
FUNDAMENTA
MATHEMATICAE
Online First version

On the scope of the Effros theorem

by

Andrea Medini (Wien)

Abstract. All spaces (and groups) are assumed to be separable and metrizable. Jan
van Mill showed that every analytic group G is Effros (that is, every continuous transi-
tive action of G on a non-meager space is micro-transitive). We complete the picture by
obtaining the following results:

• under AC, there exists a non-Effros group,
• under AD, every group is Effros,
• under V = L, there exists a coanalytic non-Effros group.

The above counterexamples will be graphs of discontinuous homomorphisms.

1. Introduction. Throughout this article, we will be working in the
theory ZF + DC, that is, the usual axioms of Zermelo–Fraenkel (without
the Axiom of Choice, which we denote by AC) plus the principle of Depen-
dent Choices, and we denote by AD the Axiom of Determinacy (see [CMM,
Section 2] for a thorough discussion). All spaces (including groups) will be
assumed to be separable and metrizable. Furthermore, by group we will mean
topological group, and by group action, we will mean continuous group ac-
tion (see Section 2 for more details).

The research presented here ultimately stems from the seminal work of
E. G. Effros [Ef], which was in turn inspired by results of J. Glimm [Gl]. The
results of [Ef] have impacted three rather diverse fields: C∗-algebras (this
was the original motivation for Glimm and Effros), descriptive set theory
(see [Ke1, Sections 3 and 4]), and topology (see [CM, Section 1] and [vM2,
Section 1]). In fact, in his MathSciNet review of [vM2], V. Pestov described
Theorem 1.3 as “arguably the most important single result concerning Pol-
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2 A. Medini

ish (= separable completely metrizable) topological groups.” Furthermore,
as is well-known, the classical Open Mapping Theorem and Closed Graph
Theorem for separable Banach spaces easily follow from it (see Section 3 for
much more general statements).

Here, we will follow the topologically-minded approach of [An], in which
F. D. Ancel presented an alternative version of the results of Effros. In par-
ticular, he introduced to following notion.

Definition 1.1 (Ancel). Let G be a group acting on a space X. We will
say that this action is micro-transitive if Ux is a neighborhood of x for every
x ∈ X and every neighborhood U of the identity in G.

Recall that an action of a group G on a space X is transitive if for every
x, y ∈ X there exists g ∈ G such that gx = y. The following will be the
crucial notion for the remainder of the paper.

Definition 1.2. Let G be a group. We will say that G is Effros if every
transitive action of G on a non-meager space is micro-transitive.

At this point, the Effros theorem admits a particularly concise formula-
tion (see [An, Theorem 1]).

Theorem 1.3 (Effros). Every Polish group is Effros.

The above theorem was substantially generalized by J. van Mill, who
obtained the following result (see [vM1, Theorem 1.2]).

Theorem 1.4 (van Mill). Every analytic group is Effros.

It seems natural to wonder whether the above result is optimal. We will
show that this is indeed the case. More precisely, we will show that the prop-
erty of being an Effros group behaves like the classical regularity properties.
In fact, Corollary 4.4 shows that every group is Effros under AD, Corol-
lary 3.2 shows that this is not the case in ZFC, and Corollary 6.3 exhibits
a coanalytic non-Effros group under V = L.

Finally, we remark that generalizations of Theorem 1.4 to the non-sepa-
rable realm do exist (see [Os1, Os2]), although the situation is not as pleasant
as in the separable case.

2. Preliminaries and terminology. Given a group G with identity
e and a set X, a function · : G × X → X is called a group action if the
following conditions hold:

• e · x = x for every x ∈ X,
• (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X.

We will often simply write gx instead of g · x. Given S ⊆ G and x ∈ X, we
will use the notation Sx = {gx : g ∈ S}.
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For simplicity, we will always assume that every group G is also endowed
with a topology which makes it into a topological group, and that every
set X on which G acts is a topological space. As we mentioned at the very
beginning of the article, all groups and spaces will be assumed to be sepa-
rable and metrizable. Furthermore, all group actions will be assumed to be
continuous (1).

Notice that, for every g ∈ G, the function x 7→ gx is a homeomorphism
of X (with inverse x 7→ g−1x). Given x ∈ X, define γx : G → X by setting
γx(g) = gx for every g ∈ G. The following simple proposition (see [An,
Lemma 1]) gives some useful characterizations of micro-transitivity.

