, for families of inscribed and general polytopes and with vertices
instead of facets. The proofs are, in essence, the same.

We conjecture that under suitable differentiability assumptions on C there is
an asymptotic series for δV (C,P c

(n)) of the form

δV (C,P c
(n)) =

1

2
divd−1A(C)

d+1
d−1

1

n
2

d−1

+ A2(C)
1

n
3

d−1

+ · · · as n→∞,

and, similarly, in the other cases.

1.4 The volume approximation of Bd by polytopes in P c
(n)(B

d) has a natural
application to the isoperimetric problem for convex polytopes with n facets. Early
contributions of this type are Minkowski’s [24] proof of a classical theorem of
Lindelöf [21] and results of Fejes Tóth [7], see the extensive survey [9].

Our approximation result above can be applied in the following more general
context: let IE d be endowed with a further norm. A natural choice for “volume”
in the normed space thus obtained is the ordinary volume V (·). For the notion
of “surface area” several natural definitions have been proposed by Busemann,
Benson and Holmes-Thompson. These amount to the introduction of a convex
body I with center at the origin o, a so-called isoperimetrix of the normed space.
The surface area SI(C) of the convex body C then is defined by

SI(C) = lim
ε→+0

V (C + εI)− V (C)

ε
, where C + εI = {x+ εy : x ∈ C, y ∈ I}.

For more information and for references we refer to the book [28].
Assume now that Pn is a convex polytope in IE d having at most n facets

and with minimum isoperimetric quotient SI(Pn)d/V (Pn)d−1 among all convex
polytopes in IE d with at most n facets. A result of Diskant [5] shows that after
applying a suitable homothety to Pn, we may assume that Pn is circumscribed
to I, i.e. Pn ∈ P c

(n)(I). (Note that this is related to Wulff’s [30] theorem on the
form of crystals and that Lindelöf’s theorem cited before is the Euclidean case of
Diskant’s result.) The definition of SI(Pn) now shows that SI(Pn)d/V (Pn)d−1 =
ddV (Pn). Since the isoperimetric quotient is minimum, Pn ∈ P c

(n)(I) is then a
best approximating circumscribed polytope of I. Using this, it was shown in
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[16, 17, 18] that in case d = 3 the polytope Pn has “asymptotically regular
hexagonal facets” and there is an asymptotic formula for SI(Pn)3/V (Pn)2 as n→
∞ with a rather precise estimate of the error.

As a consequence of our Theorem we have the following result for general d.

Corollary. Let I be an isoperimetrix in IE d related to a norm. Assume that I
is of class C3 with Gauss curvature κC > 0 and equi-affine surface area A(C).
For n = d + 1, d + 2, . . . , let Pn ∈ P c

(n)(I) be a convex polytope with minimum

isoperimetric quotient SI(Pn)d/V (Pn)d−1. Then, for any ε > 0,

SI(Pn)d

V (Pn)d−1
= ddV (I) +

dd

2
divd−1A(I)

d+1
d−1

1

n
2

d−1

+O
( 1

n
2

d−1
+ 1

3(d−1)
−ε

)
as n→∞.

2 Proof of the Theorem

We first introduce needed notation. Let bd, int, relbd, relint, conv, diam, width,
det, grad, #, ‖ · ‖, | · |, V (·), Sk−1 and Bk stand for boundary and interior,
boundary and interior relative to the affine hull or the boundary of C, convex
hull, diameter, minimum width (of a convex set), discriminant (of a positive
definite quadratic form), gradient, cardinal number, Euclidean norm, (d − 1)-
dimensional (in one case (d − 2)-dimensional) volume or ordinary surface area
measure, volume, Euclidean unit sphere and solid unit ball in IE k, respectively.

In slight contrast with the use above, we denote by O(t) a function of the
form αt for t ≥ 0 where α is a positive constant and similarly for the other
Landau symbols. If O(·) appears several times in some chain of inequalities, this
does not mean that it denotes necessarily the same function. In general, small
Greek letters denote constants. Unless stated otherwise, these constants and the
constants in the Landau symbols depend only on C, possibly also on d or ε. In
order not to run out of Greek letters, we use in some cases the same letter to
denote different constants. This should cause no ambiguities.

When speaking of squares, parallelograms and circular discs, we mean cubes,
parallelotopes and solid Euclidean balls of dimension d− 1.

For p ∈ bdC let Hp be the (unique) support hyperplane of C at p. Support
halfspaces are denoted H+, where H is a support hyperplane. For terminology
not explained we refer to [26].

2.1 Preliminaries

2.1.1 Metric Projection. The mapping “π” which maps each point x of IE d

onto its unique nearest point xπ of C is the metric projection of IE d onto C. The
following properties of π are well known:

(4) ‖xπ − yπ‖ ≤ ‖x− y‖ for x, y ∈ IE d.

(5) Let z ∈ bdC. Then {x ∈ IE d : xπ = z} is the exterior normal of bdC at z.
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(6) |Mπ| ≤ |M | for any measurable set M in a convex polytopal or smooth
surface in IE d.

(7) Let Q be a convex polytope in IE d containing C. Then π maps bdQ
homeomorphically onto bdC.

Blaschke’s rolling theorem and its dual say the following, see [1], § 24, [20],
sect. 2: Since C is of class C3 with Gauss curvature κC > 0, there are constants
%, σ > 0 (depending only on C) such that for each p ∈ bdC there are a translate
of %Bd contained in C and a translate of σBd containing C, both with boundary
point p. This implies the following two propositions:

(8) There are constants α > 0, β > 1 such that for any p ∈ bdC and x ∈ Hp

with ‖x− p‖ ≤ α or ‖xπ − p‖ ≤ α hold

1

β
‖x− p‖2 ≤ ‖x− xπ‖ ≤ βmin{‖x− p‖2, ‖xπ − p‖2}.

(9) There are constants γ, ζ > 0 such that for any point x ∈ IE d\C with
‖x − xπ‖ ≤ γ the volume of the compact convex cone with apex x and
base conv({x} ∪ C) ∩Hxπ is at least ζ‖x− xπ‖(d+1)/2.

A local version of Steiner’s formula for the volume of parallel bodies of a
convex body (see [26], ch. 4) yields the next remark:

(10) There is a constant η > 0 such that for any measurable set M ⊂ bdC the
local parallel set Mt = {x ∈ IE d : xπ ∈ M, ‖x − xπ‖ ≤ η} is measurable
and

V (Mt)

{
≤ 2t|M |
≥ t|M |

}
for 0 ≤ t ≤ η.

2.1.2 Dissection of bd C. By a dissection of a measurable set M we mean
a finite family of measurable subsets of M with boundaries of measure 0 such
that M is the union of these subsets and any two distinct subsets have at most
boundary points in common.

As a preparatory result we consider dissections of Sd−1:

(11) There is a constant ϑ > 1 depending only on d with the following property:
for l = 1, 2, . . . , the sphere Sd−1 can be dissected into l spherically convex
sets Ai, i = 1, . . . , l, such that Ai contains a cap of Sd−1 of spherical
radius 1/ϑl1/(d−1) and is contained in a concentric cap of spherical radius
ϑ/l1/(d−1).

