Many non-homeomorphic ultrafilters Overview of the results

The topology of ultrafilters as subspaces of 2^{ω}

Andrea Medini¹ David Milovich²

¹Department of Mathematics University of Wisconsin - Madison

²Department of Engineering, Mathematics, and Physics Texas A&M International University

September 10, 2011

All ultrafilters are non-principal and on ω . By identifying a subset of ω with an element of 2^{ω} in the obvious way, we can view any ultrafilter \mathcal{U} as a subspace of 2^{ω} .

Proposition (folklore)

There are 2^c non-homeomorphic ultrafilters.

Proof.

Using Lavrentiev's lemma, one sees that the homeomorphism classes have size $\mathfrak{c}.$

The above proof is a cardinality argument: it is not 'honest' in the sense of Van Douwen. ⓒ It would be desirable to get 'quotable' topological properties that distinguish ultrafilters up to homeomorphism.

Many non-homeomorphic ultrafilters Overview of the results

The distinguishing properties

From now on, all spaces are separable and metrizable. Recall the following definitions.

Definition

- A space X is *completely Baire* if every closed subspace of X is a Baire space.
- A space X is countable dense homogeneous if for every pair (D, E) of countable dense subsets of X there exists a homeomorphism h : X → X such that h[D] = E.
- Given a space X, a subset A of X has the *perfect set* property if A is countable or A contains a homeomorphic copy of 2^ω.

Many non-homeomorphic ultrafilters Overview of the results

Main results

Theorem

Assume MA(countable). Let P be one of the following topological properties.

- *P* = being completely Baire.
- *P* = countable dense homogeneity.
- *P* = every closed subset has the perfect set property.

Then there exist ultrafilters $\mathcal{U}, \mathcal{V} \subseteq 2^{\omega}$ such that \mathcal{U} has property *P* and \mathcal{V} does not have property *P*. S

Question

Can the assumption of MA(countable) be dropped?

The negative results The positive results

Kunen's closed embedding trick

Theorem (Kunen, private communication)

Let C be a zero-dimensional space. Then there exists an ultrafilter $\mathcal{U} \subseteq 2^{\omega}$ with a closed subspace homeomorphic to C.

By choosing $C = \mathbb{Q}$ or C = a Bernstein set one obtains the following corollaries.

Corollary

There exists an ultrafilter $\mathcal{V} \subseteq 2^{\omega}$ that is not completely Baire.

Corollary

There exists an ultrafilter $\mathcal{V} \subseteq 2^{\omega}$ with a closed subset that does not have the perfect set property.

The negative results The positive results

Proof of Kunen's trick

Lemma (folklore)

There exists a perfect set $P \subseteq 2^{\omega}$ such that P is an independent family: that is, every word

 $x_1 \cap \cdots \cap x_m \cap \omega \setminus y_1 \cap \cdots \cap \omega \setminus y_n$ is infinite,

where $x_1, \ldots, x_m, y_1, \ldots, y_n \in P$ are distinct.

Let *C* be the space you want to embed in \mathcal{V} as a closed subset. Since $P \cong 2^{\omega}$, assume $C \subseteq P$. Now simply define

$$\mathcal{G} = \mathcal{C} \cup \{ \omega \setminus \mathbf{X} : \mathbf{X} \in \mathcal{P} \setminus \mathcal{C} \}.$$

Notice that \mathcal{G} has the finite intersection property because P is independent. Any ultrafilter $\mathcal{V} \supseteq \mathcal{G}$ will intersect P exactly on C.

The negative results The positive results

An ultrafilter that is not countable dense homogeneous

We will use Sierpiński's technique for killing homeomorphisms.

Lemma

Assume MA(countable). Fix D_1 and D_2 disjoint countable dense subsets of 2^{ω} such that $\mathcal{D} = D_1 \cup D_2$ is an independent family. Then there exists $\mathcal{A} \supseteq \mathcal{D}$ satisfying the following conditions.

- *A* is an independent family.
- If G ⊇ D is a G_δ subset of 2^ω and f : G → G is a homeomorphism such that f[D₁] = D₂, then there exists x ∈ G such that {x, ω \ f(x)} ⊆ A.

