Introduction Homogeneous spaces The Rudin-Frolik method Cellularity Other approaches Van Douwen's problem

Van Douwen's problem on the cellularity of compact homogeneous spaces (Specialty exam)

Andrea Medini

Department of Mathematics University of Wisconsin - Madison

December 16, 2008

Introduction Homogeneous spaces The Rudin-Frolík method Cellularity Other approaches Van Douwen's problem

All spaces we consider are Hausdorff. A space is homogeneous if all points "look alike":

Definition

A topological space X is *homogeneous* if for every $x, y \in X$ there exists an autohomeomorphism f of X such that f(x) = y.

Examples:

- R. (Actually, any topological group: just translate!)
- The open interval (0, 1).
- Any discrete space.
- Any product of homogeneous spaces. (Just take the product of the autohomeomorphisms.)
- 2^{κ} for any cardinal κ .

Non-examples:

- The closed interval [0, 1]. (Proof: removing ¹/₂ makes it disconnected, while removing 0 doesn't.)
- [0, 1]ⁿ for any finite n. (Idea: still, the points on the boundary are different from the ones in the interior.)
- The one-point compactification of an infinite discrete space. (The point at ∞ is not isolated!)
- The Stone-Čech compactification of the natural numbers βN. (Trivial: the points of N are isolated!)
- The Stone-Čech remainder $\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}$. (Hard!)

Introduction Home The Rudin-Frolík method Cellul Other approaches Van D

Homogeneous spaces Cellularity Van Douwen's problem

Two surprising results

Theorem (Keller, 1931)

The Hilbert cube $[0, 1]^{\omega}$ is homogeneous.

In the same spirit, based on work of Lawrence and Motorov:

Theorem (Dow-Pearl, 1997)

If X is first countable and zero-dimensional then X^{ω} is homogeneous.

Sometimes we need to take large product before getting homogeneity: Ridderbos observed that $(2^{\kappa} \bigoplus 2)^{\lambda}$ is homogeneous if and only if $\lambda \geq \kappa$.

Introduction Homogeneous sp The Rudin-Frolík method Cellularity Other approaches Van Douwen's pr

Some cardinal functions

Character:

$$\chi(X) = \sup_{x \in X} \chi(x, X)$$
, where

 $\chi(x, X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a local base for } X \text{ at } x\}.$

X is *first-countable* means $\chi(X) \leq \omega$.

• Weight:

 $w(X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a base for } X\}.$

X is second-countable means $w(X) \leq \omega$.

Introduction Homogeneous spaces The Rudin-Frolík method Cellularity Other approaches Van Douwen's problem

• Density:

 $d(X) = \min\{|D| : D \text{ is a dense subset of } X\}.$

X is *separable* means $d(X) \leq \omega$.

• Cellularity:

 $c(X) = \sup\{|\mathcal{C}| : \mathcal{C} \text{ is a cellular family on } X\},\$

where a *cellular family* on *X* is a collection of disjoint non-empty open subsets of *X*. *X* has the *countable chain condition* (ccc) means $c(X) \le \omega$. Introduction The Rudin-Frolík method Other approaches Homogeneous spaces Cellularity Van Douwen's problem

Results that bound the cellularity

The product of a large number of separable spaces need not be separable (it is not, provided there are more than 2^{\aleph_0} non-trivial factors). However, the following holds:

Theorem

Any product of separable spaces is ccc.

More generally:

Theorem

If $d(X_i) \leq \lambda$ for every $i \in I$ then

$$c\left(\prod_{i\in I}X_i\right)\leq \lambda.$$

 Introduction
 Homogeneous spaces

 The Rudin-Frolik method
 Cellularity

 Other approaches
 Van Douwen's problem

Theorem

$$c\left(\prod_{i\in I} X_i\right) = \sup\left\{c\left(\prod_{i\in F} X_i\right) : F \text{ finite subset of } I\right\}$$

Observe that one cannot just look at single factors: a Suslin line has the ccc but its square doesn't.

