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All spaces we consider are Hausdorff.
A space is homogeneous if all points “look alike”:

Definition
A topological space X is homogeneous if for every x , y ∈ X
there exists an autohomeomorphism f of X such that f (x) = y .

Examples:

R. (Actually, any topological group: just translate!)
The open interval (0, 1).
Any discrete space.
Any product of homogeneous spaces. (Just take the
product of the autohomeomorphisms.)
2κ for any cardinal κ.
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Non-examples:

The closed interval [0, 1]. (Proof: removing 1
2 makes it

disconnected, while removing 0 doesn’t.)
[0, 1]n for any finite n. (Idea: still, the points on the
boundary are different from the ones in the interior.)
The one-point compactification of an infinite discrete
space. (The point at ∞ is not isolated!)
The Stone-Čech compactification of the natural numbers
βN. (Trivial: the points of N are isolated!)
The Stone-Čech remainder N∗ = βN \ N. (Hard!)

Andrea Medini Van Douwen’s problem



Introduction
The Rudin-Frolík method

Other approaches

Homogeneous spaces
Cellularity
Van Douwen’s problem

Two surprising results
Theorem (Keller, 1931)

The Hilbert cube [0, 1]ω is homogeneous.

In the same spirit, based on work of Lawrence and Motorov:

Theorem (Dow-Pearl, 1997)
If X is first countable and zero-dimensional then Xω is
homogeneous.

Sometimes we need to take large product before getting
homogeneity: Ridderbos observed that (2κ

⊕
2)λ is

homogeneous if and only if λ ≥ κ.
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Some cardinal functions
Character:

χ(X ) = sup
x∈X

χ(x , X ), where

χ(x , X ) = min{|B| : B is a local base for X at x}.

X is first-countable means χ(X ) ≤ ω.
Weight:

w(X ) = min{|B| : B is a base for X}.

X is second-countable means w(X ) ≤ ω.
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Density:

d(X ) = min{|D| : D is a dense subset of X}.

X is separable means d(X ) ≤ ω.
Cellularity:

c(X ) = sup{|C| : C is a cellular family on X},

where a cellular family on X is a collection of disjoint
non-empty open subsets of X .
X has the countable chain condition (ccc) means
c(X ) ≤ ω.
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Results that bound the cellularity
The product of a large number of separable spaces need not
be separable (it is not, provided there are more than 2ℵ0

non-trivial factors). However, the following holds:

Theorem
Any product of separable spaces is ccc.

More generally:

Theorem
If d(Xi) ≤ λ for every i ∈ I then

c

(∏
i∈I

Xi

)
≤ λ.
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Theorem

c

(∏
i∈I

Xi

)
= sup

{
c

(∏
i∈F

Xi

)
: F finite subset of I

}

Observe that one cannot just look at single factors: a Suslin line
has the ccc but its square doesn’t.

Theorem (Arhangel’skiı̆,1969)

Any compact space X satisfies |X | ≤ 2χ(X). In particular, any
first-countable compact space has size (hence cellularity) at
most 2ℵ0 .

The above theorems show that the compact homogeneous
spaces produced by the Dow-Pearl theorem have cellularity at
most 2ℵ0 .
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Observe that, just by looking at X = 2κ, we can get compact
homogeneous spaces of arbitrarily large size, weight, character
and density (to get d(X ) > λ, choose κ > 2λ).
Since 2 is separable, c(X ) ≤ ℵ0.

Theorem (Maurice, 1964)

The compact LOTS 2γ
lex is homogeneous if and only if γ is a

countable indecomposable ordinal or γ is finite.

On the other hand, it’s easy to get 2ℵ0 disjoint open sets in 2γ
lex

whenever γ ≥ ω + 2.

So 2ω2

lex is an example of compact homogeneous space of
cellularity 2ℵ0 .
Another example is given by Xω, where X = 2ω+2

lex is the
double of the double of the Cantor set.
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Can we do better?
Problem (Van Douwen, 1970s)
Is there a compact homogeneous space of cellularity bigger
than 2ℵ0?

Van Douwen’s problem has been open, under any
set-theoretical assumption, for more than 30 years.

It would already be a fantastic achievement if it could
be shown that every homogeneous compactum has
cellularity at most, say, iω1 .

