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All spaces are assumed to be separable and metrizable.

What do you mean by “homogeneous”?

Definition
A space X is homogeneous if for every pair (x , y) of points of X
there exists a homeomorphism h : X −→ X such that h(x) = y .

Every topological group is homogeneous. The spaces S and T
(which I might never define) are homogeneous spaces that cannot
be given a topological group structure.

What do you mean by “Almost”?
Our results will not work for locally compact spaces.
However, this case is trivial. In fact, it is easy to see that the
following conditions are equivalent.

I X is a zero-dimensional locally compact homogeneous space.

I Either X is discrete, X ≈ 2ω, or X ≈ ω × 2ω.



What do you mean by “Borel”?

Definition
A space is an absolute Borel set (or simply Borel) if it is
homeomorphic to a Borel subspace of a Polish space.

The following reassuring proposition can be easily proved using
Lavrentiev’s Lemma.

Proposition

Let X be a space. Then the following are equivalent.

I X is Borel.

I For every Polish space Z , every homeomorphic copy of X
inside Z is a Borel subset of Z .



What do you mean by “semifilter”?

Definition
A semifilter is a collection S of subsets of ω that satisfies the
following conditions.

1. ∅ /∈ S and ω ∈ S.

2. If X ∈ S and X =∗ Y ⊆ ω then Y ∈ S.

3. If X ∈ S and X ⊆ Y ⊆ ω then Y ∈ S.

Notice that Fin ∩ S = ∅ and Cof ⊆ S for every semifilter S. In
particular, no semifilter is locally compact.

Definition
A filter is a semifilter S that satisfies the following additional
property.

4. If X ,Y ∈ S then X ∩ Y ∈ S.



A characterization of Borel filters
Notice that every collection X ⊆ P(ω) can be identified with the
subspace X of 2ω consisting of the characteristic functions of
elements of X .
In particular, this applies to filters. Given a space, is it possible to
recognize whether it is homeomorphic to a filter? This problem has
a very elegant solution for definable spaces.

Theorem (van Engelen, 1994)

Let X be a zero-dimensional Borel space. Then the following
conditions are equivalent.

I X is homeomorphic to a filter.

I X is homogeneous, meager, homeomorphic to its square, and
not locally compact.



The above characterization inspired the following result.

Theorem (Medini and Zdomskyy, 2016)

Every filter is homeomorphic to its square.

What about semifilters?

Theorem
Let X be a zero-dimensional Borel space. Then the following
conditions are equivalent.

I X is homeomorphic to a semifilter.

I X is homogeneous and not locally compact.

Proposition

There exists a homogeneous, zero-dimensional and not locally
compact space X that is not homeomorphic to a semifilter.
Furthermore, if MA + ¬CH + ω1 = ωL

1 holds then X is coanalytic.



Proof: the “easy” direction
Filters are homogeneous because they are topological groups.
For semifilters, we need to work harder...

Theorem (van Mill, 1982)

Let X be a zero-dimensional metric space. Fix x , y ∈ X . Assume
that, for every ε > 0, there exist clopen neighborhoods U,V of
x , y respectively that satisfy the following conditions.

I diam(U) < ε and diam(V ) < ε.

I U ≈ V .

Then there is a homeomorphism h : X −→ X such that h(x) = y.

Corollary

Let X be a subspace of 2ω. If X is closed under finite
modifications then X is homogeneous.

Corollary

Every semifilter is homogeneous.



Louveau’s description of Borel Wadge classes
Given A,B ⊆ 2ω, recall that A ≤W B if A = f −1[B] for some
continuous function f : 2ω −→ 2ω.
The Borel Wadge classes are those of the form

[B] = {A ⊆ 2ω : A ≤W B},

where B is a Borel subset of 2ω.
Given Γ ⊆ P(2ω), define Γ̌ = {2ω \ A : A ∈ Γ} and ∆(Γ) = Γ ∩ Γ̌.
Recall that Γ is self-dual if Γ = Γ̌.
Louveau was able to explicitly describe these classes by defining a
suitable D ⊆ ω1

ω, together with a Borel Wadge class Γu for u ∈ D.

Theorem (Louveau, 1983, for ωω; van Engelen, 1986, for 2ω)

The set of non-self dual Borel Wadge classes is

{Γu : u ∈ D} ∪ {Γ̌u : u ∈ D}.



Van Engelen’s classification: the case above ∆
In his remarkable Ph.D. thesis, Fons van Engelen classified the
homogeneous zero-dimensional Borel sets. There is a crucial
dividing line: the class ∆ = ∆(Dω(Σ0

2)).
For spaces of complexity higher than ∆, Baire category and
Wadge class are sufficient to uniquely identify a
homogeneous zero-dimensional Borel space. The main
ingredients here are a theorem of Steel and Borel Determinacy.