Proposition 2.1. Let G be a group acting transitively on a space X.
Then the following conditions are equivalent:

• G acts micro-transitively on X,
• γx is open for every x ∈ X,
• γx is open for some x ∈ X.

Our reference for descriptive set theory is [Ke2]. In particular, we assume
familiarity with the basic theory of Polish spaces, and their Borel and pro-
jective subsets. Our reference for other set-theoretic notions is [Je]. Given a
set X, we will denote by P(X) the collection of all subsets of X. We will
denote by X≤ω the collection of all functions s : n→ X, where n ≤ ω. Given
a function f : X → Y , we will denote by

Gr(f) = {(x, f(x)) : x ∈ X}
the graph of f . While Gr(f) = f from a purely set-theoretic standpoint, we
believe that this notation will improve the readability of the article. Observe
that when G and H are groups and φ : G → H is a homomorphism, then
Gr(φ) has a natural group structure (in fact, it is a subgroup of G×H).

Given spaces X and Y , we will say that j : X → Y is an embedding
if j : X → j[X] is a homeomorphism. Given 1 ≤ n < ω, we will say that
a space X is Σ1

n (respectively Π1
n or ∆1

n) if there exists a Polish space
Z and an embedding j : X → Z such that j[X] ∈ Σ1

n(Z) (respectively
j[X] ∈ Π1

n(Z) or j[X] ∈ ∆1
n(Z)). It is easy to show that a space X is Σ1

n

(respectively Π1
n or ∆1

n) iff j[X] ∈ Σ1
n(Z) (respectively j[X] ∈ Π1

n(Z) or
j[X] ∈ ∆1

n(Z)) for every Polish space Z and every embedding j : X → Z
(see [MZ, Proposition 4.2]). A space is analytic (respectively coanalytic or
Borel) if it is Σ1

1 (respectively Π1
1 or ∆1

1).
We conclude with some preliminaries concerning the Baire property.

Given a space X, we will denote by BP(X) be the collection of all sub-

(1) We remark that, as in [vM1], all results contained in this article actually hold for
separately continuous actions (that is, those actions such that all functions x 7→ gx and
g 7→ gx are continuous).
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sets of X that have the Baire property in X. We will denote by BP the
statement that BP(ωω) = P(ωω). It is well-known that AD implies BP (use
the methods of [Ke2, Section 8.H]). In Section 4, we will need the following
simple consequence of BP.

Proposition 2.2. Assume BP. Then BP(X) = P(X) for every space X.

Proof. By [Ke2, Exercise 7.14], for every non-empty Polish space X there
exists a continuous open surjection f : ωω → X. Using this fact, it is easy to
see that the desired result holds when X is Polish. The general case follows
from the fact that for every space X there exists a Polish space Z and an
embedding j : X → Z such that j[X] is dense in Z, since BP(Z)∩P(j[X]) ⊆
BP(j[X]) by density.

3. Revisiting some classics and non-Effros groups in ZFC. We
begin by showing how the Effros theorem easily implies two classical the-
orems. More precisely, in the separable context, Corollary 3.3 considerably
strengthens the Closed Graph Theorem, while Corollary 3.5 considerably
strengthens the Open Mapping Theorem. In particular, they show that the
linear structure is irrelevant in this context. While these facts seem to be
somewhat folklore, the concept of an Effros group allows for especially gen-
eral and elegant statements.

While Corollary 3.3, Theorem 3.4 and Corollary 3.5 seem to be of inde-
pendent interest, they will not play much of a role in the remainder of the
paper. On the other hand, Theorem 3.1 is the crucial tool that will allow us
to obtain examples of non-Effros groups (see Corollaries 3.2 and 6.3).

Theorem 3.1. Let G and H be groups, and let φ : G → H be a ho-
momorphism. If Gr(φ) is an Effros group and G is non-meager then φ is
continuous.

Proof. Assume that Gr(φ) is an Effros group and that G is non-meager.
Consider the action · of Gr(φ) on G obtained by setting

(g, φ(g)) · x = gx

for every g, x ∈ G. Obviously, the action · is transitive. Since Gr(φ) is Ef-
fros and G is non-meager, it follows that · is micro-transitive. Therefore, by
Proposition 2.1, the bijection γe : Gr(φ) → G associated to · is open, where
e denotes the identity of G. This means that γ−1

e is continuous, hence so is
φ = π ◦ γ−1

e , where π : G×H → H denotes the natural projection.

