CLP-compactness

Preliminaries Steprāns and Šostak's method Our counterexample

Clopen sets in products: CLP-compactness and h-homogeneity

Andrea Medini

Department of Mathematics University of Wisconsin - Madison

March 2, 2012

Andrea Medini Clopen sets in products: CLP-compactness and h-homogeneity

CLP-compactness h-Homogeneity CLP-compactness h-Homogeneity

Preliminaries

Space means topological space. Recall that a subset C of a space X is *clopen* if it is closed and open. A space X is *zero-dimensional* if it has a basis consisting of clopen sets. Every open set O in a product is the union of open rectangles:

$$O=\bigcup_{i\in I}U_i\times V_i.$$

(This is just the definition of product topology.) The same thing holds, mutatis mutandis, for infinite products.

Question (Šostak, 1990s)

Can every clopen set in a product be written as the union of clopen rectangles?

Preliminaries Steprāns and Šostak's method Our counterexample

CLP-rectangularity

Definition (Steprans and Šostak, 2000)

A product $X = \prod_{i \in I} X_i$ is *CLP-rectangular* if every clopen subset of X is the union of clopen rectangles.

Observe that every zero-dimensional product space is CLP-rectangular, because it has a base consisting of clopen rectangles.

Theorem (Buzyakova, 2001)

There exist $X \subseteq \mathbb{R}$ and $Y \subseteq \mathbb{R}^2$ such that $X \times Y$ is not *CLP*-rectangular.

Preliminaries Steprāns and Šostak's method Our counterexample

CLP-compactness

Definition (Šostak, 1976)

A space *X* is *CLP-compact* if every clopen cover of *X* has a finite subcover.

Examples:

- Any connected space.
- Any compact space.
- Any product (CLP-compact) × (connected) or (CLP-compact) × (compact).
- The Knaster-Kuratowski fan.
 (A non-compact, totally disconnected but not zero-dimensional subset of R².)

CLP-compactness has been studied by Šostak, Sondore, Steprāns and Dikranjan (for topological groups).

Preliminaries Steprāns and Šostak's method Our counterexample

Products of CLP-compact spaces

Theorem (Steprāns and Šostak, 2000; Dikranjan 2007)

Let $X = \prod_{i \in I} X_i$ be a product of CLP-compact spaces. Then X is CLP-compact if and only if X is CLP-rectangular.

We will begin by discussing the proof of the following result.

Theorem (Šostak, 1994; Steprāns and Šostak, 2000)

There exist CLP-compact spaces X_1 and X_2 such that $X_1 \times X_2$ is not CLP-compact.

Notice that X_1 and X_2 cannot be zero-dimensional.

Theorem (Steprāns, 2006)

Let $X = X_1 \times \cdots \times X_n$. If each X_i is CLP-compact and sequential then X is CLP-compact.

Preliminaries Steprāns and Šostak's method Our counterexample

What about infinite products?

Question (Steprans and Šostak, 2000)

Is there, for every infinite cardinal κ , a collection of spaces X_{ξ} for $\xi \in \kappa$ such that $\prod_{\xi \in F} X_{\xi}$ is CLP-compact for every finite $F \subseteq \kappa$, while $\prod_{\xi \in \kappa} X_{\xi}$ is not? Does the answer depend on κ ?

Theorem (Medini, 2010)

There exists a Hausdorff space X such that X^{κ} is CLP-compact if and only if κ is finite.

Question (Steprans and Šostak, 2000)

Suppose that X_i is CLP-compact and second-countable for every $i \in \omega$. Is $\prod_{i \in \omega} X_i$ CLP-compact?

Preliminaries Steprāns and Šostak's method Our counterexample

Stone-Čech reminder

Let \mathbb{N} be the discrete space of natural numbers. It will be useful to view the Stone-Čech remainder $\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}$ as the space of non-principal ultrafilters on \mathbb{N} . A collection \mathcal{U} of subsets of \mathbb{N} is a *non-principal ultrafilter* if the following conditions hold.

• If $A, B \in \mathcal{U}$ then $A \cap B \in \mathcal{U}$.

