Products and h-homogeneity

Andrea Medini

Department of Mathematics
University of Wisconsin - Madison
June 27, 2010

All spaces we consider are Tychonoff (so that we can take the Stone-Čech compactification) and infinite.
A space X is zero-dimensional if it has a T_{1} basis consisting of clopen sets. Every such space is Tychonoff.

Definition (Ostrovskii, 1981; van Mill, 1981)

A topological space X is h-homogeneous (or strongly homogeneous) if all non-empty clopen sets in X are homeomorphic.

Examples:

- The Cantor set 2^{ω}, the rationals \mathbb{Q}, the irrationals ω^{ω}. (Use the respective characterizations.)
- Any connected space.
- The Knaster-Kuratowski fan.

Main results

- In the class of zero-dimensional spaces, h-homogeneity is productive.
- If the product is pseudocompact, then the zero-dimensionality requirement can be dropped.
- Clopen sets in pseudocompact products depend on finitely many coordinates.
- Partial answers to Terada's question: is the infinite power X^{ω} h-homogeneous for every zero-dimensional first-countable X ?

A useful base for βX

Definition

Given U open in X, define $\operatorname{Ex}(U)=\beta X \backslash \mathrm{cl}_{\beta X}(X \backslash U)$.
Basic facts:

- $\operatorname{Ex}(U)$ is the biggest open set in βX such that its intersection with X is U.
- The collection $\{\operatorname{Ex}(U): U$ is open in $X\}$ is a base for βX.
- If C is clopen in X then $\operatorname{Ex}(C)=\mathrm{cl}_{\beta X}(C)$, hence $\operatorname{Ex}(C)$ is clopen in βX.
${ }^{4 .}$ It is not true that βX is zero-dimensional whenever X is zero-dimensional. (Dowker, 1957.) A

When does β commute with Π ?

Theorem (Glicksberg, 1959)

The product $\prod_{i \in 1} X_{i}$ is C^{*}-embedded in $\prod_{i \in I} \beta X_{i}$ if and only if $\prod_{i \in I} X_{i}$ is pseudocompact.

In that case,

$$
\prod_{i \in I} \beta X_{i} \cong \beta\left(\prod_{i \in I} X_{i}\right) .
$$

More precisely, there exists a homeomorphism

$$
h: \prod_{i \in I} \beta X_{i} \longrightarrow \beta\left(\prod_{i \in I} X_{i}\right)
$$

such that $h \upharpoonright \prod_{i \in I} X_{i}=\mathrm{id}$.

The productivity of h-homogeneity

Theorem (Terada, 1993)

If X_{i} is h-homogeneous and zero-dimensional for every $i \in I$ and $P=\prod_{i \in I} X_{i}$ is compact or non-pseudocompact, then P is h-homogeneous.

Proof of the compact case, for $P=X \times Y$:
Observe that $n \times X \cong X$ whenever $1 \leq n<\omega$.
So $n \times X \times Y \cong X \times Y$ whenever $1 \leq n<\omega$.
Let C be non-empty and clopen in $X \times Y$. By compactness, zero-dimensionality and $s<$, find clopen rectangles C_{i} such that

$$
C=C_{1} \oplus \cdots \oplus C_{n}
$$

By h-homogeneity, $C \cong n \times X \times Y \cong X \times Y$.

Theorem

If $X \times Y$ is pseudocompact, then every clopen set C can be written as a finite union of open rectangles.

Proof: By Glicksberg's theorem, there exists a homeomorphism

$$
h: \beta X \times \beta Y \longrightarrow \beta(X \times Y)
$$

such that $h(x, y)=(x, y)$ whenever $(x, y) \in X \times Y$. Since $\{\operatorname{Ex}(U): U$ is open in $X\}$ is a base for βX and $\{\operatorname{Ex}(V): V$ is open in $Y\}$ is a base for βY, the collection

$$
\mathcal{B}=\{\operatorname{Ex}(U) \times \operatorname{Ex}(V): U \text { is open in } X \text { and } V \text { is open in } Y\}
$$

is a base for $\beta X \times \beta Y$.