In the end, let \mathcal{V} be any ultrafilter extending \mathcal{A} .

The negative results The positive results

Enumerate as $\{f_{\eta} : \eta \in \mathfrak{c}\}$ all such homeomorphisms. We will construct an increasing sequence of independent families \mathcal{A}_{ξ} for $\xi \in \mathfrak{c}$. Set $\mathcal{A}_0 = \mathcal{D}$ and take unions at limit stages.

We will take care of f_{η} at stage $\xi = \eta + 1$, using $cov(\mathcal{M}) = \mathfrak{c}$. List as $\{w_{\alpha} : \alpha \in \kappa\}$ all the words in \mathcal{A}_{η} .

It is easy to check that, for any fixed $n \in \omega$, $\alpha \in \kappa$ and $\varepsilon_1, \varepsilon_2 \in 2$,

$$W_{\alpha,n,\varepsilon_1,\varepsilon_2} = \{x \in G_\eta : |w_\alpha \cap x^{\varepsilon_1} \cap f_\eta(x)^{\varepsilon_2}| \ge n\}$$

is open dense in G_{η} , so comeager in 2^{ω} . So pick *x* in the intersection of every $W_{\alpha,n,\varepsilon_1,\varepsilon_2}$.

The negative results The positive results

A countable dense homogeneous ultrafilter

Any ultrafilter \mathcal{U} is homeomorphic to its dual maximal ideal \mathcal{J} . So, for notational convenience, we will construct an increasing sequence of ideals \mathcal{I}_{ξ} , for $\xi \in \mathfrak{c}$. In the end, let \mathcal{J} be any maximal ideal extending $\bigcup_{\xi \in \mathfrak{c}} \mathcal{I}_{\xi}$.

The idea is to use the following lemma.

Lemma

Let $f : 2^{\omega} \longrightarrow 2^{\omega}$ be a homeomorphism. Fix a maximal ideal $\mathcal{J} \subseteq 2^{\omega}$ and a countable dense subset D of \mathcal{J} . Then f restricts to a homeomorphism of \mathcal{J} iff $cl(\{d + f(d) : d \in D\}) \subseteq \mathcal{J}$.

Enumerate as $\{(D_{\eta}, E_{\eta}) : \eta \in \mathfrak{c}\}$ all pairs of countable dense subsets of 2^{ω} . At stage $\xi = \eta + 1$, make sure that either

- $\omega \setminus x \in \mathcal{I}_{\xi}$ for some $x \in D_{\eta} \cup E_{\eta}$, or
- there exists an homeomorphism $f : 2^{\omega} \longrightarrow 2^{\omega}$ and $x \in \mathcal{I}_{\xi}$ such that $f[D_{\eta}] = E_{\eta}$ and $\{d + f(d) : d \in D_{\eta}\} \subseteq x \downarrow$.

Preliminaries Main results Bonus materials The negative results The positive results

To construct $f : 2^{\omega} \longrightarrow 2^{\omega}$ and x, use MA(countable) on the poset \mathbb{P} consisting of all triples $p = (s, g, \pi) = (s_p, g_p, \pi_p)$ such that, for some $n = n_p \in \omega$, the following conditions hold.

- $s: n \longrightarrow 2$.
- *g* is a bijection between a finite subset of *D* and a finite subset of *E*.
- π is a permutation of ^{*n*}2.

• $(t + \pi(t))(i) = 1$ implies s(i) = 1 for every $t \in {}^{n}2$ and $i \in n$.

• $\pi(d \upharpoonright n) = g(d) \upharpoonright n$ for every $d \in \text{dom}(g)$.

Order \mathbb{P} by declaring $q \leq p$ if the following conditions hold.

•
$$s_q \supseteq s_p$$
.

•
$$g_q \supseteq g_p$$
.

•
$$\pi_q(t) \upharpoonright n_p = \pi_p(t \upharpoonright n_p)$$
 for all $t \in {}^{n_q}$ 2.