- If $A \in \mathcal{U}$ and $B \supseteq A$ the $B \in \mathcal{U}$.
- (Ultra) For every $A \subseteq \mathbb{N}$, either $A \in \mathcal{U}$ or $\mathbb{N} \setminus A \in \mathcal{U}$.
- (Non-principal) No finite set belongs to \mathcal{U} .

Given $A \subseteq \mathbb{N}$, define

$$\mathbf{A}^* = \{ \mathcal{U} \in \mathbb{N}^* : \mathbf{A} \in \mathcal{U} \}.$$

The collection of all sets in this form is a clopen basis for \mathbb{N}^* . Also, one can show that every clopen set of \mathbb{N}^* is in that form.

Steprāns and Šostak's method

Fix a collection \mathcal{F} consisting of non-empty closed subsets of \mathbb{N}^* . Define the space $X(\mathcal{F})$ as the space with underlying set $\mathbb{N} \cup \mathcal{F}$ and the coarsest topology such that

- $\{n\}$ is open for every $n \in \mathbb{N}$,
- $\{K\} \cup A$ is open whenever $K \in \mathcal{F}$, $A \subseteq \mathbb{N}$ and $K \subseteq A^*$.

Proposition (Steprāns and Šostak, 2000)

If \mathcal{F} consists of pairwise disjoint subsets of \mathbb{N}^* then $X(\mathcal{F})$ is a Hausdorff space.

Proof: disjoint closed sets in \mathbb{N}^* can be separated by a clopen set. If $\mathcal{K}_1 \subseteq A^*$ and $\mathcal{K}_2 \subseteq \mathbb{N}^* \setminus A^* = (\mathbb{N} \setminus A)^*$ then $\{\mathcal{K}_1\} \cup A$ and $\{\mathcal{K}_2\} \cup (\mathbb{N} \setminus A)$ are the required neighborhoods.

Preliminaries Steprāns and Šostak's method Our counterexample

Ensuring CLP-compactness of the factors

Proposition (Steprāns and Šostak, 2000)

Assume that for every clopen set C in $X(\mathcal{F})$, either $A = C \cap \mathbb{N}$ is finite or A is cofinite. Then $X(\mathcal{F})$ is CLP-compact.

To achieve such goal, it is enough to make sure that whenever $A \subseteq \mathbb{N}$ is infinite and coinfinite, there exists $K \in \mathcal{F}$ which is in the closure of both A and $\mathbb{N} \setminus A$. In our case we will set $K = \{\mathcal{U}, \mathcal{V}\}$, where $\mathcal{U} \in A^*$ and $\mathcal{V} \in (\mathbb{N} \setminus A)^*$. Just enumerate as $\{A_{\xi} : \xi \in \mathfrak{c}\}$ all such As, then construct \mathcal{F} by transfinite induction in \mathfrak{c} steps: take care of A_{ξ} at the ξ -th stage.

Preliminaries Steprāns and Šostak's method Our counterexample

Making CLP-compactness fail in the product

Proposition (Steprāns and Šostak, 2000)

If $(\bigcup \mathcal{F}_1) \cap (\bigcup \mathcal{F}_2) = \emptyset$ then $X(\mathcal{F}_1) \times X(\mathcal{F}_2)$ can be partitioned into infinitely many non-empty clopen subsets. In particular, it is not CLP-compact.

Proof: clearly, each $\{(n, n)\}$ is open (actually, clopen). But we also claim that the complement of the diagonal $\Delta = \{(n, n) : n \in \mathbb{N}\}$ is open. For example, take (K_1, K_2) , where each $K_i \in \mathcal{F}_i$. Since $K_1 \cap K_2 = \emptyset$, there exist disjoint $A_1, A_2 \subseteq \mathbb{N}$ such that each $K_i \subseteq A_i^*$. Then $(\{K_1\} \cup A_1) \times (\{K_2\} \cup A_2)$ is an open neighborhood of (K_1, K_2) disjoint from the diagonal.