Therefore $\{h[B]: B \in \mathcal{B}\}$ is a base for $\beta(X \times Y)$. Hence we can write $\operatorname{Ex}(C)=h\left[B_{1}\right] \cup \cdots \cup h\left[B_{n}\right]$ for some $B_{1}, \ldots, B_{n} \in \mathcal{B}$ by compactness.
Finally, if we let $B_{i}=\operatorname{Ex}\left(U_{i}\right) \times \operatorname{Ex}\left(V_{i}\right)$ for each i, we get

$$
\begin{aligned}
C & =\operatorname{Ex}(C) \cap X \times Y \\
& =\left(h\left[B_{1}\right] \cup \cdots \cup h\left[B_{n}\right]\right) \cap h[X \times Y] \\
& =h\left[B_{1} \cap X \times Y\right] \cup \cdots \cup h\left[B_{n} \cap X \times Y\right] \\
& =\left(B_{1} \cap X \times Y\right) \cup \cdots \cup\left(B_{n} \cap X \times Y\right) \\
& =\left(U_{1} \times V_{1}\right) \cup \cdots \cup\left(U_{n} \times V_{n}\right) .
\end{aligned}
$$

But we would like clopen rectangles... :
Why? Because then we could prove the following.
(Notice that zero-dimensionality is not needed.)

Theorem

Assume that $X \times Y$ is pseudocompact. If X and Y are h-homogeneous then $X \times Y$ is h-homogeneous.

Proof: If X and Y are both connected then $X \times Y$ is connected, so assume without loss of generality that X is not connected. It follows that $X \cong n \times X$ whenever $1 \leq n<\omega$.
...then finish the proof as in the compact case.

Lemma

Let $C \subseteq X \times Y$ be a clopen set that can be written as the union of finitely many rectangles. Then C can be written as the union of finitely many pairwise disjoint clopen rectangles. ©)

[Draws an enlightening picture on the board.]
Proof: For every $x \in X$, let $C_{x}=\{y \in Y:(x, y) \in C\}$ be the corresponding vertical cross-section. For every $y \in Y$, let $C^{y}=\{x \in X:(x, y) \in C\}$ be the corresponding horizontal cross-section. Since C is clopen, each cross-section is clopen.

Let \mathcal{A} be the Boolean subalgebra of the clopen algebra of X generated by $\left\{C^{y}: y \in Y\right\}$. Since \mathcal{A} is finite, it must be atomic. Let P_{1}, \ldots, P_{m} be the atoms of \mathcal{A}. Similarly, let \mathcal{B} be the Boolean subalgebra of the clopen algebra of Y generated by $\left\{C_{x}: x \in X\right\}$, and let Q_{1}, \ldots, Q_{n} be the atoms of \mathcal{B}.

Observe that the rectangles $P_{i} \times Q_{j}$ are clopen and pairwise disjoint. Furthermore, given any i, j, either $P_{i} \times Q_{j} \subseteq C$ or $P_{i} \times Q_{j} \cap C=\varnothing$. Hence C is the union of a (finite) collection of such rectangles.

Corollary

Assume that $X=X_{1} \times \cdots \times X_{n}$ is pseudocompact. If each X_{i} is h-homogeneous then X is h-homogeneous.

An obvious modification of the proof of the theorem yields:

Theorem

Assume that $X=\prod_{i \in I} X_{i}$ is pseudocompact. If $C \subseteq X$ is clopen then C can be written as the union of finitely many open rectangles.

Corollary

Assume that $X=\prod_{i \in I} X_{i}$ is pseudocompact. If $C \subseteq X$ is clopen then C depends on finitely many coordinates.
[The speaker takes a walk down memory lane...]

Theorem

Assume that $X=\prod_{i \in I} X_{i}$ is pseudocompact. If X_{i} is h-homogeneous for every $i \in I$ then X is h-homogeneous.

Proof: Let $C \subseteq X$ be clopen and non-empty.
Then there exists a finite subset F of I such that C is homeomorphic to $C^{\prime} \times \prod_{i \in \backslash F} X_{i}$, where C^{\prime} is a clopen subset of $\prod_{i \in F} X_{i}$.
But $\prod_{i \in F} X_{i}$ is h-homogeneous, so

$$
C \cong C^{\prime} \times \prod_{i \in \Lambda F} X_{i} \cong \prod_{i \in F} X_{i}^{\prime} \times \prod_{i \in \Lambda F} X_{i} \cong X
$$

Conclusions

Putting together our results with Terada's theorem, we obtain the following.

