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Summary. We show that every filter F on ω, viewed as a subspace of 2ω, is homeomor-
phic to F2. This generalizes a theorem of van Engelen, who proved that this holds for
Borel filters.

1. Introduction. In [vE3], van Engelen obtained a purely topological
characterization of filters, among the zero-dimensional Borel spaces (1). In
particular, he obtained the following result (see [vE3, Lemma 3.1]).

Theorem 1 (van Engelen). If F is a Borel filter then F is homeomorphic
to F2.

The main ingredients of his proof are the fact that every filter F is Wadge
equivalent to F2 (which is easy to see using the operation of intersection), a
theorem of Steel [St], and some of his previous work [vE1]. It is natural to
ask whether the assumption that F is Borel is really necessary in Theorem 1.
Our main result (Theorem 6) shows that this is not the case, and the proof
only uses elementary methods.

2. Notation. Throughout this paper, Ω will denote a countably infinite
set. A filter on Ω is a collection F of subsets of Ω that satisfies the following
conditions. We write X ⊆∗ Y to mean that X \ Y is finite, and X =∗ Y to
mean that X ⊆∗ Y and Y ⊆∗ X.
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(1) Actually, van Engelen stated his results for ideals. Using the homeomorphism
c : 2ω → 2ω defined by c(X)(n) = 1 − X(n) for X ∈ 2ω and n ∈ ω, one sees that his
results also hold for filters.
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(1) ∅ /∈ F and Ω ∈ F .
(2) If X ∈ F and X =∗ Y ⊆ Ω then Y ∈ F .
(3) If X ∈ F and X ⊆ Y ⊆ Ω then Y ∈ F .
(4) If X,Y ∈ F then X ∩ Y ∈ F .

All filters are assumed to be on ω unless we explicitly say otherwise. We will
say that a filter is principal if there exists Ω ⊆ ω such that F = {X ⊆ ω :
Ω ⊆∗ X} (2). Define Fin(Ω) = {X ⊆ Ω : X is finite} and Cof(Ω) = {X ⊆ Ω :
Ω \X is finite}.

We will freely identify any collection X consisting of subsets of Ω with
the subspace of 2Ω consisting of the characteristic functions of elements of
X . In particular, every filter on Ω will inherit the subspace topology from 2Ω.

Given a function f and a subset S of the domain of f , let f [S] = {f(X) :
X ∈ S} denote the image of S under f .

By space we will always mean separable metrizable topological space.
A space is crowded if it is non-empty and it has no isolated points. Given
spaces X and Y, we will write X ≈ Y to mean that X and Y are homeo-
morphic. We will be using freely the following well-known characterizations
of Q and 2ω (see [vM, Theorems 1.9.6 and Theorem 1.5.5]).

• If X is a crowded countable space then X ≈ Q.
• If X is a crowded compact zero-dimensional space then X ≈ 2ω.

We will also assume that the reader is familiar with the basic theory of
topologically complete spaces (see for example [vM, Section A.6]).

Given a collection X consisting of subsets of ω and Ω ⊆ ω, define
X �Ω = {X ∩ Ω : X ∈ X}.

Notice that F�Ω = {X ∈ F : X ⊆ Ω} whenever F is a filter and Ω ∈ F .
We conclude this section by remarking that many authors (including van

Engelen [vE3]) give a more general notion of filter than the one we gave
above. The most general notion possible seems to be the following. Define a
prefilter on Ω to be a collection F of subsets of Ω that satisfies conditions (3)
and (4). The next proposition, which can be safely assumed to be folklore,
shows that our definition does not result in any substantial loss of generality.

Proposition 2. Let G be an infinite prefilter on ω. Then either G ≈ 2ω

or G ≈ F for some filter F .

Proof. Let Ω = ω \
⋂
G, and observe that Ω is infinite because G is

infinite. Notice that G�Ω is a prefilter on Ω. First assume that ∅ ∈ G�Ω. This
means that

⋂
G = ω \ Ω ∈ G, hence G = {X ⊆ ω :

⋂
G ⊆ X} ≈ 2ω.

