Preliminaries Wit The productivity of h-homogeneity Ov Infinite powers of zero-dimensional first-countable spaces Th

What is h-homogeneity? Overview of the results The tools

Products and h-homogeneity

Andrea Medini

Department of Mathematics University of Wisconsin - Madison

June 27, 2010

What is h-homogeneity? Overview of the results The tools

All spaces we consider are *Tychonoff* (so that we can take the Stone-Čech compactification) and infinite.

A space X is *zero-dimensional* if it has a T_1 basis consisting of clopen sets. Every such space is Tychonoff.

Definition (Ostrovskii, 1981; van Mill, 1981)

A topological space X is *h*-homogeneous (or strongly homogeneous) if all non-empty clopen sets in X are homeomorphic.

Examples:

- The Cantor set 2^ω, the rationals Q, the irrationals ω^ω. (Use the respective characterizations.)
- Any connected space.
- The Knaster-Kuratowski fan.

Main results

- In the class of zero-dimensional spaces, h-homogeneity is productive.
- If the product is pseudocompact, then the zero-dimensionality requirement can be dropped.
- Clopen sets in pseudocompact products depend on finitely many coordinates.
- Partial answers to Terada's question: is the infinite power X^ω h-homogeneous for every zero-dimensional first-countable X?

What is h-homogeneity? Overview of the results The tools

A useful base for βX

Definition

Given U open in X, define $Ex(U) = \beta X \setminus cl_{\beta X}(X \setminus U)$.

Basic facts:

- Ex(U) is the biggest open set in βX such that its intersection with X is U.
- The collection $\{Ex(U) : U \text{ is open in } X\}$ is a base for βX .
- If C is clopen in X then Ex(C) = cl_{βX}(C), hence Ex(C) is clopen in βX.
- t is not true that βX is zero-dimensional whenever X is zero-dimensional. (Dowker, 1957.)

What is h-homogeneity? Overview of the results The tools

When does β commute with \prod ?

Theorem (Glicksberg, 1959)

The product $\prod_{i \in I} X_i$ is C^* -embedded in $\prod_{i \in I} \beta X_i$ if and only if $\prod_{i \in I} X_i$ is pseudocompact.

In that case,

$$\prod_{i\in I}\beta X_i\cong\beta\left(\prod_{i\in I}X_i\right).$$

More precisely, there exists a homeomorphism

$$h:\prod_{i\in I}\beta X_i\longrightarrow \beta\left(\prod_{i\in I}X_i\right)$$

such that $h \upharpoonright \prod_{i \in I} X_i = id$.

The productivity of h-homogeneity

Theorem (Terada, 1993)

If X_i is h-homogeneous and zero-dimensional for every $i \in I$ and $P = \prod_{i \in I} X_i$ is compact or non-pseudocompact, then P is h-homogeneous.

Proof of the compact case, for $P = X \times Y$: Observe that $n \times X \cong X$ whenever $1 \le n < \omega$. So $n \times X \times Y \cong X \times Y$ whenever $1 \le n < \omega$. Let *C* be non-empty and clopen in $X \times Y$. By compactness, zero-dimensionality and \Im , find clopen rectangles C_i such that

$$C = C_1 \oplus \cdots \oplus C_n$$
.

By h-homogeneity, $C \cong n \times X \times Y \cong X \times Y$.

Theorem

If $X \times Y$ is pseudocompact, then every clopen set C can be written as a finite union of open rectangles.

Proof: By Glicksberg's theorem, there exists a homeomorphism

$$h:\beta X\times\beta Y\longrightarrow\beta (X\times Y)$$

such that h(x, y) = (x, y) whenever $(x, y) \in X \times Y$. Since $\{Ex(U) : U \text{ is open in } X\}$ is a base for βX and $\{Ex(V) : V \text{ is open in } Y\}$ is a base for βY , the collection

 $\mathcal{B} = \{\mathsf{Ex}(U) \times \mathsf{Ex}(V) : U \text{ is open in } X \text{ and } V \text{ is open in } Y\}$

is a base for $\beta X \times \beta Y$.