Theorem

If X_{i} is h-homogeneous and zero-dimensional for every $i \in I$ and $X=\prod_{i \in I} X_{i}$ then X is h-homogeneous.

After all this work...

Problem

Is h-homogeneity productive?

Some applications

The following result was first proved by Motorov in the compact case.

Theorem

Assume that X has a π-base \mathcal{B} consisting of clopen sets. Then $\left(X \times 2 \times \prod \mathcal{B}\right)^{\kappa}$ is h-homogeneous for every infinite cardinal κ.

Corollary

For every zero-dimensional space X there exists a zero-dimensional space Y such that $X \times Y$ is h-homogeneous.

Problem

Is it true that for every space X there exists a space Y such that $X \times Y$ is h-homogeneous?

The case $\kappa=\omega$ of the following result is an easy consequence of a result of Matveev. Motorov first proved it under the additional assumption that X is first-countable and compact. Terada proved it for an arbitrary infinite κ, under the additional assumption that X is non-pseudocompact.

Theorem

Assume that X is a space such that the isolated points are dense in X. Then X^{κ} is h-homogeneous for every infinite cardinal κ.

For example, if α is an ordinal with the order topology and κ is an infinite cardinal then α^{κ} is h-homogeneous.

Homogeneity vs h-homogeneity

All spaces are assumed to be first-countable and zero-dimensional from now on.

Definition

A space X is homogeneous if for every $x, y \in X$ there exists a homeomorphism $f: X \longrightarrow X$ such that $f(x)=y$.

By a picture-proof, h-homogeneity implies homogeneity. Erik van Douwen constructed a compact homogeneous space that is not h -homogeneous.

Theorem (Motorov, 1989)

If X is a compact homogeneous space of uncountable cellularity then X is h-homogeneous.

Infinite powers

Problem (Terada, 1993)

Is X^{ω} always h-homogeneous?
The following remarkable theorem is based on work by Motorov and Lawrence.

Theorem (Dow and Pearl, 1997)
X^{ω} is homogeneous.
However, Terada's question remains open.

Motorov's main result

Theorem (Motorov, 1989)

If X has a π-base consisting of clopen sets that are homeomorphic to X then X is h-homogeneous.

Proof: Let C be a non-empty clopen set in X. By first-countability, write

$$
X=\{x\} \cup \bigcup_{n \in \omega} X_{n} \quad \text { and } \quad C=\{y\} \cup \bigcup_{n \in \omega} C_{n}
$$

where the X_{n} are disjoint, clopen, they converge to x but do not contain x, and the C_{n} are disjoint, clopen, they converge to y but do not contain y.
[Finishes the proof by juggling with clopen sets.]

Divisibility

Definition

A space F is a factor of X (or X is divisible by F) if there exists Y such that $F \times Y \cong X$. If $F \times X \cong X$ then F is a strong factor of X (or X is strongly divisible by F).

Problem (Motorov, 1989)

Is X^{ω} always divisible by 2?
As we observed already, h-homogeneity implies divisibility by 2. We will show that Terada's question is equivalent to Motorov's question. Actually, even weaker conditions suffice.

Lemma

The following are equivalent.
(1) F is a factor of X^{ω}.
(2) $F \times X^{\omega} \cong X^{\omega}$.
(3) $F^{\omega} \times X^{\omega} \cong X^{\omega}$.

The implications $2 \rightarrow 1$ and $3 \rightarrow 1$ are clear.
Assume 1. Then there exists Y such that $F \times Y \cong X^{\omega}$, hence

$$
X^{\omega} \cong\left(X^{\omega}\right)^{\omega} \cong(F \times Y)^{\omega} \cong F^{\omega} \times Y^{\omega}
$$

Since multiplication by F or by F^{ω} does not change the right hand side, it follows that 2 and 3 hold.

