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Abstract. A new sharp affine Lp Sobolev inequality for functions on Rn is
established. This inequality strengthens and implies the previously known

affine Lp Sobolev inequality which in turn is stronger than the classical Lp

Sobolev inequality.

1. Introduction

The sharp Lp Sobolev inequality of Aubin [1] and Talenti [36] is one of the
fundamental inequalities of analysis. It plays a central role in a number of different
areas such as the theory of partial differential equations, geometric measure theory,
and the calculus of variations. In recent years, many variations and generalizations
have been obtained, see, e.g., [2, 3, 6, 8, 11, 32, 33, 37] and the references therein.

Recently, Zhang [38] (for p = 1) and Lutwak, Yang, and Zhang [27] (for 1 < p <
n) formulated and proved a sharp affine Lp Sobolev inequality. This remarkable
inequality is invariant under all affine transformations of Rn and turned out to
be significantly stronger than the classical Lp Sobolev inequality although it does
not rely on any Euclidean geometric structure. As was shown in [38], the affine
Zhang–Sobolev inequality is equivalent to the extended Petty projection inequality
established in [38]. In the Euclidean setting, all the Lp Sobolev inequalities have
the classical isoperimetric inequality at their core (for p = 1 both inequalities are
equivalent as discovered Maz’ya [31] and, independently, by Federer and Fleming
[10]). In the affine setting, the situation is more difficult. Here, new geometry is
needed to pass from the case p = 1 to p > 1. To establish the affine Lp Sobolev
inequality for p > 1, Lutwak, Yang and Zhang [25] had to first establish an Lp

Petty projection inequality.
In this article we establish a new sharp affine Lp Sobolev inequality which

strengthens and directly implies the previously known sharp affine Lp Sobolev in-
equality of Lutwak, Yang, and Zhang. The geometry behind this new Sobolev
inequality is an Lp affine isoperimetric inequality, stronger than the Lp Petty pro-
jection inequality, which was recently established by the authors in [13]. This crucial
geometric inequality was made possible by recent advances in valuation theory by
Ludwig [17, 19].

We denote by W 1,p(Rn) the space of real-valued Lp functions on Rn (n ≥ 2) with
weak Lp partial derivatives. Let | · | denote the standard Euclidean norm on Rn

and let ‖f‖p denote the usual Lp norm of f in Rn. The classical sharp Lp Sobolev
inequality states that if f ∈ W 1,p(Rn), with real p satisfying 1 ≤ p < n, then

(1.1)
(∫

Rn

|∇f |p dx

)1/p

≥ ĉn,p ‖f‖p∗ ,

1
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where p∗ = np/(n − p). The optimal constants ĉn,p in this inequality are due to
Federer and Fleming [10] and Maz’ya [31] for p = 1 and to Aubin [1] and Talenti
[36] for p > 1. The extremal functions for inequality (1.1) are the characteristic
functions of balls for p = 1 and for p > 1 equality is attained when

f(x) = (a + b|(x− x0)|p/(p−1))1−n/p,

with a, b > 0, and x0 ∈ Rn.
The sharp affine Lp Sobolev inequality of Zhang [38] and Lutwak, Yang, and

Zhang [27] states that if f ∈ W 1,p(Rn), 1 ≤ p < n, then

(1.2)
(∫

Sn−1
‖Duf‖−n

p du

)−1/n

≥ c̃n,p ‖f‖p∗ ,

where Duf is the directional derivative of f in the direction u ∈ Sn−1. The optimal
constants c̃n,p in (1.2) were explicitly computed in [38] (for p = 1) and [27]. The
determination of ĉn,p and c̃n,p in (1.1) and (1.2) is in many situations not as im-
portant as the identification of extremal functions. The extremals associated with
inequality (1.2) for p = 1 are the characteristic functions of ellipsoids and for p > 1
equality is attained when

f(x) = (a + |φ(x− x0)|p/(p−1))1−n/p,

with a > 0, φ ∈ GL(n), and x0 ∈ Rn.
We emphasize that inequality (1.2) is invariant under affine transformations of

Rn, while the classical Lp Sobolev inequality (1.1) is invariant only under rigid
motions. That the affine Lp Sobolev inequality is stronger than (1.1) follows from
an application of Hölder’s inequality (cf. [27, p. 33]):(∫

Rn

|∇f |p dx

)1/p

≥ an,p

(∫
Sn−1

‖Duf‖−n
p du

)−1/n

≥ ĉn,p ‖f‖p∗ .

Here, equality in the left inequality holds if and only if ‖Duf‖p is independent of
u ∈ Sn−1. The constant an,p was computed in [27].