Theorem (Arhangel'skiĭ,1969)

Any compact space X satisfies $|X| \le 2^{\chi(X)}$. In particular, any first-countable compact space has size (hence cellularity) at most 2^{\aleph_0} .

The above theorems show that the compact homogeneous spaces produced by the Dow-Pearl theorem have cellularity at most 2^{\aleph_0} .

Introduction Homogeneous spaces The Rudin-Frolík method Cellularity Other approaches Van Douwen's problem

Observe that, just by looking at $X = 2^{\kappa}$, we can get compact homogeneous spaces of arbitrarily large size, weight, character and density (to get $d(X) > \lambda$, choose $\kappa > 2^{\lambda}$). Since 2 is separable, $c(X) \le \aleph_0$.

Theorem (Maurice, 1964)

The compact LOTS 2_{lex}^{γ} is homogeneous if and only if γ is a countable indecomposable ordinal or γ is finite.

On the other hand, it's easy to get 2^{\aleph_0} disjoint open sets in 2_{lex}^{γ} whenever $\gamma \geq \omega + 2$.

- So 2^{ω²}_{lex} is an example of compact homogeneous space of cellularity 2^{ℵ0}.
- Another example is given by X^ω, where X = 2^{ω+2}_{lex} is the double of the double of the Cantor set.

Introduction H The Rudin-Frolík method O Other approaches V

Homogeneous spaces Cellularity Van Douwen's problem

Can we do better?

Problem (Van Douwen, 1970s)

Is there a compact homogeneous space of cellularity bigger than 2^{\aleph_0} ?

Van Douwen's problem has been open, under any set-theoretical assumption, for more than 30 years.

It would already be a fantastic achievement if it could be shown that every homogeneous compactum has cellularity at most, say, \exists_{ω_1} .

JAN VAN MILL

We can easily rule out some classes of spaces:

- First-countable spaces. (By Arhangel'skii's theorem.)
- Topological groups. (Because of the Haar measure.)

Introduction Homogeneous spaces The Rudin-Frolík method Cellularity Other approaches Van Douwen's problem

P-points

Definition

Let $x \in X$.

- *x* is a *P*-*point* if the intersection of countably many neighborhoods of *P* is still a neighborhood of *x*.
- x is a *weak P-point* if no countable subset of X has x as limit point.

Every P-point is a weak P-point.

Lemma

In an infinite compact space, not every point is a weak-point.

Proof: otherwise, consider a countably infinite discrete subset.

Introduction Homogener The Rudin-Frolík method Cellularity Other approaches Van Douwe

Other approaches

Van Douwen's problem

LOTS won't work

Recall that a linearly ordered topological space (LOTS) is compact iff every subset has a least upper bound and a greatest lower bound. (Proof: just like [0, 1].)

Theorem

Every homogeneous compact LOTS X is first countable.

Proof: by homogeneity, it suffices to prove that X has a countable local base at its biggest element b. Assume that

$$\operatorname{cof}(X \setminus \{b\}) = \chi(b, X) > \aleph_0.$$

Then *b* is a *P*-point. Hence every point is a *P*-point by homogeneity. Hence *X* is finite by compactness. Introduction The Rudin-Frolík method Other approaches The non-homogeneity of ℕ* *F*-spaces Non-homogeneity of products

The non-homogeneity of $\ensuremath{\mathbb{N}}^*$

Rudin showed that \mathbb{N}^* is not homogeneous under CH:

Theorem (W. Rudin, 1954)

CH implies that there is a P-point in \mathbb{N}^* .

In 1967, Frolík proved that \mathbb{N}^* is not homogeneous in ZFC. However, he didn't exhibit points such that there is a quotable topological property distinguishing them. S

Theorem (Kunen, 1978)

There is a weak P-point in \mathbb{N}^* . \bigcirc

Actually, one can find weak *P*-points $p, q \in \mathbb{N}^*$ that are *Rudin-Keisler incomparable*: $p \not\preccurlyeq q$ and $q \not\preccurlyeq p$. By $p \preccurlyeq q$ we mean that for some $f : \mathbb{N} \longrightarrow \mathbb{N}$

$$q = \{f^{-1}[S] : S \in p\}.$$

Introduction The non-homogeneity of N* The Rudin-Frolik method F-spaces Other approaches Non-homogeneity of produc

F-spaces

Definition

A normal space is an *F*-space if disjoint F_{σ} open sets have disjoint closures.