Preliminaries Steprāns and Šostak's method Our counterexample

Constructing our counterexample

- Construct \mathcal{F}_i for each $i \in \omega$ so that, whenever $n \in \omega$ and $p : n \longrightarrow \omega$, the finite product $X_p = \prod_{i \in n} X(\mathcal{F}_{p(i)})$ is CLP-compact.
- At the same time, make sure that ∏_{i∈ω} X(F_i) can be partitioned into infinitely many disjoint clopen sets. (This uses a trick by Comfort.)
- Using a machine invented by Frolík for pseudocompact spaces, convert the above example into a single space X such that X^κ is CLP-compact iff κ is finite:

$$X = X(\mathcal{F}_1) \oplus X(\mathcal{F}_2) \oplus \cdots \oplus \{*\}$$

with a natural topology.

CLP-compactness h-Homogeneity Our counterexample

CLP-compactness of the finite subproducts

The following definitions isolate the multidimensional versions of 'finiteness' and 'cofiniteness' that we need. Fix $p : n \longrightarrow \omega$.

$$\mathbb{S}_{p}^{N} = \bigcup_{i \in n} \left(\mathbb{N} \times \cdots \times \underbrace{\{0, 1, \dots, N-1\}}_{i\text{-th coordinate}} \times \cdots \times \mathbb{N} \right) \subseteq X_{p}.$$
$$\mathbb{T}_{p}^{N} = \mathbb{N}^{n} \setminus \mathbb{S}_{p}^{N} = (\mathbb{N} \setminus \{0, 1, \dots, N-1\})^{n} \subseteq X_{p}.$$

Proposition

Assume that for every clopen set $C \subseteq X_p$, either $C \cap \mathbb{N}^n \subseteq \mathbb{S}_p^N$ or $\mathbb{T}_p^N \subseteq C \cap \mathbb{N}^n$ for some $N \in \omega$. Then X_p is CLP-compact.

Preliminaries Steprāns and Šostak's method Our counterexample

Making CLP-compactness fail in the product

Proposition

Assume that whenever $I \subseteq \omega$ is infinite and $K_i \in \mathcal{F}_i$ for every $i \in I$, there exist $i, j \in I$ such that $K_i \cap K_j = \emptyset$. Then $\prod_{i \in \omega} X(\mathcal{F}_i)$ can be partitioned into infinitely many non-empty clopen subsets. In particular, it is not CLP-compact.

"**Proof**": Notice that, for each $n \in \omega$, the set

$$C_n = \underbrace{\{n\} \times \cdots \times \{n\}}_{\text{first } n \text{ coordinates}} \times X(\mathcal{F}_n) \times X(\mathcal{F}_{n+1}) \times \cdots$$

is open (actually, clopen). Using the assumption, one can show that the complement of $\bigcup_{n \in \omega} C_n$ is also open.

Preliminaries Steprāns and Šostak's method Our counterexample

A scary excerpt: the successor stage

At a successor stage $\xi = \eta + 1$, assume that each \mathcal{F}_i^{η} is given. Let $p = p(\eta) : n \longrightarrow \omega$. First, define $W = \bigcup_{i \in \omega} \bigcup \mathcal{F}_i^{\eta}$. Set $\tau_i = \pi_i \upharpoonright D_{\eta}$ for every $i \in n(p)$. Since each τ_i is injective, it makes sense to consider the induced function $\tau_i^* : D_{\eta}^* \longrightarrow \mathbb{N}^*$. It is possible to choose

$$\mathcal{U}^{\eta} \in \mathcal{D}^*_{\eta} \setminus ((\tau^*_0)^{-1}[\mathcal{W}] \cup \cdots \cup (\tau^*_{n(p)-1})^{-1}[\mathcal{W}]).$$

Let $\mathcal{U}_{i}^{\eta} = \tau_{i}^{*}(\mathcal{U}^{\eta})$ for every $i \in n$. Similarly choose \mathcal{V}_{i}^{η} for every $i \in n$. Conclude the successor stage by setting

$$\mathcal{F}_k^{\eta+1} = \mathcal{F}_k^{\eta} \cup \{\{\mathcal{U}_i^{\eta} : i \in p^{-1}(k)\} \cup \{\mathcal{V}_i^{\eta} : i \in p^{-1}(k)\}\}$$

for every $k \in \operatorname{ran}(\rho)$ and $\mathcal{F}_k^{\eta+1} = \mathcal{F}_k^{\eta}$ for every $k \in \omega \setminus \operatorname{ran}(\rho)$.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

h-Homogeneity

Definition (Ostrovskiĭ, 1981; Van Mill, 1981)

A topological space X is *h*-homogeneous (or strongly homogeneous) if every non-empty clopen subset of X is homeomorphic to X.