For the proof of (11) we may assume that l ≥ 2d2d−1. Choose an integer m ≥ 3
such that 2d(m − 1)d−1 ≤ l < 2dmd−1. Let K be a cube of edge length 2
circumscribed to Sd−1. Dissect each of the 2d facets Ki, i = 1, . . . , 2d, of K into
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md−1 squares of edge length 2/m. Order these md−1 squares starting with a
square containing a vertex of Ki. Then take the adjacent squares in any order.
Next take the adjacent squares of the latter in any order, etc. For i = 1, . . . , 2d
consider the centers of the first li squares in Ki where li is chosen such that
(m− 1)d−1 ≤ li ≤ md−1 and l1 + . . .+ l2d = l. This gives a set of l points on bdK
such that any two distinct points have distance at least 2/m ≥ 1/l1/(d−1) and any
point on bdK has distance at most 3

√
d− 1/m ≤ 12

√
d− 1/l1/(d−1) from the

nearest point in this set. Here “distance” means Euclidean distance measured in
bdK. The radial projection of bdK onto Sd−1 and its inverse both are Lipschitz
with Lipschitz constants depending only on d. Thus there is a constant ϑ > 1
depending only on d, such that the radial projection of our set of l points on
bdK into Sd−1 is a set of l points on Sd−1 with the following properties: any two
distinct of its points have spherical distance at least 2/ϑl1/(d−1) and for any point
on Sd−1 the spherical distance to the nearest point of this set is at most ϑ/l1/(d−1).
To conclude the proof of (11) take for Ai, i = 1, . . . , l, the Dirichlet–Voronoi cells
on Sd−1 of the points of this set, using spherical distance.

Assume from now on that
o ∈ intC.

For p ∈ bdC let Hp be a hyperplane which intersects the ray IR +p orthogonally,
but does not meet C. Let “ ′ ” denote the orthogonal projection intoHp. Choose a
Cartesian coordinate system in Hp with origin p′. Together with the normal unit
vector of Hp pointing to C it forms a Cartesian coordinate system corresponding
to p. When we speak of the “lower side” of C, of “below” or “above” this is
meant with respect to the last coordinate.

Next it will be shown that

(12) there is a constant ι > 1 such that for all sufficiently large l the following
hold: there are a dissection Ci, i = 1, . . . , l, of bdC into l sets and for
each i a point pi ∈ Ci such that for a corresponding Cartesian coordinate
system the projection C ′

i is convex and

1

ιl
1

d−1

Bd−1 ⊂ C ′
i ⊂

ι

l
1

d−1

Bd−1 (⊂ 1

3
C ′).

The radial projection of Sd−1 onto bdC and its inverse both are Lipschitz with
Lipschitz constants depending only on C where “distance” in bdC is Euclidean
distance measured in bdC. Similarly, for any p ∈ bdC the orthogonal projection
of the piece on the lower side of C over 1

2
C ′(⊂ Hp) onto 1

2
C ′ and its inverse both

are Lipschitz. These Lipschitz constants have an upper bound depending only on
C (and not on the individual p). These remarks together with (11) yield (12).

2.1.3 Representation of bd C. We will apply (12). Let ι > 1 be chosen as
in (12) and let l be sufficiently large. For each i consider a Cartesian coordinate
system corresponding to pi and represent the lower side of C in the form

{(s, fi(s)) : s ∈ C ′},
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where fi is a suitable convex function. Since C is of class C3, a version of a remark
of Schneider [25], (7), then shows that

(13) fi| relintC ′ is a convex function of class C3 and there is a constant κ > 0

such that |fi,j |, |fi,jk |, |fi,jkm |, (1 + (grad fi)
2)

1
2 ≤ κ on 1

2
C ′.

Here fi,j , fi,jk , fi,jkm are first, second and third partial derivatives of fi. To
each u ∈ 1

2
C ′ we let correspond the positive definite quadratic form qiu on IE d−1

defined by

qiu(s) =
∑
j,k

fi,jk (u)sjsk for s = (s1, . . . , sd−1) ∈ IE d−1, u ∈ 1

2
C ′.

(The positive definiteness of qiu is a consequence of the assumption that κC > 0;
see also the following remarks.) From Blaschke’s rolling theorem and its dual (see
2.1.1) we deduce that

(14) there is a constant λ > 1 such that

1

λ
≤ qiu(s)

‖s‖2
≤ λ for s ∈ IE d−1, 6= o, u ∈ 1

2
C ′,

1

λ
≤ (det qiu)

1
d+1 ≤ λ for u ∈ 1

2
C ′.

If x is on the lower side of C and x′ = u ∈ 1
2
C ′, we write κC(u) instead of κC(x).

Then

(15) κC(u) =
det qiu

(1 + (grad fi(u))2)
d+1
2

for u ∈ 1

2
C ′.

(16) κC(·) is of class C1 and has bounded partial derivatives on 1
2
C ′ where the

bound depends only on C.

2.1.4 Inequalities and Infinite Products. The following versions of Hölder’s
inequality will be needed:

(17)
∑

i

1

a
2

d−1

i

≥ n
d+1
d−1

1

(
∑
i
ai)

2
d−1

for a1, . . . , an > 0,

(18)
∑

i

a
d+1
d−1

i bi ≥ (
∑

i

aibi)
d+1
d−1

1

(
∑
i
bi)

2
d−1

for a1, b1, . . . , an, bn > 0,

compare [6] or [19], sect. 2.7, 2.8. For the next remark see [6] or [29], sect. 1.4:

(19) let a, ε > 0. Then

(1 +
a

t
)(1 +

a

t1+ε
)(1 +

a

t(1+ε)2
) . . . ∼ 1 +

a

t
as t→∞.
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2.2 Facets and Dirichlet–Voronoi Cells

For n = d+ 1, d+ 2, . . . , let Pn ∈ P c
(n) be a best approximating polytope of C.

2.2.1 Diameters of the Facets of Pn. We will show that

(20) there is a constant µ > 0 such that max{diamF : F facet of Pn} <
µ

n
1

d−1

.

Since the proof of (20) is rather long it will be divided into several steps.
First, we make some preparations. It is not too difficult to prove the following

complement of (6):

(21) Let 0 < ν < 1. Then for all sufficiently large n holds: ν|M | ≤ |Mπ| for
any measurable set M in bdPn.

The next proposition is a consequence of (8) (consider the cases ‖x− p‖ ≤ α and
‖x− p‖ ≥ α separately):

(22) For any ξ > 0 there is % > 0 such that for all sufficiently large n we have
the following: for each p ∈ bdC and x ∈ Hp with ‖x − p‖ ≥ %/n1/(d−1)

holds

‖x− xπ‖ ≥ ξ

n2/(d−1)
.

Now the following will be shown:

(23) Let % > 0 and let σ > % be so large that ((σ+%)/(σ−%))d−1 ≤ 5/4. Then
for any compact convex set F in IE d−1 with o ∈ F and diamF ≥ 2σ,

|{x ∈ F : ‖x‖ ≥ %}| ≥ 3

4
|F |.

Let r ∈ F have maximum distance from o. Since o ∈ F and diamF ≥ 2σ, we
have that ‖r‖ ≥ σ. Let L be the line through o and r and let H be the (d− 2)-
dimensional plane in IE d−1 orthogonal to L which supports %Bd−1 and separates
it from r. Consider the unbounded convex cone with apex r generated by F ∩H.
The convexity of F then shows that the part of the cone between r and H is
contained in F and the part between H and −H contains F ∩ %Bd−1. Thus,

|F | ≥ (‖r‖ − %)|F ∩H| 1

d− 1
,

|F ∩ %Bd−1| ≤ (‖r‖ − %)|F ∩H| 1

d− 1

((‖r‖+ %

‖r‖ − %

)d−1
− 1

)
≤ |F |

((σ + %

σ − %

)d−1
− 1

)
≤ |F |

4
,

concluding the proof of (23). Here |F ∩H| means the (d−2)-dimensional volume
of F ∩H. Clearly, (23) implies the following proposition:
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(24) Let % > 0. Then there is σ > % such that for any p ∈ bdC and any
compact convex set F in Hp with p ∈ F and diamF ≥ 2σ/n1/(d−1) holds

|{x ∈ F : ‖x− p‖ ≥ %

n
1

d−1

}| ≥ 3

4
|F |.