For u ∈ Sn−1 and f ∈ W 1,p(Rn), we denote by

D+
u f(x) = max{Duf(x), 0}

the positive part of the directional derivative of f in the direction u.
The main result of this article is the following:

Theorem 1. If f ∈ W 1,p(Rn), with 1 ≤ p < n, then

(1.3)
(∫

Sn−1
‖D+

u f‖−n
p du

)−1/n

≥ cn,p ‖f‖p∗ ,

where p∗ = np/(n− p). For p > 1, the optimal constant cn,p is given by

cn,p = 2−1/p(n−p
p−1 )1−1/p

(
Γ( n

p )Γ(n+1−n
p )

Γ(n+1)

)1/n (
nΓ( n

2 )Γ( p+1
2 )

√
πΓ( n+p

2 )

)1/p

,

and cn,1 = limp→1 cn,p. If p = 1, equality holds in (1.3) for characteristic functions
of ellipsoids and for p > 1 equality is attained when

f(x) = (a + |φ(x− x0)|p/(p−1))1−n/p,

with a > 0, φ ∈ GL(n) and x0 ∈ Rn.
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Note that inequality (1.3) is invariant under affine transformations of Rn. We
will show in Section 6 that, for p ≥ 1,

(1.4)
(∫

Sn−1
‖Duf‖−n

p du

)−1/n

≥ 21/p

(∫
Sn−1

‖D+
u f‖−n

p du

)−1/n

.

Since c̃n,p = 21/pcn,p, the new affine Lp Sobolev inequality (1.3) is stronger than the
inequality Lutwak, Yang, and Zhang. In particular, inequality (1.3) is also stronger
than the classical Lp Sobolev inequality (1.1). It is crucial to observe that while for
inequality (1.2) only the even part of the directional derivatives of f contribute, for
the new inequality (1.3) also asymmetric parts are accounted for. This is reflected
by the fact that equality in (1.4) holds precisely when ‖D+

u f‖p is an even function
on Sn−1.

The classical L2 Sobolev inequality has drawn particular attention due to its
conformal invariance, see, e.g., [3, 6, 16]. As noted in [27], the affine L2 Sobolev
inequality of Lutwak, Yang, and Zhang is equivalent under an affine transformation
to the L2 Sobolev inequality. The case p = 2 of inequality (1.3), however, yields a
stronger inequality.

While the geometric inequalities behind the affine Zhang–Sobolev inequality and
inequality (1.3) for p = 1 are the same, a new affine isoperimetric inequality recently
established by the authors [13] is needed to establish inequality (1.3) for p > 1. We
will apply this inequality to convex bodies (associated with the given function)
which occur as solutions to the Lp Minkowski problem for 1 < p < n. Since the
geometric inequality assumes that the convex bodies contain the origin in their
interiors, its application is intricate in the asymmetric situation. Here, the origin
can lie on the boundary of the convex bodies which occur as a solution to the Lp

Minkowski problem. All this geometric background will be discussed in detail in
Sections 3 & 4.

2. Background Material

In the following we state some basic facts about convex bodies and compact
domains. General references for the theory of convex bodies are the books by
Gardner [12] and Schneider [35]. We will also collect background material from
real analysis needed in the proof of Theorem 1.

The setting for this article is Euclidean n-space Rn with n ≥ 2. A convex body
is a compact convex set in Rn with non-empty interior. Let Kn denote the set of
convex bodies in Rn endowed with the Hausdorff metric. We write Kn

o for the set
of convex bodies containing the origin in their interiors.

A compact convex set K is uniquely determined by its support function h(K, ·),
where h(K, x) = max{x · y : y ∈ K}, x ∈ Rn, and where x · y denotes the usual
inner product of x and y in Rn. Note that h(K, ·) is positively homogeneous of
degree one and subadditive. Conversely, every function with these properties is the
support function of a unique compact convex set.

If K ∈ Kn
o , the polar body K∗ of K is defined by

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}.

Let ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn\{0}, denote the radial function of K.
It follows from the definitions of support functions and radial functions, and the
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definition of the polar body of K, that

(2.1) ρ(K∗, ·) = h(K, ·)−1 and h(K∗, ·) = ρ(K, ·)−1.

A compact domain is the closure of a bounded open subset of Rn. If M and N
are compact domains in Rn, then the Brunn–Minkowski inequality states that

V (M + N)1/n ≥ V (M)1/n + V (N)1/n,

where V denotes the usual n-dimensional Lebesgue measure. For a compact domain
M and a convex body K in Rn, define

nV1(M,K) = lim inf
ε→0+

V (M + εK)− V (M)
ε

.

If the boundary ∂M of M is a C1 submanifold of Rn, then

(2.2) V1(M,K) =
1
n

∫
∂M

h(K, ν(x)) dHn−1(x),

where ν(x) is the exterior unit normal vector of ∂M at x and Hn−1 denotes (n−1)-
dimensional Hausdorff measure (cf. [38, Lemma 3.2]).