(2) This is not quite the standard definition. Notice however that, according to our
definitions, a filter is principal if and only if it is generated by a single element.
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Now assume that ∅ /∈ G�Ω. We claim that G�Ω is in fact a filter on Ω.
In order to prove this claim, it only remains to show that condition (2) is
satisfied. Notice that it will be enough to show that Cof(Ω) ⊆ G�Ω. So let
F ∈ Fin(Ω). Since Ω = ω \

⋂
G and G satisfies condition (4), there must be

X ∈ G such that X ⊆ ω \ F . It follows that ω \ F ∈ G, hence Ω \ F ∈ G�Ω.
Finally, it is straightforward to check that G ≈ G�Ω.

3. Preliminary results. The following three lemmas will be needed in
the proof of Theorem 6.

Lemma 3. Assume that F is a non-principal filter and Ω ∈ F . Then
F�Ω ≈ F .

Proof. Fix Ω∗ ⊆ Ω such that Ω∗ ∈ F and Ω \ Ω∗ is infinite. This is
possible because F is non-principal. Fix a bijection σ : ω \Ω∗ → Ω \Ω∗ and
let τ : Ω∗ → Ω∗ be the identity. Set π = σ ∪ τ and notice that π : ω → Ω is
a bijection. Therefore, the function h : 2ω → 2Ω defined by setting h(X) =
π[X] is a homeomorphism. Furthermore, using the fact that Ω∗ ∈ F , it is
straightforward to check that h[F ] = F�Ω. This shows that F ≈ F�Ω.

Lemma 4. Assume that F is a non-principal filter. Then F × 2ω ≈ F .

Proof. Fix a Ω ∈ F \Cof(ω). This is possible because F is non-principal.
Let h : 2Ω× 2ω\Ω → 2ω be the function defined by setting h(F,X) = F ∪X.
It is clear that h is a homeomorphism. Furthermore, using the fact that
Ω ∈ F , one sees that h[F�Ω × 2ω\Ω] = F . Therefore F�Ω × 2ω\Ω ≈ F . An
application of Lemma 3 concludes the proof.

Lemma 5. Assume that F is a principal filter. Then F2 ≈ F .

Proof. It will be enough to show that F ≈ Q or F ≈ Q× 2ω. Fix Ω ⊆ ω
such that F = {X ⊆ ω : Ω ⊆∗ X}. If Ω ∈ Cof(ω), then F = Cof(ω) ≈ Q. So
assume that Ω /∈ Cof(ω). The proof of Lemma 4 shows that F ≈ F�Ω×2ω\Ω.
Since F�Ω = Cof(Ω) ≈ Q, it follows that F ≈ Q× 2ω.

4. The main result. We begin by introducing some useful notation.
Given S ⊆ ω such that ω \S is infinite, let φS : ω \S → ω denote the unique
bijection such that m < n implies φS(m) < φS(n) for all m,n ∈ ω \S. Given
an infinite Ω ⊆ ω, define

D(Ω) = {(X,Y ) ∈ 2Ω × 2Ω : X ∩ Y = ∅}.

It is easy to check that D(Ω) is a closed crowded subspace of 2Ω× 2Ω, which
implies D(Ω) ≈ 2ω.

Theorem 6. If F is a filter then F2 ≈ F .
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Proof. Let F be a filter. If F is principal, then the desired conclusion
follows from Lemma 5. So assume that F is non-principal, and fix Ω ∈
F \ Cof(ω).

Let h : 2Ω × 2Ω ×D(ω \ Ω)→ 2Ω ×D(ω) be the function defined by

h(F,G,X, Y ) = (F ∩G,φF∩G[(F \G) ∪X], φF∩G[(G \ F ) ∪ Y ]),

and observe that h is continuous.
Let g : 2Ω ×D(ω)→ 2Ω × 2Ω ×D(ω \ Ω) be the function defined by

g(H,Z,W )

= (H ∪ (φ−1
H [Z]∩Ω), H ∪ (φ−1

H [W ]∩Ω), φ−1
H [Z]∩ (ω \Ω), φ−1

H [W ]∩ (ω \Ω)),

and observe that g is continuous. It is straightforward to verify that g is the
inverse function of h. Therefore h is a homeomorphism.

Furthermore, it is easy to realize that

h[F�Ω×F�Ω×D(ω \ Ω)] ⊆ F�Ω×D(ω)

and
g[F�Ω×D(ω)] ⊆ F�Ω×F�Ω×D(ω \ Ω).

