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Abstract. First a stability version of a theorem of L. Fejes Tóth on sums of
moments is given: a large finite point set in a 2-dimensional Riemannian manifold,
for which a certain sum of moments is minimal, must be approximately a regular
hexagonal pattern. This result is then applied to show the following: (i) The
nodes of optimal numerical integration formulae for Hoelder continuous functions
on such manifolds form approximately regular hexagonal patterns if the number
of nodes is large. (ii) Given a smooth convex body in IE 3, most facets of the
circumscribed convex polytopes of minimum volume in essence are affine regular
hexagons if the number of facets is large. A similar result holds with volume
replaced by mean width. (iii) A convex polytope in IE 3 of minimal surface area,
amongst those of given volume and given number of facets, has the property that
most of its facets are almost regular hexagons assuming the number of facets is
large.

MSC 1991: 53C20, 52A15, 52A27, 52A38, 65D30.

1 Introduction

One of the few general results in discrete geometry is the following theorem of
L. Fejes Tóth [?, ?] on sums of moments: let f : [0, +∞) → [0, +∞) be non-
decreasing and let H be a convex 3, 4, 5, or 6-gon in the Euclidean plane IE 2.
Then, for any set S of n points in IE 2,

(1)
∫
H

min{f(‖x− p‖) : p ∈ S}dx ≥ n
∫

Hn

f(‖x‖)dx,

where Hn is a regular hexagon in IE 2 of area |H|/n and center at the origin;
‖ · ‖ and | · | denote the Euclidean norm and the ordinary area measure in IE 2.



Fejes Tóth [?] proved his result first for the 2-sphere S2 instead of IE 2 and only
slightly later for IE 2, see [?]. For alternative proofs, in some cases for surfaces
of constant curvature and for weight functions, see L. Fejes Tóth [?], Imre [?],
G. Fejes Tóth [?], and Florian [?]. The theorem on sums of moments has a series
of applications. Among these are:

(i) Packing and covering problems for solid circles in IE 2, in S2, and in the
hyperbolic plane and also for convex discs in IE 2. See L. Fejes Tóth [?, ?],
Imre [?], G. Fejes Tóth [?, ?], and Florian [?].

(ii) Problems of optimal location, of errors of quantization of data, and of Gauss
channels, all in IE 2. See Matérn and Person [?] for the origin of the location
problem and Conway and Sloane [?] for surveys of quantization of data and
Gauss channels and the articles of L. Fejes Tóth [?, ?], Bollobás [?], Gersho
[?], and Newman [?].

(iii) The isoperimetric problem for three dimensional convex polytopes of given
combinatorial type such as tetrahedra, hexahedra, and dodecahedra and
other extremum problems for convex polytopes in IE 3. See L. Fejes Tóth
[?, ?, ?] and Coxeter and L. Fejes Tóth [?], L. Fejes Tóth [?, ?, ?], Florian
[?] and Linhart [?]. Compare also the survey of Florian [?].

(iv) Optimal choice of nodes in numerical integration formulae for Hoelder con-
tinuous functions of two variables. See Babenko [?, ?], and for general
information, Stein [?].

(v) Asymptotically best approximation of smooth convex bodies in IE 3 by cir-
cumscribed convex polytopes of minimum volume as the number of facets
tends to infinity and similarly for the mean width deviation. See Gruber
[?] and Glasauer and Gruber [?].

In most of these applications f is of the form f(t) = ta where 0 < a ≤ 2. In
view of the applications, two extensions of the theorem on the sum of moments
suggest themselves, namely extensions to higher dimensions and to Riemannian
manifolds. While the first extension is out of reach, it is not too difficult to
give a version of the theorem for a 2-dimensional Riemannian manifold M . It
is more complicated to prove a stability version of the second extension. These
two results can be applied to obtain information on the distribution of nodes in
optimal numerical integration formulae for M , the form of convex polytopes of
minimum volume circumscribed to a smooth convex body in IE 3, and the form
of convex polytopes in IE 3 with minimum isoperimetric quotient. The proofs
of these results, except the last one, are lengthy and involved and will be given
elsewhere. There is little hope to extend them to higher dimensions. The results
in this article belong to a group of geometric stability problems of recent origin
in convex geometry. For some references see Gruber [?, ?].
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2 A stability version of Fejes Tóth’s theorem for