The negative results The positive results

A completely Baire ultrafilter

We will construct an increasing sequence of filters \mathcal{F}_{ξ} , for $\xi \in \mathfrak{c}$. In the end, let \mathcal{U} be any ultrafilter extending $\bigcup_{\xi \in \mathfrak{c}} \mathcal{F}_{\xi}$. The idea is to use the following lemma.

Lemma (Hurewicz)

A space is completely Baire iff it does not contain any closed copies of \mathbb{Q} .

Enumerate as $\{Q_{\eta} : \eta \in \mathfrak{c}\}$ all copies of \mathbb{Q} in 2^{ω} . At stage $\xi = \eta + 1$, make sure that either

- $\omega \setminus x \in \mathcal{F}_{\xi}$ for some $x \in \mathcal{Q}_{\eta}$, or
- there exists $x \in \mathcal{F}_{\xi}$ such that $x \in cl(Q_{\eta}) \setminus Q_{\eta}$.

To construct *x*, use MA(countable) on $\mathbb{P} = \{ q \upharpoonright n : q \in Q_{\eta}, n \in \omega \}$, ordered by reverse inclusion.

The negative results The positive results

An ultrafilter \mathcal{U} such that $A \cap \mathcal{U}$ has the perfect set property whenever A is analytic

Recall that a play of the *strong Choquet game* on a topological space (X, T) is of the form

where $U_n, V_n \in \mathcal{T}$ are such that $q_n \in V_n \subseteq U_n$ and $U_{n+1} \subseteq V_n$ for every $n \in \omega$. Player II wins if $\bigcap_{n \in \omega} U_n \neq \emptyset$. The topological space (X, \mathcal{T}) is *strong Choquet* if II has a

winning strategy in the above game.

Preliminaries Main results Bonus materials The negative results The positive results

Define an A-*triple* to be a triple of the form (\mathcal{T}, A, Q) such that the following conditions are satisfied.

- T is a strong Choquet, second-countable topology on 2^{ω} that is finer than the standard topology.
- $A \in T$.
- *Q* is a non-empty countable subset of *A* with no isolated points in the subspace topology it inherits from *T*.

For every analytic *A* there exists a topology \mathcal{T} as above. Also, such a topology \mathcal{T} necessarily consists only of analytic sets. In particular, we can enumerate all A-triples as $\{(\mathcal{T}_{\eta}, A_{\eta}, Q_{\eta}) : \eta \in \mathfrak{c}\}$, making sure that each A-triple appears cofinally often.

The positive results

We will construct an increasing sequence of filters \mathcal{F}_{ξ} , for $\xi \in \mathfrak{c}$. Enumerate as $\{z_{\eta} : \eta \in \mathfrak{c}\}$ all subsets of ω .

At stage $\xi = \eta + 1$, make sure that the following conditions hold.

- Either $z_{\eta} \in \mathcal{F}_{\xi}$ or $\omega \setminus z_{\eta} \in \mathcal{F}_{\xi}$.
- If Q_η ⊆ F_η then there exists x ∈ F_ξ such that x ↑ ∩A_η contains a perfect subset.

Let $\mathcal{U} = \bigcup_{\xi \in \mathfrak{c}} \mathcal{F}_{\xi}$. If $A \cap \mathcal{U}$ is uncountable for some analytic A then it must have an uncountable subset S with no isolated points. Hence there exists some $Q \subseteq S$ and \mathcal{T} such that (\mathcal{T}, A, Q) is an A-triple. So we took care of it.

The negative results The positive results

Given an A-triple $(\mathcal{T}, A, Q) = (\mathcal{T}_{\eta}, A_{\eta}, Q_{\eta})$, construct *x* by applying MA(countable) to the following poset. Fix a winning strategy Σ for player II in the strong Choquet game in $(2^{\omega}, \mathcal{T})$. Also, fix a countable base \mathcal{B} for $(2^{\omega}, \mathcal{T})$. Let \mathbb{P} be the countable poset consisting of all functions *p* such that for some $n = n_p \in \omega$ the following conditions hold.

- $p: {}^{\leq n}2 \longrightarrow Q \times B$. We will use the notation $p(s) = (q_s^p, U_s^p)$.
- $U^p_{\varnothing} = A$.
- For every $s, t \in {}^{\leq n}2$, if s and t are incompatible (that is, $s \notin t$ and $t \notin s$) then $U_s^p \cap U_t^p = \emptyset$.

