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Preliminaries
All spaces are assumed to be separable and metrizable.

◮ A space X is homogeneous if for every (x , y) ∈ X × X there
exists a homeomorphism h : X −→ X such that h(x) = y .

◮ A zero-dimensional space X is strongly homogeneous if all its
non-empty clopen subspaces are homeomorphic.

◮ A space X is rigid if |X | ≥ 2 and the only homeomorphism
h : X −→ X is the identity.

◮ A space is σ-homogeneous if it is the union of countably many
of its homogeneous subspaces.

◮ A space is Borel if it can be embedded into some Polish space
as a Borel set. Similarly define analytic and coanalytic.

◮ A space X is c-crowded if it is non-empty and every
non-empty open subset of X has size c.

◮ A space X is nowhere P if it is non-empty and no non-empty
open subset of X has P.



Lemma (Terada, 1993)

If X is zero-dimensional and has a π-base consisting of clopen sets
that are homeomorphic to X then X is strongly homogeneous.

Lemma (folklore)

If X is strongly homogeneous then X is homogeneous.
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A few words about the axioms
AD denotes the Axiom of Determinacy: every game on ω is
determined (either Player I or Player II has a winning strategy).
DC denotes the principle of Dependent Choices: if R is a binary
relation on a non-empty set A such that ∀a ∃b (b R a), then there
exists (a0, a1, . . .) ∈ Aω such that an+1 R an for each n ∈ ω.

1. The set-theoretic universe is extremely regular under AD,

2. AD is incompatible with AC,

3. AC → DC → CC,

4. ZF + DC + AD is consistent (assuming large cardinals),

5. ZF + DC is sufficient to carry out recursions of length ω,

6. DC is equivalent to Baire’s Category Theorem for completely
metrizable spaces (Blair, 1977),

7. ZF + DC proves Borel Determinacy (Martin, 1975).

Unless we specify otherwise, we will be working in ZF + DC.



An established pattern in set theory
Many properties P behave as follows:

◮ Every Borel set of reals satisfies P,

◮ Under AD, all sets of reals satisfy P,

◮ Under AC, there exist counterexamples to P,

◮ Under V = L, there exist definable (usually coanalytic)
counterexamples to P.

The classical regularity properties (P = “perfect set property”,
P = “Lebesgue measurable” and P = “Baire property”) are the
most famous instances of this pattern. More entertaining examples
include P = “not a Hamel basis” and P = “not an ultrafilter”.
A recent example is P = “Effros group”. This talk is about

P = “σ-homogeneity”,

in the context of zero-dimensional spaces.



Wadge theory: basic definitions
Let Z be a set and Γ ⊆ P(Z ). Define Γ̌ = {Z \ A : A ∈ Γ}.
We say that Γ is selfdual if Γ = Γ̌. Also define ∆(Γ) = Γ ∩ Γ̌.

Definition (Wadge)

Let Z be a space. Given A,B ⊆ Z , we will write A ≤ B if there
exists a continuous function f : Z −→ Z such that A = f −1[B].
In this case, we will say that A is Wadge-reducible to B , and that
f witnesses the reduction.

Definition (Wadge)

Let Z be a space. Given A ⊆ Z , define

A↓ = {B ⊆ Z : B ≤ A}.

We will say that Γ ⊆ P(Z ) is a Wadge class if there exists A ⊆ Z
such that Γ = A↓ . The set A is selfdual if A↓ is selfdual.



First examples of Wadge classes
From now on, we will assume that Z is an uncountable
zero-dimensional Polish space.

◮ {∅} and {Z}. (These are the minimal ones.)

◮ ∆0
1(Z ) is their immediate successor.

(Generated by an arbitrary proper clopen set.)

Let 1 ≤ ξ < ω1. Recall that Σ0
ξ(Z ) has a 2ω-universal set U.

This means that U ∈ Σ0
ξ(2

ω × Z ) and

Σ0
ξ(Z ) = {Ux : x ∈ 2ω}

where Ux = {y ∈ Z : (x , y) ∈ U} denotes the vertical section.

◮ Σ0
ξ(Z ) and Π0

ξ(Z ). (Generated by a universal set.)

◮ Σ1
n(Z ) and Π1

n(Z ) for n ≥ 1. (As above.)



The Wadge hierachy: a first glimpse
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The difference hierarchy
Given 1 ≤ η < ω1, define Dη as follows:

◮ D1(A0) = A0,

◮ D2(A0,A1) = A1 \ A0,

◮ D3(A0,A1,A2) = A0 ∪ (A2 \ A1),
...