We need the following immediate consequence of the Brunn–Minkowski inequal-
ity: If M is a compact domain and K is a convex body in Rn, then

(2.3) V1(M,K)n ≥ V (M)n−1V (K).
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We will frequently apply Federer’s co-area formula (see, e.g., [9, p. 258]). For
quick reference we state a version which is sufficient for our purposes: If f : Rn → R
is locally Lipschitz and g : Rn → [0,∞) is measurable, then, for any Borel set A ⊆ R,

(2.4)
∫

f−1(A)∩{|∇f |>0}
g(x) dx =

∫
A

∫
f−1{y}

g(x)
|∇f(x)|

dHn−1(x) dy.

Finally, we require the following consequence (cf. [2, Proposition 2.18]) of Bliss’
inequality [4]. For an elementary proof we refer to [27, Lemma 4.1]: Let f :
(0,∞) → [0,∞) be decreasing and locally absolutely continuous and let 1 < p < n.
If the integrals exist, then

(2.5)
(∫ ∞

0

|f ′(x)|pxn−1 dx

)1/p

≥ bn,p

(∫ ∞

0

f(x)p∗xn−1 dx

)1/p∗

,

where p∗ = np/(n− p) and

bn,p = n1/p∗(n−p
p−1 )1−1/p

(
Γ( n

p )Γ(n+1−n
p )

Γ(n)

)1/n

.

Equality in (2.5) holds if f(x) = (axp/(p−1) + b)1−n/p, with a, b > 0.

3. Lp Projection Bodies and the Lp Minkowski Problem

In this section we collect the material which forms the geometric core in the
proof of our main result. The critical ingredients are an Lp affine isoperimetric
inequality recently established in [13] and the solution (to the discrete data case)
of an Lp extension of the classical Minkowski problem obtained in [7].

The projection body ΠK of K ∈ Kn is the convex body defined by

h(ΠK, u) = voln−1(K|u⊥),

where voln−1(K|u⊥) is the (n− 1)-dimensional volume of the projection of K onto
the hyperplane orthogonal to u.

Introduced by Minkowski, projection bodies have become a central notion in
convex geometry, see, e.g., [12, 13, 17, 26] and the references therein. A recent
result by Ludwig [19] has demonstrated their special place in affine geometry: The
projection operator was characterized as the unique valuation which is contravariant
with respect to linear transformations.

The fundamental affine isoperimetric inequality for projection bodies is the Petty
projection inequality: If K ∈ Kn, then

V (K)n−1V (Π∗K) ≤
(

κn

κn−1

)n

,

with equality if and only if K is an ellipsoid. Here Π∗K = (ΠK)∗ and κn denotes
the volume of the Euclidean unit ball in Rn. This inequality turned out to be far
stronger than the classical isoperimetric inequality. It is the geometric inequality
behind the affine Zhang–Sobolev inequality [38].
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Projection bodies are part of the classical Brunn–Minkowski theory. In a series
of articles [22, 23], Lutwak showed that merging the notion of volume with Firey’s
Lp addition of convex sets leads to a Brunn–Minkowski theory for each p ≥ 1. Since
Lutwak’s seminal work, the topic has been much studied, see, e.g., [5, 7, 18, 19,
20, 24, 26, 27, 29, 30]. For p ≥ 1, K, L ∈ Kn

o and α, β ≥ 0 (not both zero), the Lp

Minkowski combination α ·K +p β · L is the convex body defined by

h(α ·K +p β · L, ·)p = αh(K, ·)p + βh(L, ·)p.

One of the basic notions of the Lp Brunn–Minkowski theory is the Lp mixed volume
Vp(K, L) of two bodies K, L ∈ Kn

o . It was defined in [22] by

Vp(K, L) =
p

n
lim

ε→0+

V (K +p ε · L)− V (K)
ε

.

Clearly, the diagonal form of Vp reduces to ordinary volume, i.e., for K ∈ Kn
o ,

(3.1) Vp(K, K) = V (K).

It was shown in [22] that corresponding to each convex body K ∈ Kn
o , there exists

a positive Borel measure on Sn−1, the Lp surface area measure Sp(K, ·) of K, such
that for every L ∈ Kn

o ,

(3.2) Vp(K, L) =
1
n

∫
Sn−1

h(L, u)p dSp(K, u).

The measure S1(K, ·) is just the classical surface area measure S(K, ·) of K. More-
over, it was proved in [22], that the Lp surface area measure is absolutely continuous
with respect to S(K, ·):

(3.3) dSp(K, u) = h(K, u)1−pdS(K, u), u ∈ Sn−1.

Recall that for a Borel set ω ⊆ Sn−1, S(K, ω) is the (n− 1)-dimensional Hausdorff
measure of the set of all boundary points of K for which there exists a normal
vector of K belonging to ω. From the homogeneity properties of the surface area
measure and the support function of K, one obtains that, for every λ > 0,

(3.4) Sp(λK, ·) = λn−pSp(K, ·).