Therefore $\{h[B] : B \in B\}$ is a base for $\beta(X \times Y)$. Hence we can write $Ex(C) = h[B_1] \cup \cdots \cup h[B_n]$ for some $B_1, \ldots, B_n \in B$ by compactness. Finally, if we let $B_i = Ex(U_i) \times Ex(V_i)$ for each *i*, we get

$$C = Ex(C) \cap X \times Y$$

= $(h[B_1] \cup \cdots \cup h[B_n]) \cap h[X \times Y]$
= $h[B_1 \cap X \times Y] \cup \cdots \cup h[B_n \cap X \times Y]$
= $(B_1 \cap X \times Y) \cup \cdots \cup (B_n \cap X \times Y)$
= $(U_1 \times V_1) \cup \cdots \cup (U_n \times V_n).$

But we would like *clopen* rectangles... Why? Because then we could prove the following. (Notice that zero-dimensionality is not needed.)

Theorem

Assume that $X \times Y$ is pseudocompact. If X and Y are *h*-homogeneous then $X \times Y$ is *h*-homogeneous.

Proof: If *X* and *Y* are both connected then $X \times Y$ is connected, so assume without loss of generality that *X* is not connected. It follows that $X \cong n \times X$ whenever $1 \le n < \omega$.

...then finish the proof as in the compact case.

Lemma

Let $C \subseteq X \times Y$ be a clopen set that can be written as the union of finitely many rectangles. Then C can be written as the union of finitely many pairwise disjoint clopen rectangles. \bigcirc

[Solution Draws an enlightening picture on the board.] Proof: For every $x \in X$, let $C_x = \{y \in Y : (x, y) \in C\}$ be the corresponding vertical cross-section. For every $y \in Y$, let $C^y = \{x \in X : (x, y) \in C\}$ be the corresponding horizontal cross-section. Since *C* is clopen, each cross-section is clopen. Let \mathcal{A} be the Boolean subalgebra of the clopen algebra of X generated by $\{C^y : y \in Y\}$. Since \mathcal{A} is finite, it must be atomic. Let P_1, \ldots, P_m be the atoms of \mathcal{A} . Similarly, let \mathcal{B} be the Boolean subalgebra of the clopen algebra of Y generated by $\{C_x : x \in X\}$, and let Q_1, \ldots, Q_n be the atoms of \mathcal{B} .

Observe that the rectangles $P_i \times Q_j$ are clopen and pairwise disjoint. Furthermore, given any *i*, *j*, either $P_i \times Q_j \subseteq C$ or $P_i \times Q_j \cap C = \emptyset$. Hence *C* is the union of a (finite) collection of such rectangles.

Corollary

Assume that $X = X_1 \times \cdots \times X_n$ is pseudocompact. If each X_i is *h*-homogeneous then X is *h*-homogeneous.

An obvious modification of the proof of the theorem yields:

Theorem

Assume that $X = \prod_{i \in I} X_i$ is pseudocompact. If $C \subseteq X$ is clopen then C can be written as the union of finitely many open rectangles.

Corollary

Assume that $X = \prod_{i \in I} X_i$ is pseudocompact. If $C \subseteq X$ is clopen then C depends on finitely many coordinates.

[The speaker takes a walk down memory lane...]

Theorem

Assume that $X = \prod_{i \in I} X_i$ is pseudocompact. If X_i is *h*-homogeneous for every $i \in I$ then X is *h*-homogeneous.

Proof: Let $C \subseteq X$ be clopen and non-empty. Then there exists a finite subset F of I such that C is homeomorphic to $C' \times \prod_{i \in I \setminus F} X_i$, where C' is a clopen subset of $\prod_{i \in F} X_i$. But $\prod_{i \in F} X_i$ is h-homogeneous, so

$$C \cong C' \times \prod_{i \in I \setminus F} X_i \cong \prod_{i \in F} X'_i \times \prod_{i \in I \setminus F} X_i \cong X.$$

Conclusions

Putting together our results with Terada's theorem, we obtain the following.

Theorem

If X_i is h-homogeneous and zero-dimensional for every $i \in I$ and $X = \prod_{i \in I} X_i$ then X is h-homogeneous.