Second, after these preparations, we first show a weaker version of (20):

(25) There is a constant ς > 0 such that for each n there is a facet Fn of Pn

with
diamFn ≤

ς

n
1

d−1

.

If (25) did not hold, then

(26) for any (arbitrarily large) σ > 0 there are infinitely many n such that

min{diamF : F facet of Pn} ≥
2σ

n
1

d−1

.

Let ν = 2/3, ξ = 3 divd−1A(C)(d+1)/(d−1)/| bdC| and choose % corresponding to
ξ as in (22) and σ corresponding to % as in (24). Propositions (26), (24) and
(22) then show that for an infinite set of (sufficiently large) n the following holds:
there is a measurable set Mn in bdPn (a union of pieces of the facets of Pn) such
that |Mn| ≥ 3| bdPn|/4 and ‖x − xπ‖ ≥ ξ/n2/(d−1) for each x ∈ Mn. Then (21)
and (6) imply that |Mπ

n | ≥ 2|Mn|/3 ≥ | bdPn|/2 ≥ | bdC|/2 for an infinite set of
(sufficiently large) n. Combining this with (10) we see that

δV (C,Pn) ≥ V (
⋃

x∈Mn

[x, xπ] ≥ V ({y ∈ IE d : yπ ∈Mπ
n , ‖y − yπ‖ ≤ ξ

n
2

d−1

})

≥ ξ|Mπ
n |

n
2

d−1

>
3

2
divd−1A(C)

d+1
d−1

1

n
2

d−1

for an infinite set of (sufficiently large) n.

Since this contradicts the asymptotic formula (1), the proof of (25) is complete.
Third, using the facets Fn, a polytope Qn−1 ∈ P c

(n−1) will be constructed such
that V (Qn−1)− V (Pn) is small. To begin with, note that the strict convexity of
C (which is a consequence of κC > 0) together with the relation δV (C,Pn) → 0
as n→∞ implies that

(27) max{diamF : F facet of Pn} → 0 as n→∞.

Pn is the intersection of the support halfspaces of C determined by the facets of
Pn. Delete from this intersection the halfspace determined by Fn (see (25)). By
(27) this gives a polytope

(28) Qn−1 ∈ P c
(n−1) for all sufficiently large n.
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Next it will be shown that

(29) there is a constant τ > 0 such that for all sufficiently large n,

V (Qn−1)− V (Pn) ≤ τ

n
d+1
d−1

.

Let pn be the point where the facet Fn touches C and let rn be the point
where an adjacent facet of Pn, say Gn, touches C. Choose yn ∈ Fn ∩Gn. By (25)
‖yn − pn‖ ≤ ς/n1/(d−1). Hence (8) implies that

(30) ‖yn − yπ
n‖ ≤ β‖yn − pn‖2 ≤ βς2

n
2

d−1

for all sufficiently large n.

Since diamGn → 0 by (27) and thus ‖yn − rn‖ → 0 as n → ∞, a second
application of (8) together with (30) shows that

(31) ‖yn − rn‖2 ≤ β‖yn − yπ
n‖ ≤

β2ς2

n
2

d−1

for all sufficiently large n.

For the proof that

(32) there is a constant ν > 0 such that for all sufficiently large n holds

‖x− xπ‖ ≤ ν

n
2

d−1

for each x ∈ Hrn with xπ ∈ F π
n ,

note that by (4), (25), and (31),

‖xπ − rn‖ ≤ ‖xπ − pn‖+ ‖pn − yn‖+ ‖yn − rn‖

≤ ς

n
1

d−1

+
ς

n
1

d−1

+
βς

n
1

d−1

for all sufficiently large n.

Now apply (8) with p = rn to obtain (32). Finally, (32), (25) and (10) together
show that

V (Qn−1)− V (Pn) ≤ 2ν

n
2

d−1

|F π
n | ≤

2νςd−1|Bd−1|
n

2
d−1n

d−1
d−1

for all sufficiently large n,

concluding the proof of (29).
Fourth, we are now ready to prove (20). If (20) did not hold, then for any

(arbitrarily large) φ > 0 there are infinitely many n such that Pn has a facet of
diameter at least 2φ/n1/(d−1). Taking into account (27) and (8) this shows the
following:

(33) Let φ > 0 (arbitrarily large). Then there are infinitely many (sufficiently
large) n such that Pn has a vertex vn with

‖vn − vπ
n‖ ≥

φ2

βn
2

d−1

.
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Choose φ > 0 so large that

(34)
φ

β
> ς,

(35)
φd+1ζ

β
d+1
2

> τ .

For the rest of this subsection assume that n is as in (33). Then, if n is sufficiently
large, (25), (8), (33) and (34) show that vn is not a vertex of Fn. Hence vn must
be a vertex of Qn−1. Since δV (C,Pn) → 0, (29) implies that δV (C,Qn−1) → 0 as
n → ∞. This yields that ‖vn − vπ

n‖ → 0 as n → ∞. Thus (9), (33) and (35)
imply the following:

There are infinitely many (sufficiently large) n such that Rn = H+
vπ

n
∩Qn−1

is a polytope in P c
(n) for which

V (Qn−1)− V (Rn) ≥ φd+1ζ

β
d+1
2 n

d+1
d−1

>
τ

n
d+1
d−1

.

This together with (29) shows that for each n from an infinite set of (sufficiently
large) n there is a polytope Rn ∈ P c

(n) with V (Rn) < V (Pn). This contradicts
the fact that Pn ∈ P c

(n) is best approximating of C and thus concludes the proof
of proposition (20).

2.2.2 Width of the Facets of Pn. We next show the following:

(36) There is a constant ϕ > 0 such that min{width F : F facet of Pn} ≥
ϕ

n
1

d−1

.

First, two auxiliary propositions will be shown:

(37) There is a constant χ > 0 such that for all sufficiently large n the following
holds: let F be any facet of Pn and let Qn−1 be the intersection of the
support halfspaces of C determined by the facets of Pn except for F . Then
Qn−1 ∈ P(n−1) and

V (Qn−1)− V (Pn) ≤ χ|F |
n

2
d−1

.

If in the proof of (28) and (29) the facet Fn is replaced by F and proposition (25)
by the inequality diamF ≤ µ/n1/(d−1) which follows from (20), we obtain (37).

(38) There is a constant ψ > 0 such that for all sufficiently large n the following
holds: let Qn−1 be an arbitrary polytope in P c

(n−1). Then there is a support
halfspace H+ of C such that Rn = H+ ∩Qn−1 ∈ P c

(n) and

V (Qn−1)− V (Rn) >
ψd+1ζ

β
d+1
2 n

d+1
d−1

.
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By (7) the metric projections of the facets of Qn−1 into bdC form a dissection
of bdC into at most n − 1 pieces. Hence there is a facet F of Qn−1 with |F |(≥
|F π| ≥ | bdC|/(n − 1)) > | bdC|/n by (6). Let p be the point where F touches
C. The isoperimetric inequality in Hp then shows that the circular disc in Hp

with center p and radius ψ/n1/(d−1), where ψ = (| bdC|/|Bd−1|)1/(d−1), does not
contain F . Therefore we may choose x ∈ F with ‖x − p‖ = ψ/n1/(d−1). Thus,
if n is sufficiently large, an application of (8) yields ψ2/βn2/(d−1) ≤ ‖x − xπ‖ ≤
βψ2/n2/(d−1). This shows that for sufficiently large n we may apply (9) to get
proposition (38).