Examples:

- Any discrete space.
- The Stone-Čech compactification of any *F*-space.
- The Stone space of any complete boolean algebra.
- Any closed subset of a normal *F*-space.

Introduction The non-homogeneity of The Rudin-Frolik method Other approaches Non-homogeneity of pro

Basic properties of p-limits

Definition

Let $x \in X$ and $p \in \mathbb{N}^*$. We say that x is the *p*-limit of the sequence $\langle d_n : n \in \omega \rangle$ if for every neighborhood N of x the set $\{n \in \omega : d_n \in N\}$ belongs to p.

- The *p*-limit is unique. (Proof: there are no disjoint sets in an ultrafilter.)
- The *p*-limit of a discrete sequence ⟨d_n : n ∈ ω⟩ in a compact space exists. (Proof: by the maximality of the Stone-Čech compactification, there is a surjective continuous function φ : βN → cl({d_n : n ∈ ω}) such that φ(n) = d_n. Then φ(p) = lim_p⟨d_n : n ∈ ω⟩.)

 Introduction
 The non-homogeneity of N*

 The Rudin-Frolik method
 F-spaces

 Other approaches
 Non-homogeneity of products

Nicely separating neighborhoods

Let U_n be open and $d_n \in U_n$ for $n \in \omega$. We say that the U_n nicely separate the d_n if for every $A \subseteq \omega$

$$\mathsf{cl}\left(\bigcup_{n\in\mathcal{A}}U_n\right)\cap\mathsf{cl}\left(\bigcup_{n\notin\mathcal{A}}U_n\right)=arnothing.$$

- In an *F*-space, every discrete sequence ⟨d_n : n ∈ ω⟩ can be nicely separated. (Proof: choose every U_n to be F_σ.)
- If the *d_n* are nicely separated in a compact space, then cl({*d_n* : *n* ∈ ω}) is homeomorphic to βN. (Proof: get the continuous surjection, then prove that it is also injective.)

Introduction The non-homogeneity of The Rudin-Frolik method Other approaches Non-homogeneity of pro

The Rudin-Frolík method

Theorem

No infinite compact F-space X is homogeneous.

Proof: fix *p* and *q* Rudin-Keisler incomparable weak-P-points in \mathbb{N}^* and a discrete sequence $\langle d_n : n \in \omega \rangle$ in *X*.

We will show that the *p*-limit of $\langle d_n : n \in \omega \rangle$ cannot be the *q*-limit of any non-trivial sequence.

More precisely we will show that if

$$x = \lim_{p} \langle d_n : n \in \omega \rangle = \lim_{q} \langle e_n : n \in \omega \rangle$$

then $\{n : e_n = x\} \in q$.

 Introduction
 The non-homogeneity of N*

 The Rudin-Frolik method
 F-spaces

 Other approaches
 Non-homogeneity of products

We identify each d_n with n, so that $cl(\{d_n : n \in \omega\})$ can be identified with $\beta \mathbb{N}$, and x with p.

Now fix F_{σ} sets U_n that nicely separate the d_n and are disjoint from \mathbb{N}^* . [*Draws a nice picture on the board.*] Now define the following partition of ω :

•
$$A = \{n : e_n \in \mathbb{N}^*\}$$

•
$$B = \{n : e_n \in \bigcup_{n \in \omega} U_n\}$$

•
$$C = \omega \setminus (A \cup B)$$

We will show that $B \in q$ and $C \in q$ lead to contradictions. Case 1: $A \in q$. Then $\{n : e_n = x\} \in q$, otherwise

$$\{n: e_n \neq x\} \cap A \in q,$$

contradicting the fact that *p* is a weak-*P*-point.