For a finite Borel measure µ on Sn−1, we define a continuous function C+
p µ on

Sn−1, the asymmetric Lp cosine transform of µ, by

(C+
p µ)(u) =

∫
Sn−1

(u · v)p
+ dµ(v), u ∈ Sn−1,

where (u · v)+ = max{u · v, 0}. For f ∈ C(Sn−1), let C+
p f be the asymmetric Lp

cosine transform of the absolutely continuous measure (with respect to spherical
Lebesgue measure) with density f . The asymmetric Lp projection body Π+

p K of
K ∈ Kn

o , first considered in [23], is the convex body defined by

(3.5) h(Π+
p K, ·)p = C+

p Sp(K, ·).

For p > 1, Ludwig [19] established the Lp analogue of her classification of the
projection operator: She showed that the convex bodies

(3.6) c1 ·Π+
p K +p c2 ·Π−

p K, K ∈ Kn
o ,

where Π−
p K = Π+

p (−K) and c1, c2 ≥ 0 (not both zero), constitute all natural Lp

extensions of projection bodies.
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The (symmetric) Lp projection body ΠpK of K ∈ Kn
o , defined in [26], is

ΠpK = 1
2 ·Π

+
p K +p

1
2 ·Π

−
p K.

Lutwak, Yang, and Zhang [26] (see also Campi and Gronchi [5]) established
an Lp extension of the Petty projection inequality for the (symmetric) Lp pro-
jection operator which forms the geometry behind their sharp affine Lp Sobolev
inequality: If K ∈ Kn

o , then

(3.7) V (K)n/p−1V (Π∗
pK) ≤

(
κnΓ(n+p

2 )
π(n−1)/2Γ( 1+p

2 )

)n/p

,

with equality if and only if K is an ellipsoid centered at the origin.
Recently the authors [13] established the Lp Petty projection inequality for each

member of the family (3.6) of Lp projection operators. The geometric core of the
asymmetric affine Lp Sobolev inequality (1.3) is the following special case of this
result:

Theorem 2. If p > 1 and K ∈ Kn
o , then

(3.8) V (K)n/p−1V (Π+,∗
p K) ≤

(
κnΓ(n+p

2 )
π(n−1)/2Γ( 1+p

2 )

)n/p

,

where equality is attained if K is an ellipsoid centered at the origin.

Although this inequality was formulated in [13] for dimensions n ≥ 3, we remark
that it also holds true in dimension n = 2. The proof is verbally the same as the one
given in [13]. Since surface area measures have their center of mass at the origin,
we have

Π+
1 K = ΠK.

Thus, for p = 1, inequality (3.8) is the classical Petty projection inequality.
It was also shown in [13] that inequality (3.8), for p > 1, is stronger than the Lp

Petty projection inequality (3.7) of Lutwak, Yang, and Zhang: If K ∈ Kn
o , then

(3.9) V (Π∗
pK) ≤ V (Π+,∗

p K).

If p is not an odd integer, equality holds precisely for origin-symmetric K.

We turn now to the second main ingredient in the proof of Theorem 1. The Lp

Minkowski problem asks for necessary and sufficient conditions for a Borel measure
µ on Sn−1 to be the Lp surface area measure of a convex body. A solution to this
problem for p > n was given by Chou and Wang [7]. Moreover, Chou and Wang
[7] established the solution to the discrete-data case of the Lp Minkowski problem
for all p > 1 (see also [15] for an alternate approach). The following solution to the
discrete Lp Minkowski problem due to Chou and Wang will be crucial:

Theorem 3. If α1, . . . , αk > 0 and u1, . . . , uk ∈ Sn−1 are not contained in a closed
hemisphere, then, for any p > 1, p 6= n, there exists a unique polytope P ∈ Kn

o such
that

k∑
j=1

αjδuj
= Sp(P, ·).
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Here, δu denotes the probability measure with unit point mass at u ∈ Sn−1.
We will also apply two auxiliary results [28, Lemma 2.2 & 2.3] concerning the

volume normalized Lp Minkowski problem: Let µ be a positive Borel measure on
Sn−1, and let K ∈ Kn contain the origin. Suppose that

V (K)h(K, ·)p−1µ = S(K, ·),

and that for some constant c > 0,∫
Sn−1

(u · v)p
+ dµ(v) ≥ n

cp
for every u ∈ Sn−1.

Then

(3.10) V (K) ≥ κn

(
n

µ(Sn−1)

)n/p

and K ⊂ cBn,

where Bn denotes the Euclidean unit ball in Rn.

4. A Critical Lemma

A crucial part in the proof of our main result is the construction of a family of
convex bodies containing the origin in their interiors from a given function. It is
essential that the origin is an interior point in order to apply the critical geometric
inequality (3.8) afterwards. In [26], this was done by using the solution to the
even Lp Minkowski problem. In our case, we have to deal with the solutions to
the general Lp Minkowski problem. Here, the bodies can contain the origin in
their boundaries (cf. [15]). Therefore, we will associate a two parametric family
of convex polytopes with a given function. These polytopes are obtained from the
solution to the discrete-date case of the Lp Minkowski problem which ensures that
they contain the origin as an interior point. This will allow us to use the relevant
geometric inequality.