◮ Dω(A0,A1, . . .) = (A1 \ A0) ∪ (A3 \ A2) ∪ · · · ,
◮ Dω+1(A0,A1, . . . ,Aω) = A0∪ (A2 \A1)∪ · · ·∪ (Aω \

!
n<ω An),

...

The following are non-selfdual Wadge classes for 1 ≤ η, ξ < ω1:

Dη(Σ
0
ξ(Z )) = {Dη(Aµ : µ < η) : the Aµ ∈ Σ0

ξ(Z ) are increasing}.

Theorem (Hausdorff, Kuratowski)

∆0
ξ+1(Z ) =

!
1≤η<ω1

Dη(Σ0
ξ(Z )).



Why do we need determinacy?

Lemma (Wadge)

Assume AD. Let A,B ⊆ Z. Then either A ≤ B or B ≤ Z \ A.
Here are two simple applications:

◮ In the poset W(Z ) of all Wadge classes in Z ordered by ⊆,
antichains have size at most 2,

◮ If Γ is a Wadge class and A ∈ Γ \ Γ̌ then A↓ = Γ.

Theorem (Martin, Monk)

Assume AD. The poset W(Z ) is well-founded.

This yields the definition of Wadge rank.

◮ By the two results above, W(Z ) becomes a well-order if we
identify every Wadge class Γ with its dual class Γ̌.

◮ The length of this well-order is
Θ = sup{α ∈ On : there exists a surjection ωω −→ α}.



The analysis of selfdual Wadge classes

Definition
Given ξ < ω1, define PUξ(Γ) as the collection of all sets of the form

"

n∈ω
(An ∩ Vn),

where An ∈ Γ for n ∈ ω and {Vn : n ∈ ω} ⊆ ∆0
1+ξ(Z ) is a partition

of Z . A set in this form is called a partitioned union of sets in Γ.

The following fundamental result reduces the study of selfdual
Wadge classes to the study of non-selfdual Wadge classes:

Theorem
Assume AD. Let ∆ be a selfdual Wadge class in Z . Then there
exist non-selfdual Wadge classes Γn in Z for n ∈ ω such that

∆ = PU0

#
"

n∈ω
(Γn ∪ Γ̌n)

$
.





The “pair of socks” problem
Observe that non-selfdual Wadge classes seem to suffer from the
“pair of socks” problem. In other (less ridiculous) words, given a
non-selfdual Wadge class Γ, there is no obvious way to distinguish
Γ from Γ̌.

The following result gives an elegant solution to this problem.
Recall that Γ ⊆ P(Z ) has the separation property if whenever
A,B ∈ Γ are disjoint then there exists C ∈ ∆(Γ) such that
A ⊆ C ⊆ Z \ B .

Theorem (Steel, 1981; Van Wesep, 1978)

Assume AD. Let Γ be a non-selfdual Wadge class. Then exactly
one of Γ and Γ̌ has the separation property.

Quite amusingly, we will not care at all about what the separation
property says exactly: we will only need a way to choose without
using AC. (Recall that our ambient theory is ZF + DC.)



A(nother) theorem of Steel
The following result allows us to make the considerable jump from
“having the same complexity” to “being homeomorphic”.

It is at the heart of all topological applications of Wadge theory.

We will say that Γ is reasonably closed if
for every .

Theorem (Steel, 1980)

Assume AD. Let Γ be a reasonably closed Wadge class in 2ω, and
let X ,Y ⊆ 2ω be such that the following conditions hold:

◮ X and Y are either both comeager or both meager,

◮ For every basic clopen subset U of 2ω, both X ∩U and Y ∩U
have complexity exactly Γ (i.e. they belong to Γ \ Γ̌).

Then there exists a homeomorphism h : 2ω −→ 2ω with h[X ] = Y .

Exercise: show that Qω ≈ {x ∈ ωω : limn→∞ xn = ∞}.



Homogeneous spaces, the case above ∆
In his remarkable Ph.D. thesis, van Engelen classified all the
zero-dimensional homogeneous Borel spaces. In particular, he
discovered that ∆ = ∆(Dω(Σ0

2)) is the crucial dividing line.

It turns out that Steel’s theorem can be converted (after some
significant Wadge-theoretic struggle) into the following uniqueness
theorem. Its Borel version is due to van Engelen.

Theorem (Carroy, Medini, Müller, 2020)

Assume AD. Let X ,Y be zero-dimensional homogeneous spaces of
complexity higher than ∆ such that the following conditions hold:

◮ X and Y are either both Baire or both meager,

◮ X and Y have exactly the same complexity.