Second, after these preparations, (36) will be shown by contradiction. If (36)
did not hold, then, taking into account (20),

(39) to any (arbitrarily small) ω > 0 there correspond infinitely many n such
that Pn has a facet Fn with |Fn| ≤ ω/n(d+1)/(d−1).

Choose ω > 0 such that

χω <
ψd+1ζ

β
d+1
2

.

For n which are so large that (37) and (38) hold and which correspond to the
chosen ω as in (39) define Qn−1 ∈ P c

(n−1) as follows: Qn−1 is the intersection of
the support halfspaces of C determined by the facets of Pn except for Fn (see
(38)). For such n,

Qn−1 ∈ P c
(n−1) and V (Qn−1)− V (Pn) ≤ χω

n
d+1
d−1

by (37) and (39). Further, again for such n, (38) shows that there is

Rn ∈ P c
(n) with V (Qn−1)− V (Rn) >

ψd+1ζ

β
d+1
2 n

d+1
d−1

.

Concluding, we see that for Rn ∈ P c
(n) holds V (Rn) < V (Pn), in contradiction to

the fact that Pn ∈ P c
(n) is best approximating of C. The proof of (36) is complete.

2.2.3 Diameter and Width of Dirichlet–Voronoi Cells. Given a parallelo-
gram T in and a positive definite quadratic form q on IE d−1, define Vm(T, q) for
m = 1, 2, . . . , by

(40) Vm(T, q) = inf
p1,...,pm∈IE

d−1
{
∫
T

min
i=1,...,m

{q(s− pi)}ds}

This infimum is attained for m suitable points in T , say pi = pmi, i = 1, . . . ,m.
Then

Vm(T, q) =
∑

i

∫
Di

q(s− pi)ds

where the Dirichlet–Voronoi cells Di = Dmi, i = 1, . . . ,m are defined by

Di = {s ∈ T : q(s− pi) ≤ q(s− pj) for j = 1, . . . ,m}.

12



It is thus appropriate to call Vm(T, q) a sum of moments.
In the following we state two equivalent propositions. Their proofs are similar

to the proofs of (20) and (36) but technically simpler and thus will not be given.

(41) Let λ > 1. Then there is a constant ν > 1 depending only on d, λ with the
following property: let S be a square in and q a positive definite quadratic
form on IE d−1 such that

1

λ
≤ q(s)

‖s‖2
≤ λ for s ∈ IE d−1, 6= o.

For m = 1, 2, . . . , choose points pi = pmi ∈ IE d−1, i = 1, . . . ,m, such that

Vm(S, q) =
∫
S

min
i=1,...,m

{q(s− pi)}ds

and define Dirichlet–Voronoi cells Di = Dmi, i = 1, . . . ,m, by

Di = {s ∈ S : q(s− pi) ≤ q(s− pj) for j = 1, . . . ,m}.

Then the following inequalities hold:

|S|
1

d−1

νm
1

d−1

≤ min
i=1,...,m

{widthDi} ≤ max
i=1,...,m

{diamDi} ≤
ν|S|

1
d−1

m
1

d−1

.

(42) Let ϑ > 1. Then there is a constant ν > 1 depending only on d, ϑ with
the following property: let T be a parallelogram in IE d−1 which contains a
square of edge length e, say, and is contained in a concentric square of edge
length ϑe. For m = 1, 2, . . . , choose points pi = pmi ∈ IE d−1, i = 1, . . . ,m,
such that

Vm(T, ‖ · ‖2) =
∫
T

min
i=1,...,m

{‖s− pi‖2}ds

and define Dirichlet–Voronoi cells Di = Dmi, i = 1, . . . ,m, by

Di = {s ∈ T : ‖s− pi‖ ≤ ‖s− pj‖ for j = 1, . . . ,m}.

Then the following inequalities hold:

e

νm
1

d−1

≤ min
i=1,...,m

{widthDi} ≤ max
i=1,...,m

{diamDi} ≤
νe

m
1

d−1

.
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2.3 Sums of Moments

The constant divd−1 considered in sect. 1 above is defined by

(43) divd−1 = lim
m→∞

m
2

d−1Vm([0, 1]d−1, ‖ · ‖2),

where [0, 1]d−1 is the unit square in IE d−1, see [13]. A particular case of Lemma 1
of Glasauer and the author [10] is the following:

(44) Let T be a parallelogram in IE d−1. Then

divd−1|T |
d+1
d−1 = lim

m→∞
m

2
d−1Vm(T, ‖ · ‖2).

The next observation is easy to show:

(45) Let T be a parallelogram in IE d−1. Then

Vm(%T, ‖ · ‖2) = %d+1Vm(T, ‖ · ‖2) for % > 0.

2.3.1 Lower Estimate of Vm. Here the objective is to show the following
proposition:

(46) Let S be a square in IE d−1 and q a positive definite quadratic form on
IE d−1. Then

Vk(S, q) ≥ divd−1|S|
d+1
d−1 (det q)

1
d−1

1

k
2

d−1

for k = 1, 2, . . . .

For the proof of (46) it is sufficient to confirm the following equivalent version of
it:

(47) Let T be a parallelogram in IE d−1. Then

Vk(T, ‖ · ‖2) ≥ divd−1|T |
d+1
d−1

1

k
2

d−1

for k = 1, 2, . . . .

Given k, choose pi = pki ∈ T, i = 1, . . . , k, such that

(48) Vk(T, ‖ · ‖2) =
∫
T

min
i=1,...,k

{‖s− pi‖2}ds.

For l = 1, 2, . . . , consider a covering of the unit square [0, 1]d−1 by a minimum
number of translates of (1/l)T . For this number nl, say, holds

(49)
ld−1

|T |
≤ nl ≤

ld−1 +O(ld−2)

|T |
, where the constant in O(·) depends only on T .
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The union of the corresponding translates of the set {(1/l)pi, i = 1, . . . , k} then
consists of

(50) kl ≤ knl ≤
k(ld−1 +O(ld−2))

|T |

points, say of the points rj, j = 1, . . . , kl. Then (48), (45), the covering of [0, 1]d−1

by nl translates of (1/l)T and the definition of the points rj, (49), (50) and the
definition of Vkl

(see (40)) imply the following:

Vk(T, ‖ · ‖2) =
∫
T

min
i=1,...,k

{‖s− pi‖2}ds = ld+1
∫
1
l
T

min
i=1,...,k

{‖t− 1

l
pi‖2}dt

=
ld+1

nl

nl

∫
1
l
T

min
i=1,...,k

{‖t− 1

l
pi‖2}dt ≥ ld+1

nl

∫
[0,1]d−1

min
j=1,...,kl

{‖u− rj‖2}du

≥ ld+1|T |
ld−1(1 +O(1

l
))

k
2

d−1

l

k
2

d−1

l

∫
[0,1]d−1

min
j=1,...,kl

{‖u− rj‖2}du

≥ l2|T |
1 +O(1

l
)

|T |
2

d−1

l2(1 +O(1
l
))

2
d−1k

2
d−1

k
2

d−1

l

∫
[0,1]d−1

min
j=1,...,kl

{‖u− rj‖2}du

≥ |T |
d+1
d−1

(1 +O(1
l
))k

2
d−1

k
2

d−1

l Vkl
([0, 1]d−1, ‖ · ‖2).