A function f ∈ C∞(Rn) is called smooth. Suppose f is smooth and has compact
support. Then the level set

[f ]t = {x ∈ Rn : |f(x)| ≥ t}

is compact for every 0 < t ≤ ‖f‖∞, where ‖f‖∞ denotes the maximum value of |f |
over Rn.

Lemma 1. Suppose that f : Rn → R is smooth and has compact support. Then,
for almost every t ∈ (0, ‖f‖∞), there exists a sequence of convex polytopes P t

k ∈ Kn
o ,

k ∈ N, such that
lim

k→∞
P t

k = Kt
f ∈ Kn

and

(4.1) V (Kt
f ) =

1
n

∫
∂[f ]t

h(Kt
f ,∇f(x))p|∇f(x)|−1 dHn−1(x).

Moreover, there exists a convex body Lt
f ∈ Kn

o such that

lim
k→∞

Π+
p P t

k = Lt
f .
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Proof : By Sard’s theorem, for almost every t ∈ (0, ‖f‖∞), the boundary ∂[f ]t of
[f ]t is a smooth (n− 1)-dimensional submanifold with everywhere nonzero normal
vector ∇f . Let t be chosen in this way and denote by ν(x) = ∇f(x)/|∇f(x)| the
unit normal of ∂[f ]t at x.

Let µt be the finite positive Borel measure on Sn−1 defined by

(4.2)
∫

Sn−1
g(v) dµt(v) =

∫
∂[f ]t

g(ν(x))|∇f(x)|p−1 dHn−1(x),

for g ∈ C(Sn−1). Since

(4.3) {ν(x) : x ∈ ∂[f ]t} = Sn−1,

it follows that for every u ∈ Sn−1,∫
Sn−1

(u · v)+ dµt(v) =
∫

∂[f ]t

(u · ν(x))+|∇f(x)|p−1 dHn−1(x) > 0.

Therefore, the measure µt cannot be concentrated in a closed hemisphere.
As in [35, pp. 392-3], construct a sequence µt

k, k ∈ N, of discrete measures on
Sn−1 whose support is not contained in a closed hemisphere and such that µt

k

converges weakly to µt as k → ∞. By Theorem 3, for each k ∈ N, there exists a
polytope P t

k ∈ Kn
o such that

(4.4) µt
k = Sp(P t

k, ·).
We want to show that the sequence of polytopes P t

k is bounded. To this end, define
for each k ∈ N a new polytope Qt

k by

Qt
k = V (P t

k)−1/pP t
k.

By (3.3) and the homogeneity (3.4) of Lp surface area measures, the polytopes Qt
k,

k ∈ N, form a solution to the volume normalized Lp Minkowski problem

(4.5) V (Qt
k)h(Qt

k, ·)p−1µt
k = S(Qt

k, ·).
Moreover, from definition (3.5), relation (4.4) and the weak convergence of the
measures µt

k, it follows that for every u ∈ Sn−1,

(4.6) h(Π+
p P t

k, u)p =
∫

Sn−1
(u · v)p

+ dµt
k(v) −→

∫
Sn−1

(u · v)p
+ dµt(v) > 0.

Since pointwise convergence of support functions implies uniform convergence (see,
e.g., [35, Theorem 1.8.12]), there exists a c > 0 such that for all k ∈ N,

(4.7)
∫

Sn−1
(u · v)p

+ dµt
k(v) > c, for every u ∈ Sn−1.

From (4.5), (4.7) and (3.10), we deduce that the sequence Qt
k, k ∈ N, is bounded.

Moreover, by (3.10) and the weak convergence of the measures µt
k, the volumes

V (Qt
k) are bounded from below by a constant independent of k. Therefore, the

original sequence P t
k = V (Qt

k)1/(p−n)Qt
k is also bounded.

By the Blaschke selection theorem (see, e.g., [35, Theorem 1.8.6]), we can select
a subsequence of the P t

k converging to a convex body Kt
f . After relabeling (if

necessary) we may assume that limk→∞ P t
k = Kt

f . From (3.1), (3.2), and relation
(4.4), we obtain

V (Kt
f ) = lim

k→∞
V (P t

k) = lim
k→∞

1
n

∫
Sn−1

h(P t
k, v)p dµt

k(v).
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Thus, the uniform convergence of the support functions h(P t
k, ·), the weak conver-

gence of the measures µt
k, and definition (4.2), yield

V (Kt
f ) =

1
n

∫
∂[f ]t

h(Kt
f ,∇f(x))p|∇f(x)|−1 dHn−1(x).

Finally, we define h(Lt
f , ·)p = C+

p µt. By definition (4.2), we have

(4.8) h(Lt
f , u)p =

∫
∂[f ]t

(u · ∇f(x))p
+|∇f(x)|−1 dHn−1(x), u ∈ Sn−1.