Then X is homeomorphic to Y .

For the purposes of this talk, we will not need the above theorem.
(We will need to use Steel’s theorem.) But hey, it seemed fitting!



Homogeneous spaces, the case below ∆
Let us begin by stating some classical characterizations, where X is
assumed to be zero-dimensional:

◮ X ≈ Q iff X is countable and nowhere singleton,

◮ X ≈ 2ω iff X is compact and nowhere countable,

◮ X ≈ Q× 2ω iff X is σ-compact, nowhere compact and
nowhere countable,

◮ X ≈ ωω iff X is complete and nowhere compact,

◮ X ≈ Q× ωω iff X is strongly σ-complete, nowhere complete
and nowhere σ-compact.

Van Douwen and van Mill made one more step in this direction by
defining the spaces T and S. Finally, van Engelen completed this
line of research by describing the remaining ω steps.

Modulo trivialities, these are precisely the zero-dimensional
homogeneous spaces of complexity below ∆.



He defined properties P(i)
n and ordered them in type ω as follows:

P1
−2 ≺ P1

−1 ≺ P2
−2 ≺ P2

−1 ≺ · · ·
· · · ≺ P4k ≺ P4k+1 ≺ P1

4k+2 ≺ P1
4k+3 ≺ P2

4k+2 ≺ P2
4k+3 ≺ · · · .

For every property P(i)
n , van Engelen defined a class of spaces X (i)

n

with the following properties:

Theorem (van Engelen, 1985)

For a zero-dimensional space X , the following conditions are
equivalent:

◮ X ∈ X (i)
n ,

◮ X is P(i)
n and nowhere P(j)

m whenever P(j)
m ≺ P(i)

n .

Theorem (van Engelen, 1985)

Up to homeomorphism, each X (i)
n contains exactly one element,

which is strongly homogeneous.



1 ∈ X 1
−2 2ω ∈ X 2

−2

Q ∈ X 1
−1 Q× 2ω ∈ X 2

−1

ωω ∈ X0

Q× ωω ∈ X1

T ∈ X 1
2 S ∈ X 2

2

...
...



The positive result

Theorem (Ostrovsky, 2011)

Every zero-dimensional Borel space is σ-homogeneous.

Ostrovsky used the techniques of van Engelen’s thesis.
The foundation of these techniques lies in Louveau’s (somewhat
impenetrable) 1983 article that classifies the Borel Wadge classes.
Using instead material from Louveau’s unpublished book, it is
possible to extend these techniques beyond the Borel realm.

Theorem
Assume AD. Then every zero-dimensional space is σ-homogeneous.

The idea is to associate to every X ⊆ 2ω a strongly homogeneous
clopen subspace HC(X ) of X . If X ∕= ∅, we will have HC(X ) ∕= ∅.

Corollary (van Engelen, Miller, Steel, 1987)

Assume AD. Then there are no zero-dimensional rigid spaces.



Proof of the theorem, assuming that HC has
already been defined
Given X ⊆ 2ω, define Xα for every ordinal α as follows:

◮ X0 = X ,

◮ Xα+1 = Xα \ HC(Xα),

◮ Xγ =
%

α<γ Xα if γ is a limit ordinal.

Since X0 ⊇ X1 ⊇ · · · are closed in X , the sequence must stabilize
at some countable ordinal δ. Notice that Xδ = ∅, otherwise we
would have Xδ+1 ⊊ Xδ by the definition of HC.
It follows that

X =
"

α<δ

HC(Xα),

which shows that X is the union of countably many pairwise
disjoint, strongly homogeneous, closed subspaces.

!



Construction of HC
The idea is simply to take a non-empty clopen subspace U of X of
“minimal complexity”. Start by fixing a well-order of ∆0

1(2
ω).

Case 1: X = ∅.
In this case, simply set HC(X ) = ∅.

Case 2: X has a non-empty open subspace of complexity below ∆.

Pick the minimal property P of the form P(i)
n such that, for some

clopen subset C of 2ω, the following conditions hold:

◮ C ∩ X ∕= ∅,

◮ C ∩ X has P.

Then set HC(X ) = C ∩ X for the minimal C as above.

It is clear that HC(X ) is clopen in X and non-empty.

Using van Engelen’s theorems, one sees that HC(X ) ∈ X (i)
n , hence

HC(X ) is strongly homogeneous.



Case 3: X is nowhere ∆.
By the Martin-Monk theorem, we can pick the minimal Wadge
class Γ in 2ω such that, for some clopen subset C of 2ω, the
following conditions hold:

◮ C ∩ X ∕= ∅,

◮ C ∩ X ∈ Γ.