Now, letting l tend to ∞, it follows that kl(≥ nl ≥ ld−1/|T |) tends also to ∞ and
(43) yields the inequality (47).

2.3.2 Upper Estimate of Vm. We will show the following result:

(51) Let ε > 0, λ > 1. Let S be a square in IE d−1 and q a positive definite
quadratic form on IE d−1 such that

1

λ
≤ q(s)

‖s‖2
≤ λ for s ∈ IE d−1, 6= o.

Then the following inequality holds:

Vk(S, q) ≤ divd−1|S|
d+1
d−1 (det q)

1
d−1

1

k
2

d−1

+O
( 1

k
2

d−1
+ω

)
,

where ω = (1 − ε)/2(d − 1) and the constant in O(·) depends only on
d, ε, λ.

For the proof of (51) it is sufficient to show the following equivalent assertion:
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(52) Let ε > 0 and ϑ > 1. Let T be a parallelogram in IE d−1 which contains
a square of edge length e, say, and is contained in a concentric square of
edge length ϑe. Then the following inequality holds:

Vk(T, ‖ · ‖2) ≤ divd−1|T |
d+1
d−1

1

k
2

d−1

+O
( 1

k
2

d−1
+ω

)
,

where ω = (1 − ε)/2(d − 1) and the constant in O(·) depends only on
d, ε, ϑ.

The proof will be divided into six parts.
First, a weaker version of (52) will be shown:

(53) Let ϑ > 1 and let T be a parallelogram in IE d−1 which contains a square of
edge length e, say, and is contained in a concentric square of edge length
ϑe. Then

Vm(T, ‖ · ‖2) ≤ |T |
d+1
d−1O

( 1

m
2

d−1

)
,

where the constant in O(·) depends only on d, ϑ.

Given m, choose a positive integer l such that ld−1 ≤ m < (l + 1)d−1. Dissect
the square of edge length ϑe which contains T into ld−1(≤ m) squares of edge
length ϑe/l. Clearly, these squares cover T . Thus the minimum edge length of
a square with the property that m suitable congruent copies of it cover T is at
most ϑe/l(≤ 2ϑ/m1/(d−1)). This yields (53):

Vm(T, ‖ · ‖2) ≤ m
( 2ϑe

m
1

d−1

√
d− 1

)2( 2ϑe

m
1

d−1

)d−1
= ed+1 2d+1ϑd+1(d− 1)

m
2

d−1

≤ |T |
d+1
d−1O

( 1

m
2

d−1

)
.

Second, we make some further preparations for the later steps of the proof of
(52):

(54) Given k, let l = dk
1+ε

2(d−1) e, m = l2(d−1).

Choose pi = pmi ∈ IE d−1, i = 1, . . . ,m, such that

Vm(T, ‖ · ‖2) =
∫
T

min{‖s− pi‖2}ds

and let Di = Dmi, 1 = 1, . . . ,m, be the Dirichlet–Voronoi cells

(55) Di = {s ∈ T : ‖s− pi‖ ≤ ‖s− pj‖ for j = 1, . . . ,m}.

Proposition (42), the assumptions on T in (52) and (54) yield the next statement:
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(56) There is a constant ν > 1 depending only on d, ϑ such that the following
inequalities hold:

e

νl2
≤ min

i=1,...,m
{widthDi} ≤ max

i=1,...,m
{diamDi} ≤

νe

l2
.

Dissect T into ld−1 translates of (1/l)T , order these translates in some way and
for j = 1, . . . , ld−1, let Tj be a translate of ((1/l)− (2ν/l2))T which is concentric
with the jth translate of (1/l)T . Let

(57) mj = #{i ∈ {1, . . . ,m} : Di ∩ Tj 6= φ}, j = 1, . . . , ld−1.

By our choice of Tj, the assumption that T contains a square of edge length e
and (56) we see that

(58) Di ∩ Tj 6= φ⇒ Di is contained in the jth translate of (1/l)T .

Since the m Dirichlet–Voronoi cells Di form a dissection of T , (57) and (58) imply

(59) m1 + . . .+mld−1 ≤ m

and (56)–(58) yield the estimate

(60) mj ≤
|1

l
T |

min
i=1,...,m

{|Di|}
≤ O(ld−1),

where the constant in O(·) depends only on d, ϑ.

Third, we deal with good indices, where an index j ∈ {1, . . . , ld−1} is called
good if mj ≥ dl(d−1)/2e. We will show that

(61) #{j ∈ {1, . . . , ld−1} : j good} ≥ ld−1
(
1−O

(1

l

))
,

where the constant in O(·) depends only on d, ϑ.

Let n = #{j ∈ {1, . . . , ld−1} : j not good}. Then (48), (55), (57), (58), the
definition of Tj and non good j s and (45) show that

Vm(T, ‖ · ‖2) ≥
∑

j not good

Vmj
(Tj, ‖ · ‖) ≥ n

(
1− 2ν

l

)d+1 1

ld+1
Vdl(d−1)/2e(T, ‖ · ‖2).

Now apply (53), (47) and note (54). This gives

n ≤ ld−1O
(1

l

)
where the constant in O(·) depends only on d, ϑ.

Since the quantity considered in (61) is ld−1 − n, the proof of (61) is complete.
Fourth, it will be shown that
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(62) Vmj
(T, ‖ · ‖2)m

2
d−1

j <
(
1 +

1

l
1−ε
1+ε

)
Vm(T, ‖ · ‖2)m

2
d−1

for each sufficiently large k (depending on ε) and suitable corresponding
good index j.

If (62) did not hold, then

(63) Vmj
(T, ‖ · ‖2)m

2
d−1

j ≥
(
1 +

1

l
1−ε
1+ε

)
Vm(T, ‖ · ‖2)m

2
d−1

for infinitely many k and any good j.

For k as in (63), (48), (55), (57), (58), the definition of Tj, (45), (63), (17), (61)
and (59) yield the following:

(64)

Vm(T, ‖ · ‖2) ≥
∑

j good

Vmj
(Tj, ‖ · ‖2) =

∑
j good

(
1− 2ν

l

)d+1 1

ld+1
Vmj

(T, ‖ · ‖2)

≥ 1

ld+1

(
1−O

(1

l

))(
1 +

1

l
1−ε
1+ε

)
Vm(T, ‖ · ‖2)m

2
d−1

∑
j good

1

m
2

d−1

j

≥ 1

ld+1

(
1−O

(1

l

)
+

1

l
1−ε
1+ε

)
Vm(T, ‖ · ‖2)m

2
d−1

( ∑
j good

1
) d+1

d−1 1( ∑
j good

mj

) 2
d−1

≥ 1

ld+1

(
1 +

1

l
1−ε
1+ε

−O
(1

l

))
ld+1

(
1−O

(1

l

)) d+1
d−1 m

2
d−1

m
2

d−1

Vm(T, ‖ · ‖2)

≥
(
1 +

1

l
1−ε
1+ε

−O
(1

l

))
Vm(T, ‖ · ‖2),

where the constants in the O(·) symbols depend only on d, ϑ.