Examples:

- The Cantor set 2^ω, the rationals Q, the irrationals ω^ω.
 (Use their respective characterizations.)
- Any connected space.
- Any product (h-homogeneous) \times (connected space).
- The Knaster-Kuratowski fan.
- Erdös space 𝔅 = {x ∈ ℓ² : x_n ∈ ℚ for all n ∈ ω}.
 (Deep result due to Dijkstra and Van Mill.)

h-Homogeneity has been studied by Terada, Matveev, Medvedev, De La Vega, Motorov, Shelah and Geshcke.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

Overview of our results on h-homogeneity

- In the class of zero-dimensional spaces, h-homogeneity is productive.
- If the product is pseudocompact, then the zero-dimensionality requirement can be dropped.
- Clopen sets in pseudocompact products depend on finitely many coordinates.
- Partial answers to Terada's question: is the infinite power X^{\u03c6} h-homogeneous for every zero-dimensional first-countable X? Notice that this could be called an 'h-homogeneous Dow-Pearl theorem'.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

A useful base for βX

Definition

Given U open in X, define $Ex(U) = \beta X \setminus cl_{\beta X}(X \setminus U)$.

Basic facts:

- Ex(U) is the biggest open set in βX such that its intersection with X is U.
- The collection $\{Ex(U) : U \text{ is open in } X\}$ is a base for βX .
- If C is clopen in X then Ex(C) = cl_{βX}(C), hence Ex(C) is clopen in βX.
- t is not true that βX is zero-dimensional whenever X is zero-dimensional. (Dowker, 1957.)

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

When does β commute with \prod ?

Theorem (Glicksberg, 1959)

The product $\prod_{i \in I} X_i$ is C^* -embedded in $\prod_{i \in I} \beta X_i$ if and only if $\prod_{i \in I} X_i$ is pseudocompact.

In that case,

$$\prod_{i\in I}\beta X_i\cong\beta\left(\prod_{i\in I}X_i\right).$$

More precisely, there exists a homeomorphism

$$h:\prod_{i\in I}\beta X_i\longrightarrow \beta\left(\prod_{i\in I}X_i\right)$$

such that $h \upharpoonright \prod_{i \in I} X_i = id$.

The productivity of h-homogeneity

Theorem (Terada, 1993)

If X_i is h-homogeneous and zero-dimensional for every $i \in I$ and $P = \prod_{i \in I} X_i$ is compact or non-pseudocompact, then P is h-homogeneous.

Proof of the compact case, for $P = X \times Y$: Observe that $n \times X \cong X$ whenever $1 \le n < \omega$. So $n \times X \times Y \cong X \times Y$ whenever $1 \le n < \omega$. Let *C* be non-empty and clopen in $X \times Y$. By compactness, zero-dimensionality and \Im , find clopen rectangles *C_i* such that

$$C = C_1 \oplus \cdots \oplus C_n$$
.

By h-homogeneity, $C \cong n \times X \times Y \cong X \times Y$.

Theorem

If $X \times Y$ is pseudocompact, then every clopen set C can be written as a finite union of open rectangles.

Proof: By Glicksberg's theorem, there exists a homeomorphism

$$h: \beta X \times \beta Y \longrightarrow \beta (X \times Y)$$

such that h(x, y) = (x, y) whenever $(x, y) \in X \times Y$. Since $\{Ex(U) : U \text{ is open in } X\}$ is a base for βX and $\{Ex(V) : V \text{ is open in } Y\}$ is a base for βY , the collection

 $\mathcal{B} = \{\mathsf{Ex}(U) \times \mathsf{Ex}(V) : U \text{ is open in } X \text{ and } V \text{ is open in } Y\}$

is a base for $\beta X \times \beta Y$.