The negative results The positive results

• For every
$$s \in {}^{n}2$$
,

$$\frac{I \quad (q_{s \mid 0}^{p}, U_{s \mid 0}^{p}) \quad \cdots \quad (q_{s \mid n}^{p}, U_{s \mid n}^{p})}{II \quad V_{s \mid 0}^{p} \quad \cdots \quad V_{s \mid n}^{p}}$$
is a partial play of the strong Choquet game in $(2^{\omega}, \mathcal{T})$,
where the open sets $V_{s \mid i}^{p}$ played by II are the ones dictated
by the strategy Σ .

Order \mathbb{P} by setting $p \leq p'$ whenever $p \supseteq p'$.

The generic tree will naturally yield a perfect set *P* such that $\mathcal{F}_{\eta} \cup \{\bigcap P\}$ has the finite intersection property. So set $x = \bigcap P$.
 Preliminaries
 A question of Hrušák and Zamora Avilés

 Main results
 Extending the perfect set property

 Bonus materials
 P-points

A question of Hrušák and Zamora Avilés

Hrušák and Zamora Avilés showed that, for a Borel $X \subseteq 2^{\omega}$, the following conditions are equivalent.

- X^{ω} is countable dense homogeneous.
- X is a G_{δ} .

Then they asked whether there exists a non- G_{δ} subset X of 2^{ω} such that X^{ω} is countable dense homogeneous.

The following theorem consistently answers their question.

Theorem

Assume MA(countable). Then there exists an ultrafilter $\mathcal{U} \subseteq 2^{\omega}$ such that \mathcal{U}^{ω} is countable dense homogeneous.

Preliminaries A question of Hrušák and Zamora Avilés Main results Extending the perfect set property Bonus materials P-points

Extending the perfect set property

Under V=L, there exists a co-analytic subset of 2^{ω} without the perfect set property. So MA(countable) is not enough to extend the perfect set property to $\mathcal{U} \cap A$ for all co-analytic A.

Theorem

Assume the consistency of a Mahlo cardinal. Then it is consistent that there exists an ultrafilter $\mathcal{U} \subseteq 2^{\omega}$ such $A \cap \mathcal{U}$ has the perfect set property for all $A \in \mathcal{P}(2^{\omega}) \cap L(\mathbb{R})$.

At least an inaccessible is needed for the above theorem.

Question

Does the Levy collapse of an inaccessible κ to ω_1 force such an ultrafilter?

Preliminaries	A question of Hrušák and Zamora Avilés
Main results	Extending the perfect set property
Bonus materials	P-points

P-points and completely Baire ultrafilters

We constructed the following examples.

	P-point	non-P-point
cB	\checkmark	?
non-cB	?	\checkmark

Question

For a non-principal ultrafilter $\mathcal{U} \subseteq 2^{\omega}$, is being a P-point equivalent to being completely Baire?

Preliminaries A question of Hrušák and Zamora Avilés Main results Extending the perfect set property Bonus materials P-points

P-points and the perfect set property

We constructed the following examples.

	P-point	non-P-point
psp	\checkmark	?
non-psp	?	\checkmark

Question

For an ultrafilter $\mathcal{U} \subseteq 2^{\omega}$, is being a P-point equivalent to $\mathcal{U} \cap A$ having the perfect set property whenever $A \subseteq 2^{\omega}$ is analytic?

Theorem

Let \mathcal{U} be a P_{ω_2} -point. Then $A \cap \mathcal{U}$ has the perfect set property whenever $A \subseteq 2^{\omega}$ is such that every closed subset of A has the perfect set property. (For example, whenever A is analytic).

Preliminaries	A question of Hrušák and Zamora Avilés
Main results	Extending the perfect set property
Bonus materials	P-points

P-points and countable dense homogeneity

We constructed the following examples.

	P-point	non-P-point
cdh	\checkmark	\checkmark
non-cdh	?	\checkmark

The following is the only question left open.

Question

Is a P-point necessarily countable dense homogeneous?