If k and thus by (54) also l is sufficiently large, the last expression in (64) is larger
than the first one. This contradiction concludes the proof of (62).

Fifth, we will prove the following estimate:

(65) Vk(T, ‖ · ‖2)k
2

d−1 ≤
(
1 +O

( 1

l
1−ε
1+ε

))
Vl2(d−1)(T, ‖ · ‖2)l4, l = dk

1+ε
2(d−1) e

for each sufficiently large k (depending on ε), where the constant in O(·)
depends only on d, ε, ϑ.

Let k be so large that (62) holds and choose a corresponding good j. Let p be a
positive integer such that

(66) pd−1mj ≤ k < (p+ 1)d−1mj.

Then (60) and (54) show that

(67)
1

p+ 1
<
(mj

k

) 1
d−1 = O

( 1

l
1−ε
1+ε

)
,

where the constant in O(·) depends only on d, ϑ.
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Proposition (65) now is a consequence of (66), a tiling of T by translates of
(1/p)T , (45), (66), (67), (62) and (54):

Vk(T, ‖ · ‖2)k
2

d−1 ≤ Vpd−1mj
(T, ‖ · ‖2)k

2
d−1 ≤ pd−1Vmj

(
1

p
T, ‖ · ‖2)k

2
d−1

=
pd−1

pd+1
Vmj

(T, ‖ · ‖2)(p+ 1)2m
2

d−1

j =
(
1 +

1

p

)
Vmj

(T, ‖ · ‖2)m
2

d−1

j

<
(
1 +O

( 1

l
1−ε
1+ε

))(
1 +

1

l
1−ε
1+ε

)
Vl2(d−1)(T, ‖ · ‖2)l4

for each sufficiently large k, where the constant in O(·) depends only on
d, ϑ.

Sixth, applying (65) repeatedly and using (54), (44) and (19) we obtain (52):

Vk(T, ‖ · ‖2)k
2

d−1 ≤
(
1 +O

(
1

l
1−ε
1+ε

))
Vl2(d−1)(T, ‖ · ‖2)l4

≤
(
1 +O

( 1

k
1−ε

2(d−1)

))
Vk1(T, ‖ · ‖2)k

2
d−1

1 , k1 = l2(d−1) ≥ k1+ε,

≤
(
1 +O

( 1

k
1−ε

2(d−1)

))(
1 +O

( 1

k
1−ε

2(d−1)

1

))
Vk2(T, ‖ · ‖2)k

2
d−1

2 , k2 ≥ k1+ε
1 ≥ k(1+ε)2 ,

≤
(
1 +O

( 1

k
1−ε

2(d−1)

))(
1 +O

( 1

k
1−ε

2(d−1)
(1+ε)

))
Vk2(T, ‖ · ‖2)k

2
d−1

2 , k2 ≥ k(1+ε)2 ,

. . .

≤
(
1 +O

(1

t

))(
1 +O

( 1

t1+ε

))(
1 +O

( 1

t(1+ε)2

))
. . . divd−1|T |

d+1
d−1 , t =

1

k
1−ε

2(d−1)

,

≤
(
1 +O

(1

t

))
divd−1|T |

d+1
d−1 ,

for each sufficiently large k, where the O(·) symbols up to the last one
coincide and the constants in all O(·) symbols depend only on d, ε, ϑ.

2.4 Estimates of δV (C, Pn)

2.4.1 Lower Estimate of δV (C, Pn). We will prove the following:

(68) Let 0 < ε < 1
2(d−1)

. Then

δV (C,Pn) ≥ 1

2
divd−1A(C)

d+1
d−1

1

n
2

d−1

−O
( 1

n
2

d−1
+ 1

2(d−1)
−ε

)
as n→∞,

where the constant in O(·) depends only on C, ε.

The proof is split into four steps.
First, let n be so large that
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(69)
µ

n
1

d−1

≤ α and l = bn2(d−1)εc is sufficiently large in the sense of (12),

see (20), (8) and (12). Choose ι, κ, λ, Ci, pi, Hi, “′”, fi, qiu, κC(·), for i = 1, . . . , l,
such that (12) – (16) hold. Let

(70) δ =
1 + 2(d− 1)ε

4(d− 1)ε
.

Second, for each i = 1, . . . , l, consider an edge-to-edge tiling ofHi with squares
of area 1/lδ. Let S ′ij, j = 1, . . . , ji, be the squares which meet the convex disc

(1 −
√
d− 1ι/l(δ−1)/(d−1))C ′

i. Let p′ij be the center of S ′ij and qij = qip′ij the
corresponding positive definite quadratic form, see 2.1.3. Let Sij and pij be the
inverse images of S ′ij and p′ij on the lower side of C. Clearly,

(71) diamS ′ij =

√
d− 1

l
δ

d−1

.

The definition of S ′ij together with (12) and (71) shows that

(72) S ′ij ⊂
(
1−

√
d− 1ι

l
δ−1
d−1

)
C ′

i +

√
d− 1

l
δ

d−1

Bd−1 ⊂ C ′
i for j = 1, . . . , ji.

It follows from (12) that the area of the strip between (1−
√
d− 1ι/l(δ−1)/(d−1))C ′

i

and relbdC ′
i is at most O(1/lδ/(d−1))O(1/l(d−2)/(d−1)) = O(1/l(δ+d−2)/(d−1)), where

the constants in the O(·) symbols depend only on C. Thus, noting (12) – (16)
and the definitions of Sij and A(·) (compare (2) for the latter), we obtain that

(73) A(
⋃
i,j

Sij) ≥ A(C)− lO
( 1

l
δ+d−2

d−1

)
= A(C)

(
1−O

( 1

l
δ−1
d−1

))
,

where the constants in the O(·) symbols depend only on C.

Since by our choice of n proposition (69) holds, it follows from (20) and (8) that

(74) ‖x− xπ‖ ≤ βµ2

n
2

d−1

for x ∈ Pn.

Next,

(75) let T ′ij be the square concentric with S ′ij and obtained from S ′ij by shrinking
it with the factor(

1− 2βµ2
( lδ
n2

) 1
d−1 − 2µ

( lδ
n

) 1
d−1
)(

≥ 1−O
(( lδ
n

) 1
d−1
))
.

Let Tij be the inverse image of T ′ij on the lower side of C.
Third, consider for any pair of indices i, j the facets Fijk, k = 1, . . . , kij, of Pn

which touch C on its lower side and such that F ′
ijk ∩ T ′ij 6= φ. By the definitions

of S ′ij, T
′
ij, (75), (20) and (72) we have the following:
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(76) F ′
ijk, k = 1, . . . , kij, cover T ′ij,

(77) F ′
ijk ⊂ relintS ′ij ⊂ C ′

i and F ′
ijk has distance at least βµ2/n2/(d−1) from

relbdS ′ij and thus from relbdC ′
i.

(74), (77) and (12) imply that

(78) facets of Pn which correspond to different Tij are distinct.

Hence

(79) k11 + k12 + . . .+ kljl
≤ n.

A further application of (74) and (77) shows that

(80) for each facet Fijk of Pn the set above Fijk and below C is contained in
the set Pni = {x ∈ Pn : xπ ∈ Ci}.

By (12),

(81) the sets Pni, i = 1, . . . , l, form a dissection of Pn\intC.

Let pijk be the point where Fijk touches C and let qijk = qip′
ijk

be the corresponding
positive definite quadratic form, see 2.1.3.