Theorem (van Engelen, 1986)

Let X and Y be homogeneous Borel subspaces of 2ω whose
complexity is higher than ∆. Assume that [X ] = [Y ].

I If X and Y are both meager then X ≈ Y .

I If X and Y are both Baire then X ≈ Y .

(He also showed that, for these spaces, [X ] does not depend on the
embedding of X into 2ω.)



From homogeneous space to semifilter:
the case above ∆
Let X be a homogeneous Borel subspace of 2ω complexity higher
than ∆. First assume that X is meager. It will be enough to find a
meager semifilter S such that [S] = [X ].
Instead of a semifilter, we will construct a semiideal. Instead of ω,
the base set of this semiideal will be 2<ω. Given z ∈ 2ω, let
z∗ = {z � n : n ∈ ω} ∈ P(2<ω). Define

S(X ) = {y ∪ e : y ⊆ z∗ for some z ∈ X , e ⊆ 2<ω is finite}.

It is easy to see that S(X ) is a semiideal. Furthermore, S(X ) has
the finite union property, hence it is meager. The proof that
[S(X )] = [X ] relies heavily on the closure properties of the classes
Γu obtained by Louveau.
Now assume that X is Baire. Then it is possible to prove that
X ≈ P(2<ω) \ S(2ω \ X ).



Van Engelen’s classification: the case below ∆

Q

**

Q× 2ω

tt
ωω

��

Q× ωω

�� ��

T

��

S

��

Q× T

**

Q× S

tt· · ·



From homogeneous space to semifilter:
the case below ∆
This proof is by induction (of length ω).
Base case: Q and Q× 2ω are homeomorphic to a semifilter
(actually, to a filter).

I Q ≈ Cof.

I Fix any infinite co-infinite Ω ⊆ ω. Then
Q× 2ω ≈ {x ⊆ ω : Ω ⊆∗ x}.

Inductive step: show that if one applies certain operations to a
semifilter (the ones that van Engelen uses), then one obtains a
space that is still homeomorphic to a semifilter.

I S 7−→ Q× S.

I S 7−→ 2ω \ S. (Notice that this wouldn’t work for filters!)

I S 7−→ (2ω × 2ω) \ (Fin× (2ω \ S)).



Open problems

Question
In ZFC, is it possible to substitute “Borel” with “analytic” in the
main theorem?

Question
Assuming Projective Determinacy, is it possible to substitute
“Borel” with “projective” in the main theorem?

If one wants to use the same techniques, then it will be necessary
to extend van Engelen’s classification of homogeneous spaces.
For this, it will be necessary to extend Louveau’s description of
Wadge classes. This seems to be hard... (It has been done by
Fournier for differences of coanalytic sets.)
However, it might be possible to circumvent this obstacle
altogether by using a more direct approach.
The problem is that I have no idea how...



Two concrete non-trivial examples: S and T
Theorem (van Mill, 1983; van Douwen)

Let X be a zero-dimensional space.

I X ≈ S if and only if X is the union of a complete subspace
and a σ-compact subspace, X is nowhere σ-compact, and X
is nowhere the union of a complete and a countable subspace.

I X ≈ T if and only if X is the union of a complete subspace
and a countable subspace, X is nowhere σ-compact, and X is
nowhere complete.

Fix infinite sets Ω1 and Ω2 such that Ω1 ∪ Ω2 = ω and
Ω1 ∩ Ω2 = ∅. Define

T = {x1 ∪ x2 : x1 ⊆ Ω1, x2 ⊆ Ω2, and

(x1 /∈ Fin(Ω1) or x2 ∈ Cof(Ω2))}.



It is clear that T is a semifilter. Furthermore, T is the union of the
following spaces.

I {x ⊆ ω : x ∩ Ω1 /∈ Fin(Ω1)} ≈ ωω × 2ω ≈ ωω.

I {x1 ∪ x2 : x1 ∈ Fin(Ω1) and x2 ∈ Cof(Ω2)} ≈ Q.

Using the fact that T is homogeneous, one can easily see that T is
nowhere σ-compact and nowhere complete. Hence T ≈ T.

To describe S, also fix an infinite Ω ⊆ Ω2 such that Ω2 \ Ω is
infinite. Define

S = {x1 ∪ x2 : x1 ⊆ Ω1, x2 ⊆ Ω2, and

(x1 /∈ Fin(Ω1) or Ω ⊆∗ x2)}.

Using an argument similar to the one that works for T , one can
show that S ≈ S.



Thank you for your attention

and good night!