In the proof of the following corollary, for the sake of concreteness, we
will describe a specific discontinuous group homomorphism. For several other
suitable examples, see [Ro, Section 1].
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Corollary 3.2. Assume AC. Then there exists a non-Effros group (2).

Proof. Using AC, we can fix a basis H for R as a vector space over Q.
Since H is uncountable, we can pick h∞ ∈ H and hn ∈ H \ {h∞} for n ∈ ω
such that hn → h∞. Let φ : R → Q be the unique linear functional such
that

φ(h) =

{
1 if h = h∞,

0 if h ̸= h∞

for every h ∈ H. Notice that φ is discontinuous as φ(hn) = 0 ↛ 1 = φ(h∞).
It follows from Theorem 3.1 that Gr(φ) is a non-Effros group.

Corollary 3.3. Let G and H be groups, and let φ : G→ H be a homo-
morphism. If Gr(φ) is analytic and G is non-meager then φ is continuous (3).

Proof. Combine Theorems 3.1 and 1.4.

Theorem 3.4. Let G and H be groups, and let φ : G→ H be a surjective
continuous homomorphism. If G is Effros and H is non-meager then φ is
open.

Proof. Consider the action · of G on H defined by setting g · h = φ(g)h,
and notice that · is transitive because φ is surjective. Since G is Effros and
H is non-meager, it follows that · is micro-transitive. Therefore γe is open by
Proposition 2.1, where e denotes the identity of H. The proof is concluded
by observing that γe = φ.

Corollary 3.5. Let G and H be groups, and let φ : G → H be a
surjective continuous homomorphism. If G is analytic and H is non-meager
then φ is open.

Proof. Combine Theorems 3.4 and 1.4.

We remark that the “non-meager” assumption cannot be dropped in any
of Theorem 3.1, Corollary 3.3, Theorem 3.4 or Corollary 3.5. To see this, let
Qd denote the rational numbers with the discrete topology, and consider the
identity function φ : Q → Qd. It is easy to realize that φ gives the desired
counterexample for the first two results, while φ−1 gives the counterexample
for the last two. These examples are inspired by [vM1, Remark (4)].

(2) It is easy to verify that the example given here is meager. We remark that every
non-principal ultrafilter U on ω with its natural group structure (see [Me, Section 3]) gives
a Baire example of non-Effros group. To see this, observe that the characteristic function
χ : 2ω → 2 of U is a discontinuous group homomorphism, and that Gr(χ) is isomorphic
to U × 2 as a topological group. Finally, using the methods of [Me, Proposition 13.6], one
can show that U × 2 is isomorphic to U as a topological group.

(3) This corollary can also be derived from [Ke2, Theorem 9.10]. The same remark
holds for Corollary 4.5.
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4. Positive results. The main result of this section is Corollary 4.4,
which shows that when the set-theoretic universe is sufficiently regular, no
assumption at all on the complexity of the group is needed in Theorems 1.3
and 1.4. This will follow from Theorem 4.3, whose proof is a minor modifi-
cation of van Mill’s proof of [vM1, Theorem 1.4].

In the earlier part of the paper we preferred to cite AD, since we regard
it as a more “quotable” axiom. However, here we will be more precise, and
point out that BP (that is, the assumption that all sets of reals have the Baire
property) is in fact sufficient to obtain all the results that we are interested
in (see Corollaries 4.4–4.6 below).

Before stating the following preliminary results, we clarify some termi-
nology, as ours differs from van Mill’s. We will say that a subset A of a space
Z is nowhere meager if A∩U is non-meager in Z for every non-empty open
subset U of Z (4).

Proposition 4.1. Let Z be a space and let A ∈ BP(Z). If A is nowhere
meager then A is comeager.

Proof. This is simply the dual version of [Ke2, Proposition 8.26].

Corollary 4.2. Let Z be a non-meager space and let A,B ∈ BP(Z). If
A and B are nowhere meager then A ∩B ̸= ∅.

Theorem 4.3. Let G be a group that acts transitively on a non-meager
space X. Assume that Ux ∈ BP(X) for every open subset U of G and every
x ∈ X. Then the action is micro-transitive.

