Elementary submodels of the universe

Andrea Medini

Department of Mathematics University of Wisconsin - Madison

Graduate Partecipation Seminar in Logic

Basics Arkhangelski's theorem

Reasons for giving this talk.

- Practice with Beamer.
- Prerequisite to Erik's talk on PFA.
- Elementary submodels are cool.
- Arkhangelski's theorem is cool.
- The proof Arkhangelski's theorem using elementary submodels is *really* cool.
- I get to use itemize a lot.

Definition

Let M, N be \mathcal{L} -structures. We say that M is an *elementary* submodel of N (written $M \leq N$) if for every formula $\varphi(x_1, \ldots, x_n)$ and every $a_1, \ldots, a_n \in M$

 $M \vDash \varphi[a_1, \ldots, a_n]$ if and only if $N \vDash \varphi[a_1, \ldots, a_n]$

- When n = 0, the definition says that M ≡ N (i.e. M and N are *elementarily equivalent*: they satisfy the same sentences).
- When n > 0, the definition says that things in M have exactly the same properties in M that they have in N.

Definition

Let θ be a cardinal. $H(\theta) = \{x : |trcl(x)| < \theta\}.$

Theorem (Reflection)

Given any finite set of formulas Δ , there are arbitrarily large cardinals θ such that every $\varphi \in \Delta$ is absolute for $H(\theta), V$.

Basics Arkhangelski's theorem What do you mean? What about ω ? What about ω_1 ?

Our language is just $\mathcal{L} = \{ \in \}.$

Theorem (Löwenheim-Skolem-Tarski)

Let N be an \mathcal{L} -structure and $S \subseteq N$. Fix any cardinal λ with $\max(|S|, \omega) \le \lambda \le |N|$. Then there exists M such that

- $M \preccurlyeq N$
- $S \subseteq M$
- $|\mathbf{M}| = \lambda$
- Idea: use the theorem with N = V to get an elementary submodel of the universe.
- Problem: it doesn't make sense (*V* is a proper class).
- Solution: take $M \preccurlyeq H(\theta)$ for a sufficiently large cardinal θ .

What do you mean? What about ω ? What about ω_1 ?

Theorem

Let M be any elementary submodel. Then $\omega \subseteq M$ and $\omega \in M$.

Since *M* models enough of ZFC, there is a unique element 0^M that *M* thinks of as the empty set:

 $M \models 0^M$ is the empty set.

Hence, by elementarity

 $H(\theta) \models 0^M$ is the empty set.

But $H(\theta)$ is a *transitive* model of enough of ZFC, hence $0^M = 0$ is the *real* empty set by absoluteness.

Similarly, there is a unique element 1^M of M such that:

 $M \vDash 1^M$ is the successor of 0.

By elementarity and absoluteness, we see that 1^M is the real 1. If we continue this way we see that $\omega \subseteq M$.

Finally, to see that $\omega \in M$, notice that (by the Axioms of Infinity and Comprehension) there is a unique element ω^M of M such that

 $M \vDash \omega^M$ is the set of all natural numbers,

Again, by elementarity and absoluteness, ω^M must be the real set of natural numbers.

Theorem

Let M be a countable elementary submodel. Then $\delta = \omega_1 \cap M$ is a (countable) ordinal.

Since obviously $\delta \subseteq \omega_1$, it is well-ordered by \in . To show that δ is transitive, take $\alpha \in \delta$. We want to show $\alpha \subseteq \delta$. Since $\alpha \in M$ and

 $H(\theta) \vDash \exists f : \omega \to \alpha$ which is surjective,

by elementarity and absoluteness there must be such a function $f \in M$.

Since $\omega \in M$, we see that $f(n) \in M$ for every $n \in \omega$. Hence $\alpha = \{f(n) : n \in \omega\} \subseteq M$. Since $\alpha \subseteq \omega_1$ is obvious, we get $\alpha \subseteq \omega_1 \cap M = \delta$. Notice that in general neither of the implications $x \in M \Rightarrow x \subseteq M$ or $x \subseteq M \Rightarrow x \in M$ is true. For example $\omega_1 \in M$ by elementarity (for any $M \preccurlyeq H(\aleph_2)$), but $\omega_1 \subseteq M$ is impossible if M is countable. For any $f : \omega \to M$, it's easy to see that $f \subseteq M$ (since $n \in M$ and $f(n) \in M$, we must have $\langle n, f(n) \rangle \in M$ by elementarity). On the other hand, if $|M| < 2^{\aleph_0}$, then there must be some $f : \omega \to M$ such that $f \notin M$.

Definition

An elementary submodel *M* is *countably closed* if every function $f : \omega \to M$ actually belongs to *M* (more concisely ${}^{\omega}M \subseteq M$).

Theorem

Given any S of size at most 2^{\aleph_0} , there is a countably closed elementary submodel M of size 2^{\aleph_0} such that $S \subseteq M$.

Idea of the proof: take an elementary chain of lenght ω_1 , making sure $|M_{\alpha}| \leq 2^{\aleph_0}$ at every stage. Start with any $M_0 \supseteq S$. At a limit stage γ , take the union $M_{\gamma} = \bigcup_{\alpha < \gamma} M_{\alpha}$. Successor stages: given M_{α} , observe that

$$|{}^{\omega}\textit{\textit{M}}_{lpha}| = |\textit{\textit{M}}_{lpha}|^{lpha_0} \leq (2^{lpha_0})^{lpha_0} = 2^{lpha_0}.$$

So just take any $M_{\alpha+1} \supseteq M_{\alpha} \cup {}^{\omega}M_{\alpha}$. Finally, put $M = M_{\omega_1}$.

Theorem (Arkhangelski)

If (X, τ) is a first countable compact Hausdorff topological space then $|X| \leq 2^{\aleph_0}$.

From now on we will fix θ big enough and a countably closed $M \preccurlyeq H(\theta)$ of size 2^{\aleph_0} such that $(X, \tau) \in M$. The structure of the proof is the following.

- Prove that $X \cap M$ is a compact subspace of X.
- Use the compactness of $X \cap M$ to show that actually $X \subseteq M$.

Lemma

 $X \cap M$ is closed in X (hence compact).

Take $x \in \overline{X \cap M}$. We will show that $x \in M$. In $H(\theta)$: by first countability, there exists a sequence $s = \langle x_n : n \in \omega \rangle$ in $X \cap M$ converging to x. So, since X is Hausdorff,

 $H(\theta) \vDash s$ has a unique limit

Since $s \in M$ by ω -closedness,

 $M \vDash s$ has a unique limit

by elementarity. Such limit must be *x* by elementarity.

Basics Arkhangelski's theorem The proof

Now assume, in order to get a contradiction, that $z \in X \setminus M$. For every $x \in X \cap M$, let $\mathcal{B}_x \in M$ be a countable local base at x. For every $x \in X \cap M$, choose $U_x \in \mathcal{B}_x$ such that $z \notin U_x$. By compactness, there are $x_1, \ldots, x_n \in X \cap M$ such that

$$X \cap M \subseteq U_{x_1} \cup \cdots \cup U_{x_n}.$$

But every $U_{x_i} \in M$ (because every $\mathcal{B}_x \subseteq M$). So we can talk about them:

$$M \vDash X \subseteq U_{x_1} \cup \cdots \cup U_{x_n}.$$

On the other hand, z witnesses that

$$H(\theta)\vDash X \not\subseteq \bigcup U_{x_1}\cup\cdots\cup U_{x_n},$$

contradicting $M \preccurlyeq H(\theta)$.