CLP-compactness h-Homogeneity X^ω for zero-dimensional first-countable X Bonus materials

Therefore $\{h[B] : B \in B\}$ is a base for $\beta(X \times Y)$. Hence we can write $\text{Ex}(C) = h[B_1] \cup \cdots \cup h[B_n]$ for some $B_1, \ldots, B_n \in B$ by compactness. Finally, if we let $B_i = \text{Ex}(U_i) \times \text{Ex}(V_i)$ for each *i*, we get

$$C = Ex(C) \cap X \times Y$$

= $(h[B_1] \cup \cdots \cup h[B_n]) \cap h[X \times Y]$
= $h[B_1 \cap X \times Y] \cup \cdots \cup h[B_n \cap X \times Y]$
= $(B_1 \cap X \times Y) \cup \cdots \cup (B_n \cap X \times Y)$
= $(U_1 \times V_1) \cup \cdots \cup (U_n \times V_n).$

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

But we would like *clopen* rectangles... ⁽²⁾ Why? Because then we could prove the following. (Notice that zero-dimensionality is not needed.)

Theorem

Assume that $X \times Y$ is pseudocompact. If X and Y are *h*-homogeneous then $X \times Y$ is *h*-homogeneous.

Proof: If *X* and *Y* are both connected then $X \times Y$ is connected, so assume without loss of generality that *X* is not connected. It follows that $X \cong n \times X$ whenever $1 \le n < \omega$.

...then finish the proof as in the compact case.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

Lemma

Let $C \subseteq X \times Y$ be a clopen set that can be written as the union of finitely many rectangles. Then C can be written as the union of finitely many pairwise disjoint clopen rectangles. \bigcirc

[Solution Draws an enlightening picture on the board.] **Proof:** For every $x \in X$, let $C_x = \{y \in Y : (x, y) \in C\}$ be the corresponding vertical cross-section. For every $y \in Y$, let $C^y = \{x \in X : (x, y) \in C\}$ be the corresponding horizontal cross-section. Since *C* is clopen, each cross-section is clopen. $\begin{array}{c} \text{CLP-compactness} \\ \textbf{h-Homogeneity} \end{array} \begin{array}{c} \textbf{The productivity of h-homogeneity} \\ X^{\omega} \text{ for zero-dimensional first-countable } X \\ \text{Bonus materials} \end{array}$

Let \mathcal{A} be the Boolean subalgebra of the clopen algebra of X generated by $\{C^{y} : y \in Y\}$. Since \mathcal{A} is finite, it must be atomic. Let P_1, \ldots, P_m be the atoms of \mathcal{A} . Similarly, let \mathcal{B} be the Boolean subalgebra of the clopen algebra of Y generated by $\{C_x : x \in X\}$, and let Q_1, \ldots, Q_n be the atoms of \mathcal{B} .

Observe that the rectangles $P_i \times Q_j$ are clopen and pairwise disjoint. Furthermore, given any *i*, *j*, either $P_i \times Q_j \subseteq C$ or $P_i \times Q_j \cap C = \emptyset$. Hence *C* is the union of a (finite) collection of such rectangles.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

Corollary

Assume that $X = X_1 \times \cdots \times X_n$ is pseudocompact. If each X_i is *h*-homogeneous then X is *h*-homogeneous.

An obvious modification of the proof of the theorem yields:

Theorem

Assume that $X = \prod_{i \in I} X_i$ is pseudocompact. If $C \subseteq X$ is clopen then C can be written as the union of finitely many open rectangles.

Corollary

Assume that $X = \prod_{i \in I} X_i$ is pseudocompact. If $C \subseteq X$ is clopen then *C* depends on finitely many coordinates.

[The speaker takes a walk down memory lane...]

CLP-compactness h-Homogeneity X $^{\omega}$ for zero-dimensional first-countable X Bonus materials

Theorem

Assume that $X = \prod_{i \in I} X_i$ is pseudocompact. If X_i is *h*-homogeneous for every $i \in I$ then X is *h*-homogeneous.

Proof: let $C \subseteq X$ be clopen and non-empty. Then there exists a finite subset *F* of *I* such that *C* is homeomorphic to $C' \times \prod_{i \in I \setminus F} X_i$, where *C'* is a clopen subset of $\prod_{i \in F} X_i$. But $\prod_{i \in F} X_i$ is h-homogeneous, so

$$C \cong C' \times \prod_{i \in I \setminus F} X_i \cong \prod_{i \in F} X'_i \times \prod_{i \in I \setminus F} X_i \cong X.$$

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

Conclusions on products of h-homogeneous spaces

Putting together our results with Terada's theorem, we obtain the following.