Proof. Let e be the identity of G. As in [vM1, Section 3], fix open neigh-
borhoods Un of e for n ∈ ω satisfying the following conditions for each n:

• U−1
n = Un,

• Un+1 ⊆ U2
n+1 ⊆ Un.

The following two claims correspond to [vM1, Corollary 3.3 and Lemma 3.4]
respectively, and can be proved in the same way. Given S ⊆ X, we will
denote by S the closure of S in X, and by int(S) the interior of S in X.

Claim 1. Let x ∈ X and n ∈ ω. If V is open in X and V ∩ Unx ̸= ∅
then V ∩ Unx is non-meager in X.

Claim 2. Let x ∈ X and n ∈ ω. Then x ∈ int(Un+1x) and int(Un+1x)
is dense in Un+1x.

Claim 3. Let x ∈ X and n ∈ ω. Then int(Un+1x) ⊆ Unx.

(4) Such sets are called fat by van Mill (in fact, Corollary 4.2 is the analogue of [vM1,
Proposition 2.2] in our context). On the other hand, he says that A is nowhere meager if
every non-empty open subset of A is non-meager in Z. It seems almost blasphemous to
disagree with van Mill, but we find our choice of terminology more natural.
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Proof of Claim 3. Set V = int(Un+1x), and pick z ∈ V . Set W =
int(Un+1z). Set Z = V ∩W , and observe that Z is an open neighborhood of z
by Claim 2. In particular, Z is non-meager, otherwise one could use the tran-
sitive action of G on X to contradict the assumption that X is non-meager.
Set A = Z ∩ Un+1x and B = Z ∩ Un+1z. Observe that A is dense in Z
because Z ⊆ Un+1x. Similarly, one sees that B is dense in Z. Furthermore,
since Un+1x, Un+1z ∈ BP(X) by assumption and Z is open in X, it is easy
to check that A,B ∈ BP(Z).

Pick a non-empty open subset U of Z. Since U is also open in X and
A is dense in Z, Claim 1 shows that U ∩ A = U ∩ Un+1x is non-meager
in X, hence non-meager in Z. Similarly, one sees that U ∩ B = U ∩ Un+1z
is non-meager in Z. In conclusion, both A and B are nowhere meager in Z.
It follows from Corollary 4.2 that A∩B ̸= ∅, so pick y ∈ A∩B. Then there
exist g, h ∈ Un+1 such that gx = y = hz. Therefore

z = h−1gx ∈ U−1
n+1Un+1x = U2

n+1x ⊆ Unx,

which concludes the proof of the claim.

Finally, in order to show that the action is micro-transitive, pick x ∈ X
and an open neighborhood U of e. Fix n ∈ ω large enough that Un ⊆ U .
Using Claims 2 and 3, one sees that

x ∈ int(Un+1x) ⊆ Unx ⊆ Ux,

which shows that Ux is a neighborhood of x.

Corollary 4.4. Assume BP. Then every group is Effros.

Proof. Combine Theorem 4.3 and Proposition 2.2.

Corollary 4.5. Assume BP. Let G and H be groups, and let φ : G→ H
be a homomorphism. If G is non-meager then φ is continuous.

Proof. Combine Corollary 4.4 and Theorem 3.1.

Corollary 4.6. Assume BP. Let G and H be groups, and let φ : G→ H
be a surjective continuous homomorphism. If H is non-meager then φ is
open.

Proof. Combine Corollary 4.4 and Theorem 3.4.

5. A method of Vidnyánszky. In this section we will discuss a method
developed by Z. Vidnyánszky [Vi]. First we will state the original version
(see Theorem 5.1), and then deduce a “multivariable” generalization (see
Theorem 5.2), which will be needed in Section 6. This method is a “black-box”
version of the technique that is mostly known for the applications given by
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A. W. Miller [Mi1], and has spawned many more since then (5). The purpose
of this technique is to construct coanalytic examples of certain pathological
sets of reals under the assumption V = L.

We will assume some familiarity with the basics of recursion theory (see
[Od]) and effective descriptive set theory (see [Mo]). On the other hand, no
previous knowledge of the theory of L is required apart from Theorem 5.1.
We will denote Turing reduction by ≤T and Turing equivalence by ≡T. When
M is a space in which it makes sense to consider Turing reduction, we will
say that S ⊆ M is cofinal in the Turing degrees if for every x ∈ M there
exists y ∈ S such that x ≤T y.