Fourth, (81), (80), (77), (12), (13), the fact that Fijk touches C at pijk, Taylor’s
formula applied to fi at p′ijk, (20), (12), (13), (77), Taylor’s formula applied to
the coefficients of qij, (71), (20), the fact that the sum of the areas of the facets
of Pn is O(1), (76), (78), (69), (70), (40), (46), (75), (45), (15), (13), (16), (71),
the definition of surface integrals and of A(·) (compare (2)), (18), (79), (72), (12),
(73), (70) and (69) together imply (68):
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δV (C,Pn) = V (Pn\intC) =
∑

i

V (Pni)

≥
∑
i,j,k

V (set above Fijk and below C)

≥
∑
i,j,k

∫
F ′

ijk

{fi(s)− fi(p
′
ijk)− grad fi(p

′
ijk)(s− p′ijk)}ds

≥ 1

2

∑
i,j,k

{
∫

F ′
ijk

qijk(s− p′ijk)ds−O
( 1

n
3

d−1

)
|F ′

ijk|}

≥ 1

2

∑
i,j,k

{
∫

F ′
ijk

qij(s− p′ijk)ds−O
( 1

n
δ

d−1n
2

d−1

)
|F ′

ijk|} −O(
1

n
3

d−1

),

≥ 1

2

∑
i,j

∫
T ′

ij

min
k=1,...,kij

{qij(s− p′ijk)}ds−O
( 1

n
2

d−1
+ 1

2(d−1)
+ε

)

≥ 1

2
divd−1

∑
i,j

(det qij)
1

d−1 |T ′ij|
d+1
d−1

1

k
2

d−1

ij

−O
( 1

n
2

d−1
+ 1

2(d−1)
+ε

)

≥ 1

2
divd−1

(
1−O

(( lδ
n

) 1
d−1
)) d+1

d−1
∑
i,j

(det qij)
1

d−1 |S ′ij|
d+1
d−1

1

k
2

d−1

ij

−O
( 1

n
2

d−1
+ 1

2(d−1)
+ε

)
≥ 1

2
divd−1

(
1−O

( 1

n
1

2(d−1)
−ε

))∑
i,j

{κC(p′ij)
1

d+1 (1 + (grad fi(p
′
ij)

2)
1
2 |S ′ij|}

d+1
d−1

1

k
2

d−1

ij

−O
( 1

n
2

d−1
+ 1

2(d−1)
+ε

)
≥ 1

2
divd−1

(
1−O

( 1

n
1

2(d−1)
−ε

))(
1−O(

1

l
δ

d−1

)) d+1
d−1×

×
∑
i,j

{
∫

S′ij

κC(s)
1

d+1 (1 + (grad fi(s))
2)

1
2ds}

d+1
d−1

1

k
2

d−1

ij

−O
( 1

n
2

d−1
+

2(d−1)
+ε

)

≥ 1

2
divd−1

(
1−O

( 1

n
1

2(d−1)
−ε

)
−O

( 1

n
1

2(d−1)
+ε

))∑
i,j

A(Sij)
d+1
d−1

1

k
2

d−1

ij

−O
( 1

n
2

d−1
+ 1

2(d−1)
+ε

)
=

1

2
divd−1

(
1−O

( 1

n
1

2(d−1)
−ε

))∑
i,j

{A(Sij)
1

kij

}
d+1
d−1kij −O

( 1

n
2

d−1
+ 1

2(d−1)
+ε

)
≥ 1

2
divd−1

(
1−O

( 1

n
1

2(d−1)
−ε

))
{
∑
i,j

A(Sij)}
d+1
d−1

1

n
2

d−1

−O
( 1

n
2

d−1
+ 1

2(d−1)
+ε

)
≥ 1

2
divd−1

(
1−O

( 1

n
1

2(d−1)
−ε

))(
1−O

( 1

l
δ−1
d−1

)) d+1
d−1A(C)

d+1
d−1

1

n
2

d−1

−O
( 1

n
2

d−1
+ 1

2(d−1)
+ε

)
≥ 1

2
divd−1A(C)

d+1
d−1

1

n
2

d−1

− 1

n
2

d−1

(
O
( 1

n
1

2(d−1)
−ε

)
+O

( 1

n
1

2(d−1)
−ε

)
+O

( 1

n
1

2(d−1)
+ε

))
≥ 1

2
divd−1A(C)

d+1
d−1

1

n
2

d−1

−O
( 1

n
2

d−1
+ 1

2(d−1)
−ε

)
,

for sufficiently large n, where the constants in the O(·) symbols depend on C and,
possibly, ε.
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2.4.2 Upper Estimate of δV (C, Pn). Finally the following result will be
shown

(82) Let ε > 0. Then

δV (C,Pn) ≤ 1

2
divd−1A(C)

d+1
d−1

1

n
2

d−1

+O
( 1

n
2

d−1
+ 1

3(d−1)
−ε

)
as n→∞,

where the constant in O(·) depends only on C, ε.

Since it is sufficient to prove (82) for arbitrarily small ε > 0, we may assume that

(83) ε > 0 is so small that for

δ =
(9d− 11)ε− 3(d− 1)ε2

3(1− ε)
, ϑ = 1 +

1− 3(d− 1)ε

δ
, ω =

1− ε

2(d− 1)

hold 0 < δ < 1 < ϑ, δϑ < 1.

It is easy to see that

(84) (1− δϑ)ω =
δ(ϑ− 1)

d− 1
=

1

3(d− 1)
− ε.

We split the proof into several parts.
First,

(85) for all sufficiently large n, the number l = bnδc is sufficiently large in the
sense of (12).

Choose ι, κ, λ, Ci, pi, Hi, “′”, fi, qiu, κC(·) for i = 1, . . . , l, such that (12) – (16)
hold.

Second, for each i consider in Hi an edge-to-edge tiling with squares of area

|C ′
i|A(C)

lϑA(Ci)
.

Let S ′ij, j = 1, . . . , ji, be the squares which meet C ′
i or are adjacent to such

squares. By the definition the equi-affine surface area of A(·) (compare (2)), of
surface integrals and by using (13) – (15), we see that 1/λ ≤ A(Ci)/|C ′

i| ≤ λ.
Hence

(86)
A(C)

λlϑ
≤ |S ′ij| =

|C ′
i|A(C)

lϑA(Ci)
≤ λA(C)

lϑ
,

diamS ′ij ≤
√
d− 1

(λA(C)

lϑ

) 1
d−1 .

It follows from the definition of S ′ij, (12), (85) and (86) that
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(87) for all sufficiently large n holds

C ′
i +

(A(C)

λlϑ

) 1
d−1Bd−1 ⊂

⋃
i,j

S ′ij ⊂ C ′
i + 2

√
d− 1

(λA(C)

lϑ

) 1
d−1Bd−1

⊂
(
1 + 2

√
d− 1

(
λA(C)

lϑ

) 1
d−1

ιl
1

d−1

)
C ′

i =
(
1 +

ν

l
ϑ−1
d−1

)
C ′

i ⊂
1

2
C ′,

where ν > 0 is a constant.

Let p′ij be the center of S ′ij and qij = qip′ij the corresponding positive definite

quadratic form, see 2.1.3. Let Sij and pij be the inverse images of S ′ij and p′ij on
the lower side of C.

Third, it will be shown that

(88) for all sufficiently large n, the following hold: let p ∈ Sij and x ∈ Hp such
that x′ ∈ S ′ij. Then

‖x′ − xπ′‖ <
(
A(C)

λlϑ

) 1
d−1

.