Introduction The non-homogeneity of № The Rudin-Frolík method F-spaces Other approaches Non-homogeneity of produ

Case 2: $B \in q$. Define

$$f : B \longrightarrow \omega$$
$$n \longmapsto m \text{ such that } e_n \in U_m.$$

Claim: $q = \{f^{-1}[S] : S \in p\}$, contradicting RK-incomparability. It suffices to show that $S \in q$ implies $f[S] \in p$. So let $S \in q$. We want

$$oldsymbol{
ho}\in \mathsf{cl}(f[\mathcal{S}])=\mathsf{cl}\left(igcup_{n\in f[\mathcal{S}]}U_n
ight)\capeta\mathbb{N}.$$

(The = follows from X being an F-space.) But that follows from

$$p \in \mathsf{cl}(\{e_n : n \in S \cap B\}) \subseteq \mathsf{cl}\left(igcup_{m \in f[S \cap B]} U_m
ight)$$

.

Introduction The non-homogeneity of N*
The Rudin-Frolík method
Other approaches Non-homogeneity of products

Case 3: $C \in q$. One can inductively construct F_{σ} sets V_n for every $n \in \omega$ and W_n for every $n \in C$ such that

•
$$d_n \in V_n$$
 for every $n \in \omega$,

- $e_n \in W_n$ for every $n \in C$,
- $\{V_n : n \in \omega\} \cup \{W_n : n \in C\}$ is a disjoint family.

But then

$$x \in \mathsf{cl}\left(igcup_{n\in\omega}V_n
ight)\cap\mathsf{cl}\left(igcup_{n\in\mathcal{C}}W_n
ight)$$

contradicting the definition of *F*-space.

 Introduction
 The non-homogeneity of ℕ*

 The Rudin-Frolik method
 F-spaces

 Other approaches
 Non-homogeneity of products

Sequentially small spaces

Definition

A topological space X is *sequentially small* if for every infinite subset A of X there exists an infinite $B \subseteq A$, such that $\beta \mathbb{N}$ does not embed in cl(B).

Examples:

- Any compact metric (= second countable) space.
- Actually, any sequentially compact space, such as a compact LOTS. (*β*N contains no non-trivial convergent sequences.)
- Any space of weight less than 2^{\aleph_0} . (Since $w(\beta \mathbb{N}) = 2^{\aleph_0}$.)
- Actually, any space of character less than 2^{ℵ0}. (Since by a theorem of Pospíšil, there is a point of character 2^{ℵ0} in βN.)

 Introduction
 The non-homogeneity of ℕ*

 The Rudin-Frolik method
 F-spaces

 Other approaches
 Non-homogeneity of products

Non-homogeneity of products

One might hope to construct a large homogeneous compact space by taking products. Using Frolík's method, Kunen showed that the factors should be chosen very carefully.

Theorem (Kunen, 1990)

Assume $X = \prod_{i \in I} X_i$ is a product of infinite *F*-spaces, spaces containing a weak *P*-point, and spaces containing a sequentially small open subset. Also assume that X_i is an infinite *F*-space for at least one index $i \in I$. Then X is not homogeneous.

F-spaces are intoxicatingly non-homogeneous... *

Introduction The Rudin-Frolík method Other approaches

Continuous images and retracts Cardinality considerations Independence

Continuous images of homogeneous spaces

Since every compact metric space is a continuous image of the Cantor set, the following is a natural question:

Problem

Is every compact space the continuous image of a compact homogeneous space?

If the answer is 'yes' (at least for a compact space of cellularity bigger than 2^{\aleph_0}) then the answer is 'yes' to Van Douwen's question as well.

Theorem (Motorov, 1985)

Not every compact space is a retract of a compact homogeneous space.

Introduction Cor The Rudin-Frolík method Car Other approaches Inde

Continuous images and retracts Cardinality considerations Independence

Retracts of homogeneous spaces

The *representable cellularity induced by* q (we will not care about the nature of q) on X is a function

 $F: X \longrightarrow \{ closed subsets of X \}$

satisfying certain properties, among which the following.

•
$$x \in F(x)$$
 for every $x \in X$.

• If
$$y \in F(x)$$
 then $F(y) \subseteq F(x)$.