Riemannian 2-manifolds

Let M be a 2-dimensional Riemannian manifold of class Ck, k ≥ 2. By this we
mean a 2-dimensional differentiable manifold of class Ck with metric tensorfield
of class Ck−2. Let %M and ωM be the corresponding Riemannian metric and area
measure on M . A set J in M is Jordan measurable if it has compact closure cl J
and ωM(bd J) = 0, where bd stands for boundary. Let (Sn) be a sequence of
sets in M such that #Sn = n. Then Sn is said to be asymptotically a regular
hexagonal pattern in M if there are Landau symbols o(n) and o(1) and a positive
sequence (σn) such that the following hold: for each point p in Sn, with a set of
at most o(n) exceptions, the six points p1, . . . , p6 ∈ Sn closest to p are unique and

%M(p, pi), %M(pi, pi+1) = (1± o(1))σn for i = 1, . . . , 6, p7 = p1.

(A quantity is equal to (1±o(1))σn if it is between (1−o(1))σn and (1+o(1))σn.)
σn is called the edgelength of the hexagon {p1, . . . , p6}. For 0 < a ≤ 2 and b = 1+ a

2

let

α(a) =
6 · 3 b

2

b

π
6∫

0

dϕ

(cos ϕ)2b
.

Theorem 1. Let M be a 2-dimensional Riemannian manifold of class C2, let

J be a Jordan measurable set in M with ωM(J) > 0, and let 0 < a ≤ 2 and
b = 1 + a

2
. Then the following statements hold:

(i) inf{
∫
J

min{%M(p, x)a : p ∈ S}dωM(x) : S ⊂ M, #S = n} ∼ α(a)ωM(J)b

n
a
2

as n → ∞. This asymptotic formula continues to hold if we assume that
S ⊂ J .

(ii) If (Sn) is a sequence of sets in M such that #Sn = n and

∫
J

min{%M(p, x)a : p ∈ Sn}dωM(x) ∼ α(a)ωM(J)b

n
a
2

as n → ∞, then Sn is asymptotically a regular hexagonal pattern in M
where the edgelength of the hexagons is

(
32ωM(J)

3
√

3n

) 1
2

.

The first step in the proof of this result is to establish a more precise stability
version of Fejes Tóth’s theorem in IE 2. The proof makes use of Dirichlet–Voronoi
cells, the Euler polytope formula, and Jensen’s inequality. This version is then
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extended to the above weak stability result for M using the local Euclidean nature
of M .

It is interesting to note that sequences (Sn) satisfying the assumption of (ii)
can be specified in a more or less explicit way.

A slight extension of Theorem 1, which may be useful for applications, is
obtained by inserting into the integrals in (i) and (ii) a positive continuous weight

factor w. The idea of the proof is to multiply the metric tensor of M by w
1
b and to

apply Theorem 1 to M endowed with the corresponding new Riemannian metric
and area measure.

The following result shows that we may choose very special sequences of sets
in M which still do quite well. Even more surprising is the fact that ‘most’
sequences are not too bad, at least infinitely often. Let J ⊂ M be compact.
Then a sequence of points in J may be considered as an element of the product
space J×J× . . . = J∞. If J∞ is endowed with the product topology it is compact
by Tychonov’s theorem. Hence it is a Baire space, that is, the complement of
each meager set is dense, where a set is meager if it is a countable union of
nowhere dense sets. When speaking of most elements of a Baire space we mean
all elements with a meager set of exceptions.

Theorem 2. Let M be a 2-dimensional Riemannian manifold of class C2, let J
be a compact Jordan measurable set in M with ωM(J) > 0 and let 0 < a ≤ 2.
Then the following hold:

(i) There is a sequence p1, p2, . . . ∈ J such that∫
J

min{%M(pi, x)a : i = 1, . . . , n}dωM(x) = O(
1

n
a
2
) as n →∞.

(ii) For most sequences q1, q2, . . . ∈ J ,∫
J

min{%M(qi, x)a : i = 1, . . . , n}dωM(x) <
log n

n
a
2

for infinitely many n.