If Γ and Γ̌ are both acceptable choices, pick the one that has the
separation property. Then set HC(X ) = C ∩ X for the minimal C
that satisfies the above conditions, plus the following:

◮ C ∩ X is either meager or Baire.

It is clear that HC(X ) is clopen in X and non-empty.
Using Steel’s Theorem and Terada’s Lemma, it is not hard to see
that HC(X ) is strongly homogeneous. (The technically demanding
part is to show that Γ is reasonably closed.)

!



A counterexample in ZFC
The naive definition of “hereditarily rigid” would be silly.
But a small tweak yields an interesting notion:

Definition
A space X is c-hereditarily rigid if X is c-crowded and every
c-crowded subspace of X is rigid.

Theorem
There exists a ZFC example of a zero-dimensional c-hereditarily
rigid space.

Corollary

There exists a ZFC example of a zero-dimensional space that is not
σ-homogeneous.

To prove the corollary, use the fact that cof(c) > ℵ0 plus the fact
that every homogeneous space of size c is c-crowded.



Proof of the theorem
It will be enough to construct a subspace X of 2ω such that
|X | = c and every c-crowded subspace of X is rigid.

Begin by enumerating as {hα : α ∈ c} all homeomorphisms
between Gδ subsets of 2ω, making sure that h0 : 2

ω −→ 2ω

is the identity.

Pick xα for α ∈ c such that the following conditions hold:

◮ xα ∕= h−1
β (xγ) whenever β, γ < α,

◮ xα ∕= hβ(xγ) whenever β, γ < α.

Set X = {xα : α ∈ c}, and notice that |X | = c by the choice of h0.

Now assume that S ⊆ X is c-crowded and h : S −→ S is a
homeomorphism. By Lavrentieff’s Lemma, it is possible to fix
δ ∈ c such that h ⊆ hδ.

It will be enough to show that h(xα) = xα for every α > δ.
In fact, since S is c-crowded, it will follow that h is the identity.



So fix α > δ. Let β be such that h(xα) = xβ . We will prove that
β = α by showing that the other cases are impossible.
Case 1: β > α.
The fact that hδ(xα) = xβ contradicts the construction.
Case 2: β < α.
The fact that h−1

δ (xβ) = xα contradicts the construction.

!
The proof actually shows that X has the following property:

Definition
A space X is strongly c-hereditarily rigid if X is c-crowded and
whenever S and T are c-crowded subspaces of X and h : S −→ T
is a homeomorphism, then S = T and h is the identity.

Question
Is there a ZFC example of a zero-dimensional c-hereditarily rigid
space that is not strongly c-hereditarily rigid?



Obviously, if you’re a topologist, studying computability theory is a
complete waste of time...



Definable counterexamples under V = L
In his 1989 paper, Miller sketched a method for constructing
coanalytic versions of certain pathological sets of reals (in the spirit
of Gödel’s coanalytic set without the perfect set property).
In 2014, Vidnyánszky gave a “black box” version of Miller’s
method. Using this, it’s not hard to prove the following:

Lemma
Assume V = L. Then there exists X ⊆ ωω such that:

◮ X is coanalytic,

◮ X is dense in ωω and c-crowded,

◮ Every element of X is self-constructible,

◮ If x , y ∈ X and x ∕= y then ωx
1 ∕= ωy

1 .

Given x ∈ ωω, we denote by ωx
1 the smallest ordinal not

computable from x . We say that x is self-constructible if x ∈ Lωx
1
.



Lemma
Assume V = L. Let X ⊆ ωω be as in the previous lemma and set
Y = ωω \ X. Then:

◮ X and Y are c-crowded,

◮ X is strongly c-hereditarily rigid,

◮ X is not σ-homogeneous,

◮ Y is rigid but not c-hereditarily rigid,

◮ Y is not σ-homogeneous with Borel witnesses.

Theorem
Assume V = L. Then there exists a zero-dimensional coanalytic
space that is not σ-homogeneous.

Theorem (van Engelen, Miller, Steel, 1987)

Assume V = L. Then there exist both analytic and coanalytic
examples of zero-dimensional rigid spaces.



Proof of the lemma: first a useful claim
We claim that the following holds:

⊛ If S ,T ⊆ ωω and h : S −→ T is a homeomorphism without
fixed points, then {x ∈ S ∩ X : h(x) ∈ X} is countable.