Theorem (Medini, 2011)

If X_i is h-homogeneous and zero-dimensional for every $i \in I$ and $X = \prod_{i \in I} X_i$ then X is h-homogeneous.

After all this work...

Question

Is h-homogeneity productive?

Notice that any counterexample product space would have to be non-zero-dimensional and non-pseudocompact.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

CLP-compactness can help

In some cases, CLP-compactness can help in showing that a product is h-homogeneous.

Theorem

Let $X = X_1 \times \cdots \times X_n$. If each X_i is h-homogeneous, sequential and CLP-compact, then X is h-homogeneous.

Proof: By Steprāns' theorem, *X* is CLP-compact. So every clopen set can be written as the disjoint union of finitely many clopen rectangles.

۵

Corollary

Any finite power of the Knaster-Kuratowski fan is h-homogeneous.

Andrea Medini Clopen sets in products: CLP-compactness and h-homogeneity

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable XBonus materials

Homogeneity vs h-homogeneity

All spaces are assumed to be zero-dimensional and first-countable from now on.

Definition

A space X is *homogeneous* if for every $x, y \in X$ there exists a homeomorphism $f : X \longrightarrow X$ such that f(x) = y.

By a picture-proof, h-homogeneity implies homogeneity. Erik van Douwen constructed a compact homogeneous space that is not h-homogeneous.

Theorem (Motorov, 1989)

If X is a compact homogeneous space of uncountable cellularity then X is h-homogeneous.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable XBonus materials

Infinite powers

Question (Terada, 1993)

Is X^{ω} always h-homogeneous?

The following remarkable theorem answers a question of Gruenhage and Zhou, and is based on work by Lawrence. Partial results were obtained by Medvedev, Motorov and Van Engelen.

Theorem (Dow and Pearl, 1997)

 X^{ω} is always homogeneous.

However, Terada's question remains open.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

Motorov's main result

Theorem (Motorov, 1989)

If X has a π -base consisting of clopen sets that are homeomorphic to X then X is h-homogeneous.

Proof: Let *C* be a non-empty clopen set in *X*. By first-countability, write

$$X = \{x\} \cup \bigcup_{n \in \omega} X_n$$
 and $C = \{y\} \cup \bigcup_{n \in \omega} C_n$

where the X_n are disjoint, clopen, they converge to x but do not contain x, and the C_n are disjoint, clopen, they converge to y but do not contain y.

[S Finishes the proof by juggling with clopen sets.]

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

Divisibility

Definition

A space *F* is a *factor* of *X* (or *X* is *divisible* by *F*) if there exists *Y* such that $F \times Y \cong X$. If $F \times X \cong X$ then *F* is a *strong factor* of *X* (or *X* is *strongly divisible* by *F*).

Problem (Motorov, 1989)

Is X^{ω} always divisible by 2?

As we observed already, h-homogeneity implies divisibility by 2. We will show that Terada's question is equivalent to Motorov's question. Actually, even weaker conditions suffice. CLP-compactness h-Homogeneity X^ω for zero-dimensional first-countable X Bonus materials

Lemma

The following are equivalent.

- F is a factor of X^{ω} .
- **2** $F \times X^{\omega} \cong X^{\omega}.$

Proof: The implications $2 \rightarrow 1$ and $3 \rightarrow 1$ are clear. Assume 1. Then there exists *Y* such that $F \times Y \cong X^{\omega}$, hence

$$X^{\omega} \cong (X^{\omega})^{\omega} \cong (F \times Y)^{\omega} \cong F^{\omega} \times Y^{\omega}.$$

Since multiplication by *F* or by F^{ω} does not change the right hand side, it follows that 2 and 3 hold.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable XBonus materials

The key lemma

Lemma

 $X = (Y \oplus 1)^{\omega}$ is h-homogeneous.

