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All spaces we consider are Tychonoff (so that we can take the
Stone-Čech compactification) and infinite.
A space X is zero-dimensional if it has a T1 basis consisting of
clopen sets. Every such space is Tychonoff.

Definition (Ostrovskii, 1981; van Mill, 1981)
A topological space X is h-homogeneous (or strongly
homogeneous) if all non-empty clopen sets in X are
homeomorphic.

Examples:

The Cantor set 2ω, the rationals Q, the irrationals ωω. (Use
the respective characterizations.)
Any connected space.
The Knaster-Kuratowski fan.
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Main results
In the class of zero-dimensional spaces, h-homogeneity is
productive.
If the product is pseudocompact, then the
zero-dimensionality requirement can be dropped.
Clopen sets in pseudocompact products depend on finitely
many coordinates.
Partial answers to Terada’s question: is the infinite power
Xω h-homogeneous for every zero-dimensional
first-countable X?
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A useful base for βX
Definition
Given U open in X , define Ex(U) = βX \ clβX (X \ U).

Basic facts:

Ex(U) is the biggest open set in βX such that its
intersection with X is U.
The collection {Ex(U) : U is open in X} is a base for βX .
If C is clopen in X then Ex(C) = clβX (C), hence Ex(C) is
clopen in βX .

j It is not true that βX is zero-dimensional whenever X is
zero-dimensional. (Dowker, 1957.) j
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When does β commute with
∏

?

Theorem (Glicksberg, 1959)

The product
∏

i∈I Xi is C∗-embedded in
∏

i∈I βXi if and only if∏
i∈I Xi is pseudocompact.

In that case, ∏
i∈I

βXi
∼= β

(∏
i∈I

Xi

)
.

More precisely, there exists a homeomorphism

h :
∏
i∈I

βXi −→ β

(∏
i∈I

Xi

)

such that h �
∏

i∈I Xi = id.
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The productivity of h-homogeneity
Theorem (Terada, 1993)
If Xi is h-homogeneous and zero-dimensional for every i ∈ I
and P =

∏
i∈I Xi is compact or non-pseudocompact, then P is

h-homogeneous.

Proof of the compact case, for P = X × Y :
Observe that n × X ∼= X whenever 1 ≤ n < ω.
So n × X × Y ∼= X × Y whenever 1 ≤ n < ω.
Let C be non-empty and clopen in X × Y . By compactness,
zero-dimensionality andQ, find clopen rectangles Ci such that

C = C1 ⊕ · · · ⊕ Cn.

By h-homogeneity, C ∼= n × X × Y ∼= X × Y .

K
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Theorem
If X × Y is pseudocompact, then every clopen set C can be
written as a finite union of open rectangles.

Proof: By Glicksberg’s theorem, there exists a homeomorphism

h : βX × βY −→ β(X × Y )

such that h(x , y) = (x , y) whenever (x , y) ∈ X × Y .
Since {Ex(U) : U is open in X} is a base for βX and
{Ex(V ) : V is open in Y} is a base for βY , the collection

B = {Ex(U)× Ex(V ) : U is open in X and V is open in Y}

is a base for βX × βY .
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Therefore {h[B] : B ∈ B} is a base for β(X × Y ).
Hence we can write Ex(C) = h[B1] ∪ · · · ∪ h[Bn] for some
B1, . . . , Bn ∈ B by compactness.
Finally, if we let Bi = Ex(Ui)× Ex(Vi) for each i , we get

C = Ex(C) ∩ X × Y
= (h[B1] ∪ · · · ∪ h[Bn]) ∩ h[X × Y ]

= h[B1 ∩ X × Y ] ∪ · · · ∪ h[Bn ∩ X × Y ]

= (B1 ∩ X × Y ) ∪ · · · ∪ (Bn ∩ X × Y )

= (U1 × V1) ∪ · · · ∪ (Un × Vn).

K
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But we would like clopen rectangles... /
Why? Because then we could prove the following.
(Notice that zero-dimensionality is not needed.)

Theorem
Assume that X × Y is pseudocompact. If X and Y are
h-homogeneous then X × Y is h-homogeneous.

Proof: If X and Y are both connected then X × Y is connected,
so assume without loss of generality that X is not connected.
It follows that X ∼= n × X whenever 1 ≤ n < ω.

...then finish the proof as in the compact case.