Since g = h−1, it follows that h[F�Ω × F�Ω × D(ω \ Ω)] = F�Ω × D(ω).
Therefore F�Ω× F�Ω×D(ω \ Ω) ≈ F�Ω×D(ω). Finally, using Lemmas 3
and 4, one sees that F2 ≈ F .

Corollary 7. If F is a filter then Fm ≈ Fn for any natural numbers
m,n ≥ 1.

5. Counterexamples for semifilters. A semifilter on Ω is a collection
F of subsets of Ω that satisfies conditions (1), (2) and (3). All semifilters are
assumed to be on ω. The following proposition shows that Theorem 6 would
not hold if condition (4) were dropped from the definition of filter.

Proposition 8. There exists a semifilter T such that T 2 6≈ T .

Proof. Fix infinite sets Ω1 and Ω2 such that Ω1∪Ω2 = ω and Ω1∩Ω2 = ∅.
Define

T = {X1 ∪X2 : X1 ⊆ Ω1, X2 ⊆ Ω2, and (X1 /∈ Fin(Ω1) or X2 ∈ Cof(Ω2))},
and observe that T is a semifilter. Furthermore, it is clear that T is the
union of its topologically complete subspace {X ⊆ ω : X ∩ Ω1 /∈ Fin(Ω1)}
and its countable subspace {X1 ∪X2 : X1 ∈ Fin(Ω1) and X2 ∈ Cof(Ω2)}.

The following two statements are easy to verify.

• Cof(Ω2) is a closed subspace of T that is homeomorphic to Q.
• {X ⊆ ω : Ω1 ⊆ X} is a closed subspace of T that is homeomorphic

to 2ω.
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It follows that T 2 has a closed subspace homeomorphic to Q× 2ω. Since, as
is not hard to check, the space Q × 2ω cannot be written as the union of
a topologically complete subspace and a countable subspace, this concludes
the proof.

We remark that the semifilter T in the above proof is actually homeo-
morphic to the notable space T introduced by van Douwen (unpublished,
see [vEvM]). See [Me, Proposition 5.4] for more details.

In fact, the main result of [Me] shows that every homogeneous zero-
dimensional Borel space that is not locally compact is homeomorphic to
a semifilter. Together with [vE2, Proposition 4.1], which states that X 2 6≈ X
for almost every homogeneous zero-dimensional Borel space X of low com-
plexity, this yields many more counterexamples as in Proposition 8.

Acknowledgments. The first-listed author was supported by the FWF
grant M 1851-N35. The second-listed author was supported by the FWF
grant I 1209-N25.

References

[vE1] A. J. M. van Engelen, Homogeneous zero-dimensional absolute Borel sets, CWI
Tract 27, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Infor-
matica, Amsterdam, 1986. iv+133 pp.; available at http://repository.cwi.nl/.

[vE2] F. van Engelen, On Borel groups, Topology Appl. 35 (1990), 197–107.
[vE3] F. van Engelen, On Borel ideals, Ann. Pure Appl. Logic 70 (1994), 177–203.
[vEvM] F. van Engelen and J. van Mill, Borel sets in compact spaces: some Hurewicz

type theorems, Fund. Math. 124 (1984), 271–286.
[Me] A. Medini, On Borel semifilters, arXiv:1605.01024 (2016).
[vM] J. vanMill,The Infinite-Dimensional Topology of Function Spaces, North-Holland

Math. Library 64, North-Holland, Amsterdam, 2001.
[St] J. R. Steel, Analytic sets and Borel isomorphisms, Fund. Math. 108 (1980),

83–88.

Andrea Medini, Lyubomyr Zdomskyy
Kurt Gödel Research Center for Mathematical Logic
University of Vienna
Währinger Straße 25
A-1090 Wien, Austria
E-mail: andrea.medini@univie.ac.at

lyubomyr.zdomskyy@univie.ac.at
http://www.logic.univie.ac.at/˜medinia2/
http://www.logic.univie.ac.at/˜lzdomsky/

http://repository.cwi.nl/
http://dx.doi.org/10.1016/0166-8641(90)90105-B
http://dx.doi.org/10.1016/0168-0072(94)90029-9
http://arxiv.org/abs/1605.01024

	1 Introduction
	2 Notation
	3 Preliminary results
	4 The main result
	5 Counterexamples for semifilters
	References