After all this work ...

Problem

Is h-homogeneity productive?

Some applications

The following result was first proved by Motorov in the compact case.

Theorem

Assume that X has a π -base \mathcal{B} consisting of clopen sets. Then $(X \times 2 \times \prod \mathcal{B})^{\kappa}$ is h-homogeneous for every infinite cardinal κ .

Corollary

For every zero-dimensional space X there exists a zero-dimensional space Y such that $X \times Y$ is h-homogeneous.

Problem

Is it true that for every space X there exists a space Y such that $X \times Y$ is h-homogeneous?

The case $\kappa = \omega$ of the following result is an easy consequence of a result of Matveev. Motorov first proved it under the additional assumption that X is first-countable and compact. Terada proved it for an arbitrary infinite κ , under the additional assumption that X is non-pseudocompact.

Theorem

Assume that X is a space such that the isolated points are dense in X. Then X^{κ} is h-homogeneous for every infinite cardinal κ .

For example, if α is an ordinal with the order topology and κ is an infinite cardinal then α^{κ} is h-homogeneous.

Homogeneity vs h-homogeneity The equivalence of Terada's and Motorov's questions Bonus materials

Homogeneity vs h-homogeneity

All spaces are assumed to be first-countable and zero-dimensional from now on.

Definition

A space X is *homogeneous* if for every $x, y \in X$ there exists a homeomorphism $f : X \longrightarrow X$ such that f(x) = y.

By a picture-proof, h-homogeneity implies homogeneity. Erik van Douwen constructed a compact homogeneous space that is not h-homogeneous.

Theorem (Motorov, 1989)

If X is a compact homogeneous space of uncountable cellularity then X is h-homogeneous.

Infinite powers

Problem (Terada, 1993)

Is X^{ω} always h-homogeneous?

The following remarkable theorem is based on work by Motorov and Lawrence.

Theorem (Dow and Pearl, 1997)

 X^{ω} is homogeneous.

However, Terada's question remains open.

Homogeneity vs h-homogeneity The equivalence of Terada's and Motorov's questions Bonus materials

Motorov's main result

Theorem (Motorov, 1989)

If X has a π -base consisting of clopen sets that are homeomorphic to X then X is h-homogeneous.

Proof: Let C be a non-empty clopen set in X. By first-countability, write

$$X = \{x\} \cup \bigcup_{n \in \omega} X_n$$
 and $C = \{y\} \cup \bigcup_{n \in \omega} C_n$

where the X_n are disjoint, clopen, they converge to x but do not contain x, and the C_n are disjoint, clopen, they converge to y but do not contain y.

[S Finishes the proof by juggling with clopen sets.]

Divisibility

Definition

A space *F* is a *factor* of *X* (or *X* is *divisible* by *F*) if there exists *Y* such that $F \times Y \cong X$. If $F \times X \cong X$ then *F* is a *strong factor* of *X* (or *X* is *strongly divisible* by *F*).

Problem (Motorov, 1989)

Is X^{ω} always divisible by 2?

As we observed already, h-homogeneity implies divisibility by 2. We will show that Terada's question is equivalent to Motorov's question. Actually, even weaker conditions suffice.

Lemma

The following are equivalent.

- F is a factor of X^{ω} .
- **2** $F \times X^{\omega} \cong X^{\omega}.$

The implications $2 \rightarrow 1$ and $3 \rightarrow 1$ are clear. Assume 1. Then there exists *Y* such that $F \times Y \cong X^{\omega}$, hence

$$X^{\omega}\cong (X^{\omega})^{\omega}\cong (F imes Y)^{\omega}\cong F^{\omega} imes Y^{\omega}.$$

Since multiplication by *F* or by F^{ω} does not change the right hand side, it follows that 2 and 3 hold.

Preliminaries Homogenei The productivity of h-homogeneity Infinite powers of zero-dimensional first-countable spaces Bonus mate

Homogeneity vs h-homogeneity The equivalence of Terada's and Motorov's questions Bonus materials

The key lemma

Lemma

 $X = (Y \oplus 1)^{\omega}$ is h-homogeneous.