K
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Lemma
Let C ⊆ X × Y be a clopen set that can be written as the union
of finitely many rectangles. Then C can be written as the union
of finitely many pairwise disjoint clopen rectangles. ,

[ . Draws an enlightening picture on the board.]
Proof: For every x ∈ X , let Cx = {y ∈ Y : (x , y) ∈ C} be the
corresponding vertical cross-section. For every y ∈ Y , let
Cy = {x ∈ X : (x , y) ∈ C} be the corresponding horizontal
cross-section. Since C is clopen, each cross-section is clopen.
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Let A be the Boolean subalgebra of the clopen algebra of X
generated by {Cy : y ∈ Y}. Since A is finite, it must be atomic.
Let P1, . . . , Pm be the atoms of A. Similarly, let B be the
Boolean subalgebra of the clopen algebra of Y generated by
{Cx : x ∈ X}, and let Q1, . . . , Qn be the atoms of B.

Observe that the rectangles Pi ×Qj are clopen and pairwise
disjoint. Furthermore, given any i , j , either Pi ×Qj ⊆ C or
Pi ×Qj ∩ C = ∅. Hence C is the union of a (finite) collection of
such rectangles.

K
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Corollary
Assume that X = X1 × · · · × Xn is pseudocompact. If each Xi is
h-homogeneous then X is h-homogeneous.

An obvious modification of the proof of the theorem yields:

Theorem
Assume that X =

∏
i∈I Xi is pseudocompact. If C ⊆ X is clopen

then C can be written as the union of finitely many open
rectangles.

Corollary

Assume that X =
∏

i∈I Xi is pseudocompact. If C ⊆ X is clopen
then C depends on finitely many coordinates.

[The speaker takes a walk down memory lane...]
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Theorem
Assume that X =

∏
i∈I Xi is pseudocompact. If Xi is

h-homogeneous for every i ∈ I then X is h-homogeneous.

Proof: Let C ⊆ X be clopen and non-empty.
Then there exists a finite subset F of I such that C is
homeomorphic to C′ ×

∏
i∈I\F Xi , where C′ is a clopen subset

of
∏

i∈F Xi .
But

∏
i∈F Xi is h-homogeneous, so

C ∼= C′ ×
∏

i∈I\F

Xi
∼=
∏
i∈F

X ′
i ×

∏
i∈I\F

Xi
∼= X .

K
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Conclusions
Putting together our results with Terada’s theorem, we obtain
the following.

Theorem
If Xi is h-homogeneous and zero-dimensional for every i ∈ I
and X =

∏
i∈I Xi then X is h-homogeneous.

After all this work...

Problem
Is h-homogeneity productive?
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Some applications
The following result was first proved by Motorov in the compact
case.

Theorem
Assume that X has a π-base B consisting of clopen sets. Then
(X × 2×

∏
B)κ is h-homogeneous for every infinite cardinal κ.

Corollary
For every zero-dimensional space X there exists a
zero-dimensional space Y such that X × Y is h-homogeneous.

Problem
Is it true that for every space X there exists a space Y such that
X × Y is h-homogeneous?
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The case κ = ω of the following result is an easy consequence
of a result of Matveev. Motorov first proved it under the
additional assumption that X is first-countable and compact.
Terada proved it for an arbitrary infinite κ, under the additional
assumption that X is non-pseudocompact.

Theorem
Assume that X is a space such that the isolated points are
dense in X. Then Xκ is h-homogeneous for every infinite
cardinal κ.

For example, if α is an ordinal with the order topology and κ is
an infinite cardinal then ακ is h-homogeneous.
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Homogeneity vs h-homogeneity
All spaces are assumed to be first-countable and
zero-dimensional from now on.

Definition
A space X is homogeneous if for every x , y ∈ X there exists a
homeomorphism f : X −→ X such that f (x) = y .

By a picture-proof, h-homogeneity implies homogeneity. .
Erik van Douwen constructed a compact homogeneous space
that is not h-homogeneous.

Theorem (Motorov, 1989)
If X is a compact homogeneous space of uncountable
cellularity then X is h-homogeneous.
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Infinite powers
Problem (Terada, 1993)
Is Xω always h-homogeneous?

The following remarkable theorem is based on work by Motorov
and Lawrence.

Theorem (Dow and Pearl, 1997)
Xω is homogeneous.

However, Terada’s question remains open.
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Motorov’s main result
Theorem (Motorov, 1989)
If X has a π-base consisting of clopen sets that are
homeomorphic to X then X is h-homogeneous.

Proof: Let C be a non-empty clopen set in X . By
first-countability, write

X = {x} ∪
⋃
n∈ω

Xn and C = {y} ∪
⋃
n∈ω

Cn

where the Xn are disjoint, clopen, they converge to x but do not
contain x , and the Cn are disjoint, clopen, they converge to y
but do not contain y .
[ . Finishes the proof by juggling with clopen sets.]