By (87), (12), (13), (87) and (86) we have that

‖x− p‖ ≤ diamSij ≤ κ diamS ′ij ≤ κ
√
d− 1

(
λA(C)

lϑ

) 1
d−1

≤ α

for all sufficiently large n and thus sufficiently large lϑ, where α is from (8). An
application of (8) then shows that for such n,

‖x′ − xπ′‖ ≤ ‖x− xπ‖ ≤ βκ2(d− 1)(λA(C))
2

d−1
1

l
2ϑ

d−1

and therefore, by choosing n even larger, if necessary,

‖x′ − xπ′‖ <
(
A(C)

λlϑ

) 1
d−1

.

Fourth,

(89) Let T ′ij =
(
1+

ν

l
ϑ−1
d−1

)−1
S ′ij and kij =

⌊
A(Tij)n

A(C)

⌋
. Then kij =

{
≤ O( n

lϑ
)

≥ O( n
lϑ

)

}
,

where the constants in the O(·) symbols depend only on C.

The inequalities for kij follow from (86). Let Tij be the inverse image of T ′ij
on the lower side of bdC. From the definition of the sets Sij, (89), (87) and (12)
it follows that
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(90) for all sufficiently large n the sets Tij, i = 1, . . . , l, j = 1, . . . , ji, are non-
overlapping subsets of bdC.

Hence the definition of kij in (89) implies the following:

(91) for all sufficiently large n, holds k11 + . . .+ kljl
≤ n.

Fifth, in each square S ′ij choose points p′ijk, k = 1, . . . , kij, such that

(92) Vkij
(S ′ij, qij) =

∫
S′ij

min
k=1,...,kij

{qij(s− p′ijk}ds,

see (40). Let qijk = qip′
ijk

be the corresponding positive definite quadratic forms,
see 2.1.3. Finally, let Qn be the intersection of the support halfspaces of C
at the points pijk. Since the sets Sij cover bdC by (87) and (12) and since
max{diamSij, i = 1, . . . , l, j = 1, . . . , jl} → 0 as n → ∞ by (86), (85) and (13),
we see that

(93) for all sufficiently large n holds Qn ∈ P c
(n).

The sets Ci form a dissection by (12) for sufficiently large n. Hence,

(94) for all sufficiently large n the sets Qni = {x ∈ Qn : xπ ∈ Ci}, i = 1, . . . , l,
form a dissection of Qn\intC.

Clearly, the Dirichlet–Voronoi cells

(95) D′
ijk = {s ∈ S ′ij : qij(s− p′ijk) ≤ qij(s− p′ijm) for m = 1, . . . , kij},

k = 1, . . . , kij, form a dissection of the square S ′ij.

By (86), (89), (87), (14) and (41) we have that

(96) |D′
ijk|

{
≤ O( 1

n
)

≥ O( 1
n
)

}
and diamD′

ijk ≤ O
( 1

n
1

d−1

)
,

where the constants in the O(·) symbols depend only on C.

Sixth, (93), (94), the definition of Qn, (87), (88), (87), (95), Taylor’s formula
applied to fi at p′ijk, (13), (96), Taylor’s formula applied to the coefficients of
qij, (13), (86), (96), (91), (95), (85), (92), (87), (14), (51), (89), (85), (15), (84),
Taylor’s formula applied to κC(1+grad fi)

2)1/2 at p′ijk, (89), (87), (13), (16), (86),
(85), (90) and (84) together imply the following: if n is so large that (85), (87),
(88), (90), (91), (92) and (93) hold, then
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δV (C,Pn) = δV (C,P c
(n)) ≤ δV (C,Qn) =

∑
i

V (Qni)

≤
∑

i

∫
C′

i+(
A(C)

λlϑ
)

1
d−1 Bd−1

min
j=1,...,ji

{ min
k=1,...,kij

{fi(s)− fi(p
′
ijk)− grad fi(p

′
ijk)(s− p′ijk)}}ds

≤
∑
i,j

∫
S′ij

min
k=1,...,kij

{fi(s)− fi(p
′
ijk)− grad fi(p

′
ijk)(s− p′ijk)}ds

≤
∑
i,j,k

∫
D′

ijk

{fi(s)− fi(p
′
ijk)− grad fi(p

′
ijk)(s− p′ijk)}ds

≤ 1

2

∑
i,j,k

{
∫

D′
ijk

qijk(s− p′ijk)ds+O
( 1

n
3

d−1

)
|D′

ijk|}

≤ 1

2

∑
i,j,k

{
∫

D′
ijk

qij(s− p′ijk)ds+O
( 1

n
2

d−1 l
ϑ

d−1

)
|D′

ijk|}+O
( 1

n
3

d−1

)

≤ 1

2

∑
i,j

{
∫

Sij′

min
k=1,...,kij

{qij(s− p′ijk)}ds}+O
( 1

n
2

d−1
+ δϑ

d−1

)
=

1

2

∑
i,j

Vkij
(S ′ij, qij) +O

( 1

n
2

d−1
+ δϑ

d−1

)
≤ 1

2
divd−1

∑
i,j

(
1 +O

( 1

kω
ij

))
(det qij)

1
d−1 |S ′ij|

d+1
d−1

1

k
2

d−1

ij

+O
( 1

n
2

d−1
+ δϑ

d−1

)
≤ 1

2
divd−1

(
1 +O

( 1

n(1−δϑ)ω

))(
1 +

ν

n
δ(ϑ−1)

d−1

)
×

×
∑
i,j

(det qij)
1

d−1 |T ′ij|
d+1
d−1

A(C)
2

d−1

A(Tij)
2

d−1

1

n
2

d−1

(
1 +O

( 1

n

)) 2
d−1 +O

( 1

n
2

d−1
+ δϑ

d−1

)
≤ 1

2
divd−1

(
1 +O

( 1

n(1−δϑ)ω

)
+O

( 1

n
δ(ϑ−1)

d−1

)
+O

( 1

n

))
×

×
∑
i,j

{κC(p′ij)
1

d+1 (1 + (grad fi(p
′
ij))

2)
1
2 |T ′ij|}

d+1
d−1

A(C)
2

d−1

A(Tij)
2

d−1

1

n
2

d−1

+O
( 1

n
2

d−1
+ δϑ

d−1

)
≤ 1

2
divd−1

(
1 +O

( 1

n
1

3(d−1)
−ε

))(
1 +O

( 1

l
ϑ

d−1

)) d+1
d−1×

×
∑
i,j

{
∫

T ′
ij

κC(s)
1

d+1 (1 + (grad fi(s))
2)

1
2ds}

d+1
d−1

A(C)
2

d−1

A(Tij)
2

d−1

1

n
2

d−1

+O
( 1

n
2

d−1
+ δϑ

d−1

)

≤ 1

2
divd−1

(
1 +O

( 1

n
1

3(d−1)
−ε

)
+O

( 1

n
δϑ

d−1

))
A(C)

2
d−1

∑
ij

A(Tij)
1

n
2

d−1

+O
( 1

n
2

d−1
+ δϑ

d−1

)
≤ 1

2
divd−1A(C)

d+1
d−1

1

n
2

d−1

+O
( 1

n
2

d−1
+ 1

3(d−1)
−ε

)
,

where the constants in the O(·) symbols depend only on C and, possibly, ε. This
concludes the proof of (82).

2.4.3 Conclusion. The Theorem finally follows from (68) and (82).
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