To prove the claim, assume that h : S −→ T is a homeomorphism
such that {x ∈ S ∩ X : h(x) ∈ X} is uncountable. By Lavrentieff’s
Lemma, we can extend h to a homeomorphism &h between Gδ sets.
Pick a countable ordinal δ such that &h is coded in Lδ.

By the injectivity condition, we can fix x ∈ S ∩ X such that
h(x) ∈ X and ωx

1 ≥ δ. Observe that x ∈ Lωx
1
by

self-constructibility. Set y = h(x), and observe that y ∈ Lωx
1
.

Since ωx
1 /∈ Lωx

1
, it follows that ωx

1 is not computable from y .
So we must have ωy

1 ≤ ωx
1 by minimality.

A similar argument, applied to h−1, shows that ωx
1 ≤ ωy

1 .
Therefore ωx

1 = ωy
1 , hence x = y by the injectivity condition.

!



Proof that X is strongly c-hereditarily rigid
Let h : S −→ T a homeomorphism between c-crowded subspaces
of X . If h(x) ∕= x for some x ∈ S , then the Hausdorff property plus
c-crowdedness would contradict ⊛.

!
Proof that Y is c-crowded
Observe that X does not contain copies of 2ω. Since X has the
property of Baire, it follows that X is meager. Therefore Y is
comeager, which implies c-crowded.

!
Proof that Y is rigid
Let h : Y −→ Y be a homeomorphism. Let &h : G −→ G be a
homeomorphism that extends h, where G is Gδ in ωω. Notice that
ωω \ G is countable, hence G ∩ X is c-crowded (and dense in ωω).
Therefore &h ↾ (G ∩ X ) is the identity, and so is h.

!



Proof that Y is not σ-homogeneous with
Borel witnesses
Assume that Y =

!
n∈ω Yn, where each Yn is homogeneous and

Borel in Y . Fix a countable clopen base B for ωω. Whenever there
exists U ∈ B and a homeomorphism h : G −→ H between Gδ

subsets of ωω with no fixed point such that G ∩ Yn = U ∩ Yn and
h[G ∩ Yn] = H ∩ Yn, declare (U, n) ∈ I , and fix hi : Gi −→ Hi with
these properties. Then define the following set, where i = (Ui , ni ):

X ′ =
'

i∈I
{x ∈ ωω : x /∈ Gi or (x ∈ Gi and hi (x) ∈ Y \ Yni )},

and observe that X ′ is analytic because the witnesses are Borel.

If x ∈ X ′ ∩ Yn then Yn = {x}, so X ′ \ X is countable.

If i = (U, n) ∈ I then ⊛ shows that hi (x) ∈ Y \ Yn for all but
countably many x ∈ Gi ∩ X . So X \ X ′ is also countable.

In conclusion, X∆X ′ is countable, which is a contradiction.

!



Open (and closed) questions
Answering the following question would give us a complete picture
of σ-homogeneity in the zero-dimensional realm:

Question
Is every analytic zero-dimensional space σ-homogeneous?

There seems to be a parallel between rigidity and the lack of
σ-homogeneity. (For example, under AD, they are vacuously
equivalent.) So the following question seemed natural:

Question (Not anymore!)

In ZFC, is there a zero-dimensional σ-homogeneous rigid space?

The following result gives a resounding “yes”:

Theorem (van Engelen, van Mill, 1983)

In ZFC, there exist homogeneous subspaces X1 and X2 of R such
that X = X1 ∪ X2 is rigid. Furthermore, X1 ∩ X2 = ∅, X1 ≈ X2

and X is a Baire space.



More than mere σ-homogeneity
Our positive result gives a very strong form of σ-homogeneity.
Can the stronger versions be distinguished from the standard one?

Question (Not anymore!)

In ZFC, is there a zero-dimensional σ-homogeneous space that is
not σ-homogeneous with closed witnesses?

By a Baire category argument, the example of van Engelen and
van Mill shows that the answer to the above question is also “yes”.

But the following “covering vs. partition” question is still open:

Question
In ZFC, is there a zero-dimensional σ-homogeneous space that is
not σ-homogeneous with pairwise disjoint witnesses?



More on hereditary rigidity

Theorem (Medini, van Mill, Zdomskyy, 2016)

There exists a ZFC example of a subspace X of 2ω with the
following properties, where Y = 2ω \ X:

◮ X is Bernstein,

◮ X is homogeneous,

◮ Y is rigid.

It turns out that Y is not c-hereditarily rigid. But:

Question
Under V = L, is there a coanalytic zero-dimensional rigid space
that is not c-hereditarily rigid?

Question
In ZFC, is there a zero-dimensional ℵ1-hereditarily rigid space?
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