The key lemma

Lemma

$X=(Y \oplus 1)^{\omega}$ is h-homogeneous.
Proof: Recall that $1=\{0\}$. For each $n \in \omega$, define

$$
U_{n}=\underbrace{\{0\} \times\{0\} \times \cdots \times\{0\}}_{n \text { times }} \times(Y \oplus 1) \times(Y \oplus 1) \times \cdots
$$

Observe that $\left\{U_{n}: n \in \omega\right\}$ is a local base for X at $(0,0, \ldots)$ consisting of clopen sets that are homeomorphic to X.
But X is homogeneous by the Dow-Pearl theorem, therefore it has a base (hence a π-base) consisting of clopen sets that are homeomorphic to X.
It follows from Motorov's result that X is h-homogeneous.

Lemma

Let $X=(Y \oplus 1)^{\omega}$. Then

$$
X \cong Y^{\omega} \times(Y \oplus 1)^{\omega} \cong 2^{\omega} \times Y^{\omega}
$$

Proof: Observe that

$$
X \cong(Y \oplus 1) \times X \cong(Y \times X) \oplus X
$$

hence $X \cong Y \times X$ by h-homogeneity. It follows that $X \cong Y^{\omega} \times(Y \oplus 1)^{\omega}$. Finally,

$$
Y^{\omega} \times(Y \oplus 1)^{\omega} \cong\left(Y^{\omega} \times(Y \oplus 1)\right)^{\omega} \cong\left(Y^{\omega} \oplus Y^{\omega}\right)^{\omega} \cong 2^{\omega} \times Y^{\omega}
$$

that concludes the proof.

Theorem

The following are equivalent.
(1) $X^{\omega} \cong(X \oplus 1)^{\omega}$.
(2) $X^{\omega} \cong Y^{\omega}$ for some Y with at least one isolated point.
(3) X^{ω} is h-homogeneous.
(4) X^{ω} has a clopen subset that is strongly divisible by 2.
(5) X^{ω} has a proper clopen subspace homeomorphic to X^{ω}.
(6) X^{ω} has a proper clopen subspace as a factor.

Proof: The implication $1 \rightarrow 2$ is trivial; the implication $2 \rightarrow 3$ follows from the lemma; the implications $3 \rightarrow 4 \rightarrow 5 \rightarrow 6$ are trivial.

Assume that 6 holds. Let C be a proper clopen subset of X^{ω} that is also a factor of X^{ω} and let $D=X^{\omega} \backslash C$. Then

$$
\begin{aligned}
X^{\omega} & \cong(C \oplus D) \times X^{\omega} \\
& \cong\left(C \times X^{\omega}\right) \oplus\left(D \times X^{\omega}\right) \\
& \cong X^{\omega} \oplus\left(D \times X^{\omega}\right) \\
& \cong(1 \oplus D) \times X^{\omega},
\end{aligned}
$$

hence $X^{\omega} \cong(1 \oplus D)^{\omega} \times X^{\omega}$. Since $(1 \oplus D)^{\omega} \cong 2^{\omega} \times D^{\omega}$ by the lemma, it follows that $X^{\omega} \cong 2^{\omega} \times X^{\omega}$. Therefore 1 holds by the lemma.

The pseudocompact case

The next two theorems show that in the pseudocompact case we can say something more.

Theorem

Assume that X^{ω} is pseudocompact. Then $C^{\omega} \cong(X \oplus 1)^{\omega}$ for every non-empty proper clopen subset C of X^{ω}.

Theorem

Assume that X^{ω} is pseudocompact. Then the following are equivalent.
(1) X^{ω} is h-homogeneous.
(2) X^{ω} has a proper clopen subspace C such that $C \cong Y^{\omega}$ for some Y.

Ultraparacompactness

The following notion allows us to give us a positive answer to Terada's question for a certain class of spaces.

Definition

A space X is ultraparacompact if every open cover of X has a refinement consisting of pairwise disjoint clopen sets.

A metric space X is ultraparacompact if and only if $\operatorname{dim} X=0$.
Theorem
If X^{ω} is ultraparacompact and non-Lindelöf then X^{ω} is h-homogeneous.