K

Andrea Medini Products and h-homogeneity



Preliminaries
The productivity of h-homogeneity

Infinite powers of zero-dimensional first-countable spaces

Homogeneity vs h-homogeneity
The equivalence of Terada’s and Motorov’s questions
Bonus materials

Divisibility
Definition

A space F is a factor of X (or X is divisible by F ) if there exists
Y such that F × Y ∼= X . If F × X ∼= X then F is a strong factor
of X (or X is strongly divisible by F ).

Problem (Motorov, 1989)
Is Xω always divisible by 2?

As we observed already, h-homogeneity implies divisibility by 2.
We will show that Terada’s question is equivalent to Motorov’s
question. Actually, even weaker conditions suffice.
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Lemma
The following are equivalent.

1 F is a factor of Xω.
2 F × Xω ∼= Xω.
3 Fω × Xω ∼= Xω.

The implications 2 → 1 and 3 → 1 are clear.
Assume 1. Then there exists Y such that F × Y ∼= Xω, hence

Xω ∼= (Xω)ω ∼= (F × Y )ω ∼= Fω × Y ω.

Since multiplication by F or by Fω does not change the right
hand side, it follows that 2 and 3 hold.

K
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The key lemma
Lemma
X = (Y ⊕ 1)ω is h-homogeneous.

Proof: Recall that 1 = {0}. For each n ∈ ω, define

Un = {0} × {0} × · · · × {0}︸ ︷︷ ︸
n times

×(Y ⊕ 1)× (Y ⊕ 1)× · · ·

Observe that {Un : n ∈ ω} is a local base for X at (0, 0, . . .)
consisting of clopen sets that are homeomorphic to X .
But X is homogeneous by the Dow-Pearl theorem, therefore it
has a base (hence a π-base) consisting of clopen sets that are
homeomorphic to X .
It follows from Motorov’s result that X is h-homogeneous.

K
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Lemma
Let X = (Y ⊕ 1)ω. Then

X ∼= Y ω × (Y ⊕ 1)ω ∼= 2ω × Y ω.

Proof: Observe that

X ∼= (Y ⊕ 1)× X ∼= (Y × X )⊕ X ,

hence X ∼= Y × X by h-homogeneity. It follows that
X ∼= Y ω × (Y ⊕ 1)ω. Finally,

Y ω × (Y ⊕ 1)ω ∼= (Y ω × (Y ⊕ 1))ω ∼= (Y ω ⊕ Y ω)ω ∼= 2ω × Y ω,

that concludes the proof.

K
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Theorem
The following are equivalent.

1 Xω ∼= (X ⊕ 1)ω.

2 Xω ∼= Y ω for some Y with at least one isolated point.
3 Xω is h-homogeneous.

4 Xω has a clopen subset that is strongly divisible by 2.
5 Xω has a proper clopen subspace homeomorphic to Xω.
6 Xω has a proper clopen subspace as a factor.

Proof: The implication 1 → 2 is trivial; the implication 2 → 3
follows from the lemma; the implications 3 → 4 → 5 → 6 are
trivial.
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Assume that 6 holds. Let C be a proper clopen subset of Xω

that is also a factor of Xω and let D = Xω \ C. Then

Xω ∼= (C ⊕ D)× Xω

∼= (C × Xω)⊕ (D × Xω)
∼= Xω ⊕ (D × Xω)
∼= (1⊕ D)× Xω,

hence Xω ∼= (1⊕ D)ω × Xω. Since (1⊕ D)ω ∼= 2ω × Dω by the
lemma, it follows that Xω ∼= 2ω × Xω. Therefore 1 holds by the
lemma.

K
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The pseudocompact case
The next two theorems show that in the pseudocompact case
we can say something more.

Theorem
Assume that Xω is pseudocompact. Then Cω ∼= (X ⊕ 1)ω for
every non-empty proper clopen subset C of Xω.

Theorem
Assume that Xω is pseudocompact. Then the following are
equivalent.

1 Xω is h-homogeneous.
2 Xω has a proper clopen subspace C such that C ∼= Y ω for

some Y .
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Ultraparacompactness
The following notion allows us to give us a positive answer to
Terada’s question for a certain class of spaces.

Definition
A space X is ultraparacompact if every open cover of X has a
refinement consisting of pairwise disjoint clopen sets.

A metric space X is ultraparacompact if and only if dim X = 0.

Theorem
If Xω is ultraparacompact and non-Lindelöf then Xω is
h-homogeneous.
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