Proof: Recall that $1 = \{0\}$. For each $n \in \omega$, define

$$U_n = \underbrace{\{0\} \times \{0\} \times \cdots \times \{0\}}_{n \text{ times}} \times (Y \oplus 1) \times (Y \oplus 1) \times \cdots$$

Observe that $\{U_n : n \in \omega\}$ is a local base for *X* at (0, 0, ...) consisting of clopen sets that are homeomorphic to *X*. But *X* is homogeneous by the Dow-Pearl theorem, therefore it has a base (hence a π -base) consisting of clopen sets that are homeomorphic to *X*.

It follows from Motorov's result that X is h-homogeneous.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

Lemma

Let $X = (Y \oplus 1)^{\omega}$. Then

$$X \cong Y^{\omega} \times (Y \oplus 1)^{\omega} \cong 2^{\omega} \times Y^{\omega}.$$

Proof: Observe that

$$X \cong (Y \oplus 1) \times X \cong (Y \times X) \oplus X$$
,

hence $X \cong Y \times X$ by h-homogeneity. It follows that $X \cong Y^{\omega} \times (Y \oplus 1)^{\omega}$. Finally,

 $Y^{\omega} imes (Y \oplus 1)^{\omega} \cong (Y^{\omega} imes (Y \oplus 1))^{\omega} \cong (Y^{\omega} \oplus Y^{\omega})^{\omega} \cong 2^{\omega} imes Y^{\omega},$

that concludes the proof.

CLP-compactness h-Homogeneity X^ω for zero-dimensional first-countable X Bonus materials

Theorem (Medini, 2011)

The following are equivalent.

- $X^{\omega} \cong (X \oplus 1)^{\omega}.$
- **2** $X^{\omega} \cong Y^{\omega}$ for some Y with at least one isolated point.
- **3** X^{ω} is h-homogeneous.
- X^{ω} has a clopen subset that is strongly divisible by 2.
- **(5)** X^{ω} has a proper clopen subspace homeomorphic to X^{ω} .
- X^{ω} has a proper clopen subspace as a factor.

Proof: The implication $1 \rightarrow 2$ is trivial; the implication $2 \rightarrow 3$ follows from the lemma; the implications $3 \rightarrow 4 \rightarrow 5 \rightarrow 6$ are trivial.

 CLP-compactness
 The productivity of h-homogeneity

 h-Homogeneity
 X^ω for zero-dimensional first-countable X

 Bonus materials
 Bonus materials

Assume that 6 holds. Let *C* be a proper clopen subset of X^{ω} that is also a factor of X^{ω} and let $D = X^{\omega} \setminus C$. Then

$$egin{array}{rcl} X^\omega &\cong & ({\cal C}\oplus {\cal D}) imes X^\omega \ &\cong & ({\cal C} imes X^\omega)\oplus ({\cal D} imes X^\omega) \ &\cong & X^\omega\oplus ({\cal D} imes X^\omega) \ &\cong & (1\oplus {\cal D}) imes X^\omega, \end{array}$$

hence $X^{\omega} \cong (1 \oplus D)^{\omega} \times X^{\omega}$. Since $(1 \oplus D)^{\omega} \cong 2^{\omega} \times D^{\omega}$ by the lemma, it follows that $X^{\omega} \cong 2^{\omega} \times X^{\omega}$. Therefore 1 holds by the lemma.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable XBonus materials

The pseudocompact case

The next two theorems show that in the pseudocompact case we can say something more.

Theorem

Assume that X^{ω} is pseudocompact. Then $C^{\omega} \cong (X \oplus 1)^{\omega}$ for every non-empty proper clopen subset *C* of X^{ω} .

Theorem

Assume that X^{ω} is pseudocompact. Then the following are equivalent.

- **()** X^{ω} is h-homogeneous.
- ② X^ω has a proper clopen subspace C such that C ≅ Y^ω for some Y.

The productivity of h-homogeneity X^{ω} for zero-dimensional first-countable X Bonus materials

Ultraparacompactness

The following notion allows us to give us a positive answer to Terada's question for a certain class of spaces.

Definition

A space X is *ultraparacompact* if every open cover of X has a refinement consisting of pairwise disjoint clopen sets.

A metric space X is ultraparacompact if and only if dim X = 0.

Theorem

If X^{ω} is ultraparacompact and non-Lindelöf then X^{ω} is *h*-homogeneous.