From (4.6), we deduce that h(Lt
f , ·) is the support function of a convex body Lt

f ∈
Kn

o and that limk→∞ Π+
p P t

k = Lt
f . �

5. Proof of the Main Result

After these preparations, we are now in a position to proof our main result. We
want to point out that the approach we use to establish Theorem 1 is based on
ideas and techniques of Lutwak, Yang, and Zhang [27].

We will need the decreasing rearrangement f̄ of a function f : Rn → R. It is
defined by

f̄(x) = inf{t > 0 : V ([f ]t) < κn|x|n}.
Note that the level set [f̄ ]t is a dilate of the unit ball Bn and its volume is equal
to V ([f ]t). Moreover, for all p ≥ 1,

(5.1) ‖f‖p = ‖f̄‖p.

We will first reduce the proof of Theorem 1 to the class of smooth functions with
compact support.

Lemma 2. In order to prove Theorem 1, it is sufficient to verify the following
assertion: If f ∈ C∞(Rn) has compact support and 1 ≤ p < n, then

(5.2)
(∫

Sn−1
‖D+

u f‖−n
p du

)−1/n

≥ cn,p ‖f‖p∗ .

Proof : Assume that (5.2) holds for smooth functions with compact support and let
f ∈ W 1,p. We may assume that the set {x ∈ Rn : f(x) 6= 0} has positive measure.
First, we will show that ‖D+

u f‖p > 0 for every u ∈ Sn−1.
We may assume that u = en is the last canonical basis vector. We denote the

indicator function of a set A ⊆ Rn by IA. Since for each N ∈ N, almost all points
in Rn are Lebesgue points of f · I[−N,N ]n (see, e.g., [34, Theorem 7.7]), there exists
an n-box P = [a1, b1]× · · · × [an, bn] such that

∫
P

f 6= 0.
If
∫

P
f > 0, then, since f ∈ Lp(Rn), there exist real a < b < c such that∫

P ′

∫ b

a

f <

∫
P ′

∫ c

b

f,

where P ′ denotes the (n− 1)-box [a1, b1]× · · ·× [an−1, bn−1]. Let 0 < ε < 1 and let
gi : R → [0, 1], i = 1, . . . , n−1, be smooth functions with gi = 1 on [ai, bi] and gi = 0
on (ai − ε, bi + ε)c. Furthermore, define gn : R → R, by gn(x) =

∫ x

−∞ hn(x) dx,
where hn is a smooth function which is equal to ε on [a+ε, b−ε], −ε on [b+ε, c−ε],
and zero on [a, c]c.
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If we set φ(x) = g1(x1) · . . . · gn(xn), then φ is a non-negative, smooth, and
compactly supported function such that

∫
Rn f∂nφ < 0 for sufficiently small ε. Here,

∂nφ denotes the n-th partial derivative of φ.
If
∫

P
f < 0, then the above argument applied to x 7→ −f(−x) yields a non-

positive, smooth, and compactly supported function φ with
∫

Rn f∂nφ > 0.
Now suppose that ‖D+

en
f‖p = 0. This implies, by the definition of weak deriva-

tives, that
∫

Rn f∂nφ ≥ 0 (≤ 0) for every smooth and compactly supported φ which
is non-negative (non-positive). This is a contradiction to the above construction.
Thus ‖D+

u f‖p > 0 for every u ∈ Sn−1.
Since f ∈ W 1,p, we can find a sequence fk, k ∈ N, of smooth functions with

compact support such that

‖fk − f‖p → 0 and ‖∂ifk − ∂if‖p → 0

for i = 1, . . . , n. By Minkowski’s inequality we have

cn,p‖fl − fm‖p∗ ≤
(∫

Sn−1
‖D+

u (fl − fm)‖−n
p du

)−1/n

≤ 1

ω
1/n
n

n∑
i=1

‖∂ifl − ∂ifm‖p

for all l,m ∈ N, where ωn denotes the surface area of the Euclidean unit ball in Rn.
Consequently, the sequence fk, k ∈ N, is a Cauchy sequence in Lp∗(Rn).

By the completeness of Lp∗(Rn), there exists a function g such that
‖fk− g‖p∗ → 0. Since sequences of functions converging in Lq, q > 0, posess a sub-
sequence converging almost everywhere, we can find fkj

, j ∈ N, such that fkj
→ f

and fkj
→ g almost everywhere. We conclude that f = g almost everywhere and

hence fk → f also in Lp∗(Rn).
By the first part of the proof, limk→∞ ‖D+

u fk‖−n
p = ‖D+

u f‖−n
p for every unit

vector u ∈ Sn−1. Thus an application of Fatou’s Lemma yields∫
Sn−1

‖D+
u f‖−n

p du =
∫

Sn−1
lim

k→∞
‖D+

u fk‖−n
p du

≤ lim inf
k→∞

∫
Sn−1

‖D+
u fk‖−n

p du

≤ lim
k→∞

c−n
n,p‖fk‖−n

p∗ = c−n
n,p‖f‖−n

p∗ . �

Proof of Theorem 1. In the following let p > 1. By Lemma 2 we may assume that
f is a smooth function with compact support which is not identically zero. An
application of the co-area formula (2.4) shows that

‖D+
u f‖p

p =
∫

Rn

(u · ∇f(x))p
+ dx =

∫ ‖f‖∞

0

∫
∂[f ]t

(u · ∇f(x))p
+

|∇f(x)|
dHn−1(x) dt.