The closed sets F(x) are called the *terms* of the cellularity F. An example is given by

F(x) = smallest closed superset of $\{x\}$ closed under paths.

Theorem (Arhangel'skiĭ,1985)

A compact space X is homogeneous iff every representable cellularity on X has disjoint terms.

Introduction Continuous images and retracts The Rudin-Frolik method Cardinality considerations Other approaches Independence

The following lemma shows that representable cellularities behave well with respect to retractions.

Lemma (Arhangel'skiĭ,1985)

Assume $Y \subseteq X$ and let $r : X \longrightarrow Y$ be a retraction. If F and G are the representable cellularities induced by the same q on X and Y respectively, then $G(x) = F(x) \cap Y$ for every $x \in Y$.

In particular, representable cellularities with disjoint terms remain so after retractions.

Hence the following spaces are not retracts of any compact homogeneous space.

- Motorov's original example: the closure of the graph of sin(1/x) for x ∈ (0, 1].
- The one-point compactification of the long line: the ordered space ω₁ ×_{lex} [0, 1) + 1.

Introduction Continuous images and re The Rudin-Frolik method Cardinality considerations Other approaches Independence

Van Douwen's inequality

Definition

A collection \mathcal{B} of non-empty open subsets of a space X is a π -base if for every open set U there exists $V \in \mathcal{B}$ such that $V \subseteq U$. The π -weight of X is defined by

 $\pi(X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a } \pi\text{-base for } X\}.$

The π -weight can be strictly less than the weight: for example $\aleph_0 = \pi(\beta \mathbb{N}) < w(\beta \mathbb{N}) = 2^{\aleph_0}$.

Theorem (Van Douwen, 1978)

If some power of X is homogeneous then $|X| \leq 2^{\pi(X)}$.

Introduction The Rudin-Frolik method Other approaches

Cardinality considerations

De la Vega's inequality

Definition

The *tightness* t(x, X) of x in X is the least cardinal κ such that for every $Y \subset X$

if $x \in cl(Y)$ then there exists $Z \in [Y]^{\leq \kappa}$ such that $x \in cl(Z)$.

As usual, we define $t(X) = \sup_{x \in X} t(x, X)$.

Theorem (De la Vega, 2005)

If X is compact and homogeneous then $|X| \leq 2^{t(X)}$.

Arhangel'skii, Van Mill and Ridderbos (2007) showed that we can substitute 'homogeneous' with 'some power of X is homogeneous'.

Introduction Continuous images and retracts The Rudin-Frolik method Cardinality considerations Other approaches Independence

Theorem (Čech-Pospíšil)

If X is compact and $\chi(x, X) \ge \kappa$ for every $x \in X$ then $|X| \ge 2^{\kappa}$.

Kunen and Hart observed that the above theorem plus Arhangel'skii's theorem imply $|X| = 2^{\chi(X)}$ whenever X is a compact homogeneous space.

Problem (Arhangel'skiĭ,1987)

Is every homogeneous compact space of countable tightness first-countable?

De la Vega's inequality implies that the answer is consistently 'yes': under CH,

$$\mathbf{2}^{\chi(X)} = |X| \leq \mathbf{2}^{t(X)} = \mathbf{2}^{\aleph_0} = \aleph_1.$$

Introduction Continuous images and retrac The Rudin-Frolik method Cardinality considerations Other approaches Independence

Could it be independent?

Sure, why not?

By carefully glueing together many copies of the ω_1 -torus along a Cantor set, Van Mill obtained a space whose homogeneity is independent of ZFC.

Theorem (Van Mill, 2003)

There is a compact space X such that X is homogeneous under $MA + \neg CH$ but not homogeneous under CH.

The space X satisfies $\pi(X) = \aleph_0$ and $\chi(X) = \aleph_1$. Therefore, under CH, non-homogeneity follows from Van Douwen's inequality: otherwise we would have

$$2^{\aleph_1} = 2^{\chi(X)} = |X| \le 2^{\pi(X)} = 2^{\aleph_0} = \aleph_1.$$