Zero-dimensional σ -homogeneous spaces

Andrea Medini (joint work with Zoltán Vidnyánszky)

Institut für Diskrete Mathematik und Geometrie Technische Universität Wien

July 18, 2022

Der Wissenschaftsfonds.

Preliminaries

All spaces are assumed to be separable and metrizable. Given a space X, denote by $\mathcal{H}(X)$ the group of homeomorphisms of X.

- ▶ A space X is *homogeneous* if for every $(x, y) \in X \times X$ there exists $h \in \mathcal{H}(X)$ such that h(x) = y.
- ► A zero-dimensional space *X* is *strongly homogeneous* if all its non-empty clopen subspaces are homeomorphic.
- ▶ A space X is *rigid* if $|X| \ge 2$ and $\mathcal{H}(X) = \{id\}$.
- A space is σ -homogeneous if it is the union of countably many of its homogeneous subspaces.
- ► A space is *Borel* if it can be embedded into some Polish space as a Borel set. Similarly define *analytic* and *coanalytic*.
- ► A space *X* is *c-crowded* if it is non-empty and every non-empty open subset of *X* has size *c*.

Exercise: every zero-dimensional strongly homogeneous space is homogeneous.

An established pattern in set theory

Many properties \mathcal{P} behave as follows:

- Every Borel set of reals satisfies P,
- Under AD, all sets of reals satisfy P,
- Under AC, there exist counterexamples to P,
- ▶ Under V = L, there exist definable (usually coanalytic) counterexamples to \mathcal{P} .

The classical regularity properties ($\mathcal{P}=$ "perfect set property", $\mathcal{P}=$ "Lebesgue measurable" and $\mathcal{P}=$ "Baire property") are the most famous instances of this pattern. More entertaining examples include $\mathcal{P}=$ "not a Hamel basis" and $\mathcal{P}=$ "not an ultrafilter". A recent example is $\mathcal{P}=$ "Effros group". This talk is about

$$\mathcal{P} =$$
 " σ -homogeneity",

in the context of zero-dimensional spaces.

A theorem of Steel

Recall that a Wadge class in 2^{ω} is a collection of the form

$$\Gamma = \{f^{-1}[A]|f: 2^{\omega} \longrightarrow 2^{\omega} \text{ is continuous}\}$$

for some $A \subseteq 2^{\omega}$. Given $\Gamma \subseteq \mathcal{P}(2^{\omega})$, set $\check{\Gamma} = \{2^{\omega} \setminus A : A \in \Gamma\}$. We will say that Γ is reasonably closed if for every

Theorem (Steel, 1980)

Assume AD. Let Γ be a reasonably closed Wadge class in 2^{ω} , and let $X, Y \subseteq 2^{\omega}$ be such that the following conditions hold:

- X and Y are either both comeager or both meager,
- For every basic clopen subset U of 2^{ω} , both $X \cap U$ and $Y \cap U$ have complexity exactly Γ (i.e. they belong to $\Gamma \setminus \check{\Gamma}$).

Then there exists $h \in \mathcal{H}(2^{\omega})$ such that h[X] = Y.

Exercise: show that $\mathbb{Q}^{\omega} \approx \{x \in \omega^{\omega} : \lim_{n \to \infty} x_n = \infty\}.$

The positive results

Theorem (Ostrovsky, 2011)

Every zero-dimensional Borel space is σ -homogeneous.

Ostrovsky used the techniques of van Engelen's remarkable Ph.D. thesis, where he employed Louveau's 1983 article to classify all zero-dimensional homogeneous Borel spaces. Using instead material from Louveau's unpublished book, it is possible to extend these techniques beyond the Borel realm.

Theorem

Assume AD. Then every zero-dimensional space is σ -homogeneous.

Lemma

Assume AD. Then it is possible to associate to every non-empty $X \subseteq 2^{\omega}$ a non-empty homogeneous clopen subspace HC(X) of X.

Corollary (van Engelen, Miller and Steel, 1987)

Assume AD. Then there are no zero-dimensional rigid spaces.

Proof of the theorem, using the lemma

Given $X \subseteq 2^{\omega}$, define X_{α} for every ordinal α as follows:

- $ightharpoonup X_0 = X$,
- $ightharpoonup X_{\alpha+1} = X_{\alpha} \setminus \mathsf{HC}(X_{\alpha}),$
- ► $X_{\gamma} = \bigcap_{\alpha < \gamma} X_{\alpha}$ if γ is a limit ordinal.

Since $X_0 \supseteq X_1 \supseteq \cdots$ are closed in X, the sequence must stabilize at some countable ordinal δ , and clearly $X_\delta = \emptyset$.