Proof: Recall that $1 = \{0\}$. For each $n \in \omega$, define

$$U_n = \underbrace{\{0\} \times \{0\} \times \cdots \times \{0\}}_{n \text{ times}} \times (Y \oplus 1) \times (Y \oplus 1) \times \cdots$$

Observe that $\{U_n : n \in \omega\}$ is a local base for *X* at (0, 0, ...) consisting of clopen sets that are homeomorphic to *X*. But *X* is homogeneous by the Dow-Pearl theorem, therefore it has a base (hence a π -base) consisting of clopen sets that are homeomorphic to *X*.

It follows from Motorov's result that X is h-homogeneous.

Preliminaries Homogeneity vs h-homogeneity The productivity of h-homogeneity Infinite powers of zero-dimensional first-countable spaces Bonus materials

Lemma

Let $X = (Y \oplus 1)^{\omega}$. Then

$$X \cong Y^{\omega} \times (Y \oplus 1)^{\omega} \cong 2^{\omega} \times Y^{\omega}.$$

Proof: Observe that

$$X \cong (Y \oplus 1) \times X \cong (Y \times X) \oplus X,$$

hence $X \cong Y \times X$ by h-homogeneity. It follows that $X \cong Y^{\omega} \times (Y \oplus 1)^{\omega}$. Finally,

 $Y^{\omega} \times (Y \oplus 1)^{\omega} \cong (Y^{\omega} \times (Y \oplus 1))^{\omega} \cong (Y^{\omega} \oplus Y^{\omega})^{\omega} \cong 2^{\omega} \times Y^{\omega},$

that concludes the proof.

Theorem

The following are equivalent.

- $X^{\omega} \cong (X \oplus 1)^{\omega}.$
- 2 $X^{\omega} \cong Y^{\omega}$ for some Y with at least one isolated point.
- 3 X^{ω} is h-homogeneous.
- **4** X^{ω} has a clopen subset that is strongly divisible by 2.
- **(5)** X^{ω} has a proper clopen subspace homeomorphic to X^{ω} .
- X^{ω} has a proper clopen subspace as a factor.

Proof: The implication 1 \rightarrow 2 is trivial; the implication 2 \rightarrow 3 follows from the lemma; the implications 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 are trivial.

Assume that 6 holds. Let *C* be a proper clopen subset of X^{ω} that is also a factor of X^{ω} and let $D = X^{\omega} \setminus C$. Then

$$egin{array}{rcl} X^\omega &\cong & ({\cal C}\oplus {\cal D}) imes X^\omega \ &\cong & ({\cal C} imes X^\omega)\oplus ({\cal D} imes X^\omega) \ &\cong & X^\omega\oplus ({\cal D} imes X^\omega) \ &\cong & (1\oplus {\cal D}) imes X^\omega, \end{array}$$

hence $X^{\omega} \cong (1 \oplus D)^{\omega} \times X^{\omega}$. Since $(1 \oplus D)^{\omega} \cong 2^{\omega} \times D^{\omega}$ by the lemma, it follows that $X^{\omega} \cong 2^{\omega} \times X^{\omega}$. Therefore 1 holds by the lemma.

Homogeneity vs h-homogeneity The equivalence of Terada's and Motorov's questions Bonus materials

The pseudocompact case

The next two theorems show that in the pseudocompact case we can say something more.

Theorem

Assume that X^{ω} is pseudocompact. Then $C^{\omega} \cong (X \oplus 1)^{\omega}$ for every non-empty proper clopen subset *C* of X^{ω} .

Theorem

Assume that X^{ω} is pseudocompact. Then the following are equivalent.

- X^{ω} is h-homogeneous.
- ② X^ω has a proper clopen subspace C such that C ≅ Y^ω for some Y.

Ultraparacompactness

The following notion allows us to give us a positive answer to Terada's question for a certain class of spaces.

Definition

A space X is *ultraparacompact* if every open cover of X has a refinement consisting of pairwise disjoint clopen sets.

A metric space X is ultraparacompact if and only if dim X = 0.

Theorem

If X^{ω} is ultraparacompact and non-Lindelöf then X^{ω} is *h*-homogeneous.