By Lemma 1 and (4.8), there exists a convex body Lt
f ∈ Kn

o such that

(∫
Sn−1

‖D+
u f‖−n

p du

)−p/n

=

∫
Sn−1

(∫ ‖f‖∞

0

h(Lt
f , u)p dt

)−n/p

du

−p/n

.

Since h(Lt
f , ·) is positive, we can apply a consequence of Minkowski’s integral in-

equality (see, e.g., [14, p. 148]), to obtain(∫
Sn−1

‖D+
u f‖−n

p du

)−p/n

≥
∫ ‖f‖∞

0

(∫
Sn−1

h(Lt
f , u)−n du

)−p/n

dt.
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Using (2.1) and the polar coordinate formula for volume, we deduce

(5.3)
(∫

Sn−1
‖D+

u f‖−n
p du

)−p/n

≥
∫ ‖f‖∞

0

(
nV (Lt,∗

f )
)−p/n

dt.

By Lemma 1, there exists a sequence of convex polytopes P t
k ∈ Kn

o such that
limk→∞ P t

k = Kt
f ∈ Kn and limk→∞ Π+

p P t
k = Lt

f . Thus, from an application of
Theorem 2, we obtain

(5.4) (nV (Lt,∗
f ))−p/n = lim

k→∞
(nV (Π+,∗

p P t
k))−p/n ≥ en,pV (Kt

f )(n−p)/n,

where

en,p =
π(n−1)/2Γ( 1+p

2 )
np/nκnΓ(n+p

2 ) .

From (5.3) and (5.4), we deduce

(5.5)
(∫

Sn−1
‖D+

u f‖−n
p du

)−p/n

≥ en,p

∫ ‖f‖∞

0

V (Kt
f )(n−p)/n dt.

An application of Hölder’s integral inequality to volume formula (4.1), yields

V (Kt
f )(n−p)/np ≥ n1−1/p

(∫
∂[f ]t

dHn−1(x)
|∇f(x)|

)(1−p)/p

V (Kt
f )−1/nV1([f ]t,Kt

f ),

where we have used integral representation (2.2). From inequality (2.3), we deduce
further that

(5.6) V (Kt
f )(n−p)/n ≥ np−1

(∫
∂[f ]t

dHn−1(x)
|∇f(x)|

)1−p

V ([f ]t)(n−1)p/n.

Another application of the co-area formula (2.4), yields∫ ‖f‖∞

t

∫
∂[f ]s

dHn−1(x)
|∇f(x)|

ds = V ([f ]t ∩ {|∇f | > 0}).

Using Sard’s theorem, it is not hard to show that for almost every t satisfying
0 < t < ‖f‖∞, there exists a neighborhood Ut of t such that

V (f−1(Ut) ∩ {|∇f | > 0}) = V (f−1(Ut)).

Therefore, we obtain for almost every t with 0 < t < ‖f‖∞,

(5.7)
∫

∂[f ]t

dHn−1(x)
|∇f(x)|

= −V ([f ]t)′.

Combining (5.5), (5.6), and (5.7), we obtain

(5.8)
(∫

Sn−1
‖D+

u f‖−n
p du

)−p/n

≥ en,p

n1−p

∫ ‖f‖∞

0

V ([f ]t)(n−1)p/n

(−V ([f ]t)′)p−1
dt.

In order to estimate the right integral in (5.8), define f̂ : (0,∞) → R, by

f̄(x) = f̂(1/|x|).
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Since the decreasing rearrangement f̄(x) depends only on the Euclidean norm of
x, the function f̂ is well defined and increasing. Since f̂ is locally Lipschitz, a
substitution yields∫ ‖f‖∞

0

V ([f ]t)(n−1)p/n

(−V ([f ]t)′)p−1
dt = n1−pκ1−p/n

n

∫ ∞

0

f̂ ′(s)ps2p−n−1 ds.

Hence, we can rewrite (5.8) as

(5.9)
(∫

Sn−1
‖D+

u f‖−n
p du

)−p/n

≥ en,pκ
1−p/n
n

∫ ∞

0

f̂ ′(s)ps2p−n−1 ds.

Using polar coordinates and (5.1), we see that

‖f̄‖p∗

p∗ = nκn

∫ ∞

0

f̂(s)p∗s−n−1 ds = ‖f‖p∗

p∗ .