As in [Vi, Definition 1.2], given F ⊆M≤ω ×B×M , where M and B are
sets of size ω1, we will say that X ⊆ M is compatible with F if there exist
enumerations B = {pα : α < ω1}, X = {xα : α < ω1} and, for every α < ω1,
a sequence Aα ∈ M≤ω that is an enumeration of {xβ : β < α} in type ≤ ω
such that xα ∈ F(Aα,pα) for every α < ω1. Here, given (A, p) ∈M≤ω ×B, we
use the notation F(A,p) = {x ∈ M : (A, p, x) ∈ F}. Intuitively, one should
think of Aα as enumerating the portion of the desired set X constructed
before stage α. The section F(Aα,pα) consists of the admissible candidates to
be added at stage α, where pα encodes the current condition to be satisfied.
The following result first appeared as [Vi, Theorem 1.3].

Theorem 5.1 (Vidnyánszky). Assume V = L. Let M = 2ω, and let B be
an uncountable Borel space (6). Assume that F ⊆M≤ω×B×M is coanalytic,
and that for all (A, p) ∈M≤ω ×B the section F(A,p) is cofinal in the Turing
degrees. Then there exists a coanalytic X ⊆M that is compatible with F .

Unfortunately, there are situations in which more than one element needs
to be added at every stage. This is the case, for example, when one wants X
to be a group (see [Ka] or [FST]) or a Hamel basis (see [Mi1, Theorem 9.26
and Lemma 9.27]). Since Theorem 5.1 is not suited for this purpose, we have
adapted it as follows. We remark that although Vidnyánszky did not give
the general statement, the main idea of the proof of Theorem 5.2 is also
essentially due to him (see the comment that follows [Vi, Definition 4.8]).

For the remainder of this section, for simplicity, we will assume that
Z = 2ω. We will also assume that a recursive partition of ω into ξ infinite
sets is given, where 2 ≤ ξ ≤ ω, so that it will be possible to identify Zξ

with Z for the purposes of Turing reduction. When the space M is of the
form Zξ, we will say that S ⊆ M is equicofinal in the Turing degrees if for
every a ∈ Z there exists x ∈ S such that

(5) The very first instance of this idea, however, seems to have appeared in a paper
by Erdős, Kunen and Mauldin [EKM, Theorems 13, 14 and 16].

(6) More generally, one could replace 2ω with any other uncountable Polish space with
a natural notion of Turing reducibility. A similar remark holds for Theorem 5.2.
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• a ≤T x,
• x ≡T x(n) for every n ∈ ξ.

Theorem 5.2. Assume V = L. Let M = Zξ, where Z = 2ω and 2 ≤ ξ ≤
ω, and let B be an uncountable Borel space. Assume that F ⊆M≤ω×B×M is
coanalytic, and that for all (A, p) ∈M≤ω×B the section F(A,p) is equicofinal
in the Turing degrees. Then there exists X ⊆M such that

• X is compatible with F ,
• {x(n) : x ∈ X and n ∈ ξ} is coanalytic.

Proof. First define F ′ ⊆M≤ω ×B ×M by declaring (A, p, x) ∈ F ′ iff

(A, p, x) ∈ F and ∀n ∈ ξ (x ≡T x(n)).

Observe that F ′ is coanalytic, and that for every (A, p) ∈ M≤ω × B the
section F ′

(A,p) is cofinal in the Turing degrees. Therefore, by Theorem 5.1,
there exists a coanalytic X ⊆ M that is compatible with F ′ (hence with F
as well). In particular, we can fix a ∈ Z and a Π1

1 formula ϕ(x, y) such that
x ∈ X iff ϕ(x, a). Set

Xn = {x(n) : x ∈ X}
for n ∈ ξ. It will be enough to show that each Xn is coanalytic. So fix n.
Define

θ(x, y, z) iff (x(n) = y and ϕ(x, z)),

and observe that θ is also Π1
1. Finally, define

ψ(y, z) iff ∃x ∈ ∆1
1(y) θ(x, y, z),

and observe that ψ is Π1
1 by the Spector–Gandy Theorem (see [Mi2, Corollary

29.3]) (7). Using the well-known fact that x ≤T y implies x ∈ ∆1
1(y), it is

straightforward to verify that y ∈ Xn iff ψ(y, a), which concludes the proof.