In the proof of (i), use is made of tools from the theory of uniform distribution,
in particular of the notion of dispersion. The proof of (ii) relies on a result of the
author concerning the irregularity of approximation, see [?].

Theorem 2 has implication both for the numerical integration and the approx-
imation problem considered below. These applications are given elsewhere.
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3 Nodes and weights in optimal numerical inte-

gration formulae

Let J be a Jordan measurable set on a d-dimensional Riemannian manifold M
with measure ωM . Given a class F of real functions on J , the problem arises
to choose for n = 1, 2, . . ., sets of nodes Nn = {p1, . . . , pn} in J and weights
Wn = {w1, . . . , wn} in IR such that the error

E(F , Nn, Wn) = sup
f∈F

{|
∫
J

f(x)dωM(x)−
n∑

i=1

wif(pi)|}

is minimal for each n or at least asymptotically minimal as n →∞. (To simplify
the notation we avoid writing pni and wni.) A related problem is to describe the
optimal or asymptotically optimal choices of Nn and Wn. While the solution of
these problems for arbitrary classes F and any sufficiently large n is hopeless, it
is possible to settle the asymptotic problem for special classes F in case d = 2.
We describe one such case. Let M be a 2-dimensional Riemannian manifold of
class C2 with metric %M and area measure ωM . Given a Jordan measurable set J
in M with ωM(J) > 0 and 0 < a ≤ 1, consider the following class Ha of Hoelder
continuous real functions on J :

Ha = Ha(J) = {f : J → IR : |f(x)− f(y)| ≤ %M(x, y)a for x, y ∈ J}.

In addition to the error E(Ha, Kn, Wn) define

E(Ha, Nn) = inf
Wn

E(Ha, Nn, Wn),

E(Ha, n) = inf
Nn

E(Ha, Nn).

A sequence (Wn) of weights for a numerical integration formula for J with #Wn =
n, is asymptotically uniform, if there are Landau symbols o(n) and (1) such that
for all indices i = 1, . . . , n, with at most o(n) exceptions,

wi =
(1± o(1))ωM(J)

n
.

ωM(J)/n then is called the value of Wn.

Theorem 3. Let M be a 2-dimensional Riemannian manifold of class C2, let
J be a Jordan measurable set in M with ωM(J) > 0, and let 0 < a ≤ 1 and
b = 1 + a

2
. Then the following claims hold:

(i) E(Ha, n) ∼ α(a)ωM(J)b

n
a
2

as n →∞.

(ii) If (Nn) and (Wn) are sequences of nodes in J and of weights, respectively,
with #Nn = #Wn = n and such that

E(Ha, Nn, Wn) ∼ α(a)ωM(J)b

n
a
2

as n →∞,
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then Nn is asymptotically a regular hexagonal pattern in J where the edge-
length of the hexagons is (

32ωM(J)

3
√

3n

) 1
2

and Wn is asymptotically uniform with value ωM(J)/n.

The proof of part (i) is simple and follows the lines of Babenko [?] who proved it
for M = IE 2 and S2; it makes use of part (i) of Theorem 1. In the proof of part
(ii) the idea is to construct functions f ∈ Ha for which

|
∫
J

f(x)dωM(x)−
n∑

i=1

wif(pi)|

is large. Then part (ii) of Theorem 1 easily yields the statement about Nn, while
the statement about Wn requires additional arguments.

As was the case for Theorem 1, one can, in principle, construct sequences (Nn)
and (Wn) satisfying the assumptions of (ii). Again, it is possible to generalize
Theorem 2 in such a way that the applications to numerical integration formulae
include integrals of the form ∫

J

f(x)w(x)dωM(x)

where w is a positive continuous weight function on the closure of J . The proof
is slightly different from the proof of the corresponding extension of Theorem 1.

4 The form of best approximating convex poly-

topes of a smooth convex body

Let C be a convex body in IE d, that is a compact convex subset of IE d with non-
empty interior, and let δ be a metric or some other notion of distance on the
space of all convex bodies. Consider for n = d + 1, d + 2, . . ., a class Pn of convex
polytopes in IE d, such as the classes of all convex polytopes with n vertices or n
facets, respectively, or their subclasses of convex polytopes which are inscribed
or circumscribed to C. Then the problems arise to determine or estimate

δ(C,Pn) = inf{δ(C, P ) : P ∈ Pn}

and to describe those polytopes Pn ∈ Pn for which the infimum is attained, the
best approximating polytopes of C in Pn with respect to δ. For the numerous
aspects of these problems see, for example, the surveys [?, ?] of Gruber.