"Proof" of the lemma

Take a non-empty clopen subspace U of X of "minimal complexity" (in the sense of Wadge theory). This is possible because, under AD, the Wadge hierarchy is well-founded (by the Martin-Monk theorem). It can be shown that the Wadge class generated by U in 2^{ω} will be reasonably closed. Using Steel's theorem, one sees that U is (strongly) homogeneous.

A counterexample in ZFC

The naive definition of "hereditarily rigid" would be silly. But:

Definition

A space X is \mathfrak{c} -hereditarily rigid if X is \mathfrak{c} -crowded and every \mathfrak{c} -crowded subspace of X is rigid.

Theorem

There exists a ZFC example of a zero-dimensional c-hereditarily rigid space.

Corollary

There exists a ZFC example of a zero-dimensional space that is not σ -homogeneous.

Question

Is there a ZFC example of a zero-dimensional space that is rigid and σ -homogeneous? (Yes, by van Engelen and van Mill, 1983.)

Obviously, if you're a topologist, studying computability theory is a complete waste of time...

Definable counterexamples under V = L

In his 1989 paper, Miller sketched a method for constructing coanalytic versions of certain pathological sets of reals (in the spirit of Gödel's coanalytic set without the perfect set property). In 2014, Vidnyánszky gave a "black box" version of Miller's method. Using this, it's not hard to prove the following:

Lemma

Assume V = L. Then there exists $X \subseteq \omega^{\omega}$ such that:

- X is coanalytic,
- \triangleright X is dense in ω^{ω} and \mathfrak{c} -crowded,
- Every element of X is self-constructible,
- If $x, y \in X$ and $x \neq y$ then $\omega_1^x \neq \omega_1^y$.

Given $x \in \omega^{\omega}$, we denote by ω_1^x the smallest ordinal not computable from x. We say that x is *self-constructible* if $x \in L_{\omega_1^x}$.

Lemma

Assume V = L. Let $X \subseteq \omega^{\omega}$ be as in the previous lemma and set $Y = \omega^{\omega} \setminus X$. Then:

- \triangleright X and Y are \mathfrak{c} -crowded,
- ► X is c-hereditarily rigid,
- \triangleright X is not σ -homogeneous,
- Y is rigid but not c-hereditarily rigid,
- Y is not σ-homogeneous with Borel witnesses.

Theorem

Assume V = L. Then there exists a zero-dimensional coanalytic space that is not σ -homogeneous.

Theorem (van Engelen, Miller, Steel, 1987)

Assume V = L. Then there there exist both analytic and coanalytic examples of zero-dimensional rigid spaces.

Proof that X is c-hereditarily rigid

Pick a c-crowded subspace S of X, and let $h: S \longrightarrow S$ be a homeomorphism. By Lavrentieff's Lemma, we can fix a homeomorphism $\widetilde{h}: G \longrightarrow G$ that extends h, where $G \in \Pi_2^0(\omega^\omega)$. Pick a countable ordinal δ such that \widetilde{h} is coded in L_δ .

Pick $x \in S$ such that $\omega_1^x \geq \delta$. (Notice that, by the injectivity condition, all but countably many elements of S have this property.) Observe that $x \in L_{\omega_1^x}$ by self-constructibility. Set $y = h(x) = \widetilde{h}(x)$, and observe that $y \in L_{\omega_1^x}$. Since $\omega_1^x \notin L_{\omega_1^x}$, it follows that ω_1^x is not computable from y. In conclusion, we see that $\omega_1^y \leq \omega_1^x$.

A similar argument, applied to \widetilde{h}^{-1} , shows that $\omega_1^x \leq \omega_1^y$. Therefore $\omega_1^x = \omega_1^y$, hence x = y by the injectivity condition. Since S is c-crowded, this shows that h is the identity on S.

Two more open questions

Question

Is every analytic zero-dimensional space σ -homogeneous?

Theorem (Medini, van Mill, Zdomskyy, 2016)

There exists a ZFC example of a subspace X of 2^{ω} with the following properties, where $Y = 2^{\omega} \setminus X$:

- X is Bernstein,
- X is rigid,
- Y is homogeneous.

It turns out that such an X cannot be \mathfrak{c} -hereditarily rigid. But:

Question

Under V = L, is there a coanalytic zero-dimensional rigid space that is not \mathfrak{c} -hereditarily rigid?

Kenneth Kunen (1943-2020)



"Thanks to my advisor Ken Kunen for all the wonderful lectures, several useful contributions to my research, and his overall no-nonsense approach."