6. A counterexample under V = L. The main result of this section
is Theorem 6.2, which gives a consistent example of a discontinuous group
homomorphism between Polish groups whose graph is coanalytic. Notice
that the complexity of the graph is as low as possible by Corollary 3.3.
Furthermore, this result yields a consistent example of a coanalytic non-
Effros group (see Corollary 6.3), thus showing that Theorem 1.4 is sharp.

We begin with the “coding lemma” needed in the proof of Theorem 6.2.
Throughout this section, we will make the same conventions as in the para-
graph that precedes Theorem 5.2. Similarly, we will identify 2ω × 2ω and 2ω

for the purposes of Turing reduction.

(7) Miller works in ωω, but all the relevant arguments carry over to 2ω. Alternatively,
one can apply the second part of [Mo, Theorem 4D.3] to the Spector pointclass Γ = Π1

1(a).



10 A. Medini

Lemma 6.1. Let a, z ∈ 2ω, and let {(zn, wn) : n ∈ ω} be a countable
subset of 2ω×2ω. Then there exists w ∈ 2ω satisfying the following properties:

• ((zm + z, wm + w) : m ∈ ω) ≡T (zn + z, wn + w) for every n ∈ ω,
• a ≤T (zn + z, wn + w) for every n ∈ ω.

Proof. Fix infinite Ω(n,ε) ⊆ ω for (n, ε) ∈ ω × 3 such that

• Ω(n,ε) ∩ Ω(m,δ) = ∅ whenever (n, ε) ̸= (m, δ),
•
⋃
{Ω(n,ε) : (n, ε) ∈ ω × 3} = ω,

• {(n, ε, k) ∈ ω × 3× ω : k ∈ Ω(n,ε)} is recursive.

Given xn ∈ 2ω for n ∈ ω, let ⊕(xn : n ∈ ω) denote a uniform recursive way
of coding the xn into a single element of 2ω. Given ε ∈ 3, set

uε =


a if ε = 0,

⊕(z + zn : n ∈ ω) if ε = 1,

⊕(wn : n ∈ ω) if ε = 2.

Also fix bijections π(n,ε) : ω → Ω(n,ε) for (n, ε) ∈ ω×3 such that the function
(n, ε, k) 7→ π(n,ε)(k) is recursive. Define

w(k) = wn(k) + uε(π
−1
(n,ε)(k))

for every k ∈ Ω(n,ε). In order to see that w has the desired properties,
pick n ∈ ω. The fundamental observation is that from (wn + w)↾Ω(n,ε) it is
possible to recover uε in a recursive way. This shows that a ≤T wn + w and
⊕(z + zm : m ∈ ω) ≤T wn + w.

It remains to see that ⊕(wm + w : m ∈ ω) ≤T wn + w, which is only
slightly more difficult. As above, one sees that ⊕(wm : m ∈ ω) ≤T wn + w,
and in particular wn ≤T wn + w. Now it is clear that w ≤T wn + w, hence
⊕(wm + w : m ∈ ω) ≤T wn + w, as desired.

Theorem 6.2. Assume V = L. Then there exists a discontinuous homo-
morphism φ : 2ω → 2ω with coanalytic graph.

Proof. Set Z = 2ω × 2ω and M = Zω. We begin by constructing a
countable dense subgroup G0 of Z that is the graph of a homomorphism
φ0 between (countable) subgroups of 2ω. First define en ∈ 2ω for n ∈ ω by
setting

en(m) =

{
1 if m = n,

0 if m ̸= n

for m ∈ ω. Let E denote the subgroup of 2ω generated by {en : n ∈ ω}. Fix
π : ω → ω such that π−1(n) is infinite for every n ∈ ω. Let φ0 : E → 2ω

be the unique homomorphism such that φ0(en) = eπ(n) for each n. Set
G0 = Gr(φ0), and let G0 = {gn : n ∈ ω} be an enumeration.
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Our plan is to construct a set X ⊆M such that

G = G0 ∪ {x(n) : x ∈ X and n ∈ ω}
is the graph of a homomorphism φ : 2ω → 2ω. Since G0 ⊆ G and G0 is
dense in Z, it is clear that φ will be discontinuous. On the other hand, using
Theorem 5.2, we will make sure that G is coanalytic.