Disregarding trivial special cases, the problem to give precise descriptions of
best approximating polytopes is out of reach, but it is possible to shed some light
on the geometric form of such. First results in this direction which make use of
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ideas and notions of the theory of uniform distribution are due to Glasauer and
Schneider [?] for the Hausdorff metric and to Glasauer and Gruber [?] for the
symmetric difference metric and the mean width deviation. Much more precise
results for d = 3 for the Hausdorff metric, the Banach–Mazur distance and a
notion of distance due to Schneider, are due to Gruber [?]. The basic tool for the
latter results is a stability theorem for thinnest coverings with solid circles.

We now describe a corresponding result for best approximating circumscribed
polytopes with respect to the symmetric difference metric. Let C be a convex
body in IE 3 (the boundary bd C of which is a surface) of class C2 with positive
Gauss curvature. Let bd C be endowed with a Riemannian metric. For each p
on bd C the Riemannian metric induces a Euclidean metric ‖ · ‖p on the tangent
plane of bd C at p. Given a sequence (Pn) of convex polytopes circumscribed to
C such that Pn has n facets, we say that Pn has asymptotically regular hexagonal
facets with respect to the Riemannian metric if the following holds: there are
Landau symbols o(n) and o(1) and a positive sequence (σn) such that each facet
of Pn, with a set of at most o(n) exceptions, has six vertices v1, . . . , v6, say, and
for these vertices hold

‖vi − p‖p, ‖vi − vi+1‖p = (1± o(1))σn for i = 1, . . . , 6, where v7 = v1.

Here p is the point where the facet touches bd C. σn is called the edgelength of
F .

Theorem 4. Let C be a convex body in IE 3 of class C2 with positive Gauss cur-
vature. For n = 4, 5, . . ., let Pn be a convex polytope with n facets circumscribed
to C and of minimum volume, i.e. best approximating with respect to the symmet-
ric difference metric. Then Pn has asymptotically regular hexagonal facets of the
same edgelength with respect to the Riemannian metric of equiaffine differential
geometry.

For the definition of the latter see Blaschke [?], p. 104, or Li, Simon and Zhao
[?], p. 40.

In the proof we make use of a relation between volume approximation of C
by circumscribed convex polytopes and sums of moments for the Riemannian
manifold bd C. This then permits the application of Theorem 1.

We claim that one cannot expect a result similar to Theorem 4 for convex
bodies of class C1. Our basis for this claim is the existence of a family of convex
bodies of class C1, which is dense in the space of all convex bodies, such that
each member C of the family satisfies the following: for n = 4, 5, . . . , let Pn be a
convex polytope with n facets circumscribed to C and of minimum volume, then,
for infinitely many n, all facets of Pn are approximately of triangular form. In
fact, we presume that this holds not only for a dense family of convex bodies of
class C1, but for most convex bodies in the sense of Baire categories.

It is very plausible that there is a result corresponding to Theorem 4, but for
inscribed convex polytopes with n vertices. Using similar arguments to those in
the proof of Theorem 4, it is possible to show a corresponding result where the
symmetric difference metric is replaced by the mean width deviation.
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5 The form of convex polytopes with minimum

isoperimetric quotient

One among the large number of problems of isoperimetric type is the following:
describe among all convex polytopes in IE d with n facets and given volume those
of minimum surface area. Lindelöf [?] proved that such polytopes are necessarily
circumscribed to a Euclidean ball; see Minkowski [?] for an alternative proof.
Since there is a simple relation between the volume and the surface area of a
convex polytope circumscribed to a ball, an application of Theorem 4 readily
implies the following result, where the metric is the ordinary Euclidean metric.

Corollary of Theorem 4. For n = 4, 5, . . ., let Pn be a convex polytope in IE 3

of minimum surface area amongst those with n facets and given volume. Then
Pn has asymptotically regular hexagonal facets of the same edgelength.

For a discussion of related problems for particular values of n see L. Fejes Tóth
[?] and Florian [?].
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