The substitution t = 1/s and an application of inequality (2.5), therefore yields

(5.10)
(∫ ∞

0

f̂ ′(s)ps2p−n−1 ds

)1/p

≥ bn,p

n1/p∗κ
1/p∗
n

‖f‖p∗ .

Finally, combine inequalities (5.9) and (5.10), to obtain the desired result

(5.11)
(∫

Sn−1
‖D+

u f‖−n
p du

)−1/n

≥ cn,p ‖f‖p∗ .

In order to see that inequality (1.3) is sharp, take for smooth K ∈ Kn
o ,

(5.12) f(x) =
(
1 + ρ(K, x)p/(1−p)

)1−n/p

.

Then, a straightforward (but tedious) calculation shows that inequality (1.3) re-
duces to the Lp affine isoperimetric inequality (3.8), where equality holds if K is
an ellipsoid centered at the origin.

Clearly, the case p = 1 of inequality (1.3) can be obtained from a limit of
inequality (5.11) as p → 1:

(5.13)
(

1
n

∫
Sn−1

‖D+
u f‖−n

1 du

)−1/n

≥ κn−1

κn
‖f‖1∗ .

Noting that Π+
1 = Π, one can show (cf. [38]) that for characteristic functions of

convex bodies, inequality (5.13) reduces to the Petty projection inequality, where
equality is attained for ellipsoids. �

We remark that for p > 1 the affine Lp Sobolev inequality (1.2) of Lutwak,
Yang, and Zhang reduces to the Lp Petty projection inequality (3.7) if we take f
as in (5.12). Thus, it follows from (3.9) that the new inequality (1.3) is in general
stronger than (1.2). We will make this fact even more explicit in the next section.

6. A Stronger Inequality

In this last section we show that Theorem 1 provides a stronger result than the
affine Lp Sobolev inequality (1.2) of Zhang and Lutwak, Yang, and Zhang. The
basic concept behind this observation is a convex body associated with a given
function f .
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For p ≥ 1 and f ∈ W 1,p(Rn), let B+
p (f) be the convex body defined by

h(B+
p (f), u) =

(∫
Rn

(D+
u f(x))p dx

)1/p

=
(∫

Rn

(u · ∇f(x))p
+ dx

)1/p

.

From Minkowski’s integral inequality, we deduce that h(B+
p (f), ·) is sublinear and

therefore the support function of a unique convex body B+
p (f). Moreover, by

Lemma 2, this body contains the origin in its interior. By (2.1) and the polar
coordinate formula for volume, the volume of its polar body is given by

V (B+,∗
p (f)) =

1
n

∫
Sn−1

‖D+
u f‖−n

p du.

Therefore, we can rewrite our main theorem as follows:

Theorem 1′ If f ∈ W 1,p(Rn), with 1 ≤ p < n, then

V (B+,∗
p (f))−1/n ≥ kn,p ‖f‖p∗ .

The optimal constant kn,p is given by

kn,p = 2−1/p(n−p
p−1 )1−1/p

(
Γ( n

p )Γ(n+1−n
p )

Γ(n)

)1/n (
nΓ( n

2 )Γ( p+1
2 )

√
πΓ( n+p

2 )

)1/p

.

From the definition of Lp Minkowski addition, it follows that

(6.1) h(B+
p (f) +p B+

p (−f), u) =
(∫

Rn

|Duf(x)|p dx

)1/p

.

Thus, the following reformulation of inequality (1.4) shows that Theorem 1 is
stronger than inequality (1.2):

Theorem 4. If p ≥ 1 and f ∈ W 1,p(Rn), then

V ((B+
p (f) +p B+

p (−f))∗) ≤ 2−n/pV (B+,∗
p (f)),

with equality if and only if B+
p (f) is origin symmetric.

In order to prove this theorem, we need a result from the dual Lp Brunn–
Minkowski theory. The basis of this theory is the following addition on convex
bodies. For α, β ≥ 0 (not both zero), Firey’s Lp harmonic radial combination
α ·K +̃p β · L of K, L ∈ Kn

o is the convex body defined by

ρ(α ·K +̃p β · L, ·)−p = αρ(K, ·)−p + βρ(L, ·)−p.

Firey started investigations of harmonic Lp combinations in the 1960’s which
were continued by Lutwak leading to a dual Lp Brunn–Minkowski theory.
A cornerstone of this theory is the dual Lp Brunn–Minkowski inequality [23]: If
K, L ∈ Kn

o , then

(6.2) V (K +̃p L)−p/n ≥ V (K)−p/n + V (L)−p/n,

with equality if and only if K and L are dilates.

Proof of Theorem 4 : From (2.1), (6.1) and the definition of Lp harmonic radial
addition, it follows that

(B+
p (f) +p B+

p (−f))∗ = B+,∗
p (f) +̃p B+,∗

p (−f).
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Since V (B+,∗
p (f)) = V (B+,∗

p (−f)), an application of (6.2) yields the desired in-
equality along with its equality conditions. �
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