Given A ∈Mη, where η ≤ ω, we will define A∗ : ω → Z. Fix a bijection

τ : ω → (ω × {0}) ∪ (η × {1}).
Also, in the case η > 0, fix σ0 : ω → η and σ1 : ω → ω such that the function
(σ0, σ1) : ω → η × ω defined by setting (σ0, σ1)(m) = (σ0(m), σ1(m)) for
m ∈ ω is a bijection (these functions are not needed in the case η = 0).
Finally, define A∗ by setting

A∗(n) =

{
gm if τ(n) = (m, 0),

A(σ0(m))(σ1(m)) if τ(n) = (m, 1)

for n ∈ ω. The purpose of A∗ is simply to transform A (which is a sequence
of sequences of pairs) into a sequence of pairs that enumerates all those
encoded by A, plus those in G0.

The set of “conditions” to be satisfied will be B = 2ω. More precisely,
we will make sure that each p ∈ B will be added to the domain of our
homomorphism at some stage. We will denote by πi : Z → 2ω for i = 0, 1
the natural projections, so that u = (π0(u), π1(u)) for every u ∈ Z.

Define F ⊆ M≤ω × B ×M by declaring (A, p, x) ∈ F exactly when one
of the following conditions holds:

• ∃n ∈ ω (p = π0(A
∗(n))) and

∀m,n ∈ ω (π0(x(m)−A∗(m)) = π0(x(n)−A∗(n))) and
∀m,n ∈ ω (π1(x(m)−A∗(m)) = π1(x(n)−A∗(n))) and
∀m,n ∈ ω (π0(x(m)−A∗(m)) ̸= π0(A

∗(n))), or
• ∀n ∈ ω (p ̸= π0(A

∗(n))) and
∀n ∈ ω (π0(x(n)−A∗(n)) = p) and
∀m,n ∈ ω (π1(x(m)−A∗(m)) = π1(x(n)−A∗(n))).

The first case is the one in which p already belongs to the domain of our
intended partial homomorphism. In this case, we require that there exist
z, w ∈ 2ω such that z is outside of this domain and x is an enumeration of
{(zn + z, wn + w) : n ∈ ω}, where {(zn, wn) : n ∈ ω} is an enumeration of
{A∗(n) : n ∈ ω}. The second case is almost the same: the only difference is
that we require z = p. In either case, we will make sure that p belongs to
the domain of the new partial homomorphism and that x enumerates the
elements of Z that have been added to its graph.

It is clear that F is coanalytic (in fact, it is Borel). Given any (A, p) ∈
M≤ω ×B, Lemma 6.1 shows that F(A,p) is equicofinal in the Turing degrees.
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Therefore, by Theorem 5.2, we can fix X ⊆M such that

• X is compatible with F ,
• {x(n) : x ∈ X and n ∈ ω} is coanalytic.

Let Aα, pα and xα for α < ω1 be the enumerations given by the definition
of compatibility. Given 0 < α ≤ ω1, set

Gα = G0 ∪ {xβ(n) : β < α and n ∈ ω}.
We claim that each Gα is the graph of a homomorphism φα : π0[Gα] → 2ω.

The case α = 0 has been discussed at the beginning of this proof, and
the limit case is straightforward. Now assume that the claim holds for some
α < ω1. Since xα ∈ F(Aα,pα) by compatibility, there exists (z, w) ∈ Z such
that z /∈ π0[Gα] and

Gα+1 = Gα ∪ {xα(n) : n ∈ ω} = Gα ∪ {(zn + z, wn + w) : n ∈ ω},
where {(zn, wn) : n ∈ ω} is an enumeration of {A∗

α(n) : n ∈ ω}. On the
other hand, it is clear that {A∗

α(n) : n ∈ ω} is an enumeration of Gα, as
{Aα(n) : n ∈ η} is an enumeration of {xβ : β < α} by compatibility, where
Aα ∈Mη. It follows that the right-hand side is the subgroup of Z generated
by Gα ∪{(z, w)}, hence the claim holds for α+1. Furthermore, as discussed
above, we will have pα ∈ π0[Gα+1] for every α < ω1. In conclusion, the group
G = Gω1 will be the graph of the desired homomorphism φ : 2ω → 2ω.

Corollary 6.3. Assume V = L. Then there exists a coanalytic non-
Effros group.

Proof. Combine Theorems 6.2 and 3.1.
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