JAN VAN MILL

We can easily rule out some classes of spaces:
First-countable spaces. (By Arhangel’skiı̆’s theorem.)
Topological groups. (Because of the Haar measure.)
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P-points
Definition
Let x ∈ X .

x is a P-point if the intersection of countably many
neighborhoods of P is still a neighborhood of x .
x is a weak P-point if no countable subset of X has x as
limit point.

Every P-point is a weak P-point.

Lemma
In an infinite compact space, not every point is a weak-point.

Proof: otherwise, consider a countably infinite discrete subset.
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LOTS won’t work
Recall that a linearly ordered topological space (LOTS) is
compact iff every subset has a least upper bound and a
greatest lower bound. (Proof: just like [0, 1].)

Theorem
Every homogeneous compact LOTS X is first countable.

Proof: by homogeneity, it suffices to prove that X has a
countable local base at its biggest element b.
Assume that

cof(X \ {b}) = χ(b, X ) > ℵ0.

Then b is a P-point.
Hence every point is a P-point by homogeneity.
Hence X is finite by compactness.K
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The non-homogeneity of N∗

Rudin showed that N∗ is not homogeneous under CH:

Theorem (W. Rudin,1954)
CH implies that there is a P-point in N∗.

In 1967, Frolík proved that N∗ is not homogeneous in ZFC.
However, he didn’t exhibit points such that there is a quotable
topological property distinguishing them. /
Theorem (Kunen, 1978)

There is a weak P-point in N∗. ,

Actually, one can find weak P-points p, q ∈ N∗ that are
Rudin-Keisler incomparable: p 64 q and q 64 p.
By p 4 q we mean that for some f : N −→ N

q = {f−1[S] : S ∈ p}.
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F-spaces
Definition
A normal space is an F-space if disjoint Fσ open sets have
disjoint closures.

Examples:
Any discrete space.
The Stone-Čech compactification of any F -space.
The Stone space of any complete boolean algebra.
Any closed subset of a normal F -space.
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Basic properties of p-limits
Definition
Let x ∈ X and p ∈ N∗. We say that x is the p-limit of the
sequence 〈dn : n ∈ ω〉 if for every neighborhood N of x the set
{n ∈ ω : dn ∈ N} belongs to p.

The p-limit is unique. (Proof: there are no disjoint sets in
an ultrafilter.)
The p-limit of a discrete sequence 〈dn : n ∈ ω〉 in a
compact space exists. (Proof: by the maximality of the
Stone-Čech compactification, there is a surjective
continuous function φ : βN −→ cl({dn : n ∈ ω}) such that
φ(n) = dn. Then φ(p) = limp〈dn : n ∈ ω〉.)
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Nicely separating neighborhoods
Let Un be open and dn ∈ Un for n ∈ ω. We say that the Un
nicely separate the dn if for every A ⊆ ω

cl

(⋃
n∈A

Un

)
∩ cl

(⋃
n/∈A

Un

)
= ∅.

In an F -space, every discrete sequence 〈dn : n ∈ ω〉 can
be nicely separated. (Proof: choose every Un to be Fσ.)
If the dn are nicely separated in a compact space, then
cl({dn : n ∈ ω}) is homeomorphic to βN. (Proof: get the
continuous surjection, then prove that it is also injective.)
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The Rudin-Frolík method
Theorem
No infinite compact F-space X is homogeneous.

Proof: fix p and q Rudin-Keisler incomparable weak-P-points in
N∗ and a discrete sequence 〈dn : n ∈ ω〉 in X .
We will show that the p-limit of 〈dn : n ∈ ω〉 cannot be the q-limit
of any non-trivial sequence.
More precisely we will show that if

x = lim
p
〈dn : n ∈ ω〉 = lim

q
〈en : n ∈ ω〉

then {n : en = x} ∈ q.
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We identify each dn with n, so that cl({dn : n ∈ ω}) can be
identified with βN, and x with p.
Now fix Fσ sets Un that nicely separate the dn and are disjoint
from N∗. [Draws a nice picture on the board.]
Now define the following partition of ω:

A = {n : en ∈ N∗}
B = {n : en ∈

⋃
n∈ω Un}

C = ω \ (A ∪ B)

We will show that B ∈ q and C ∈ q lead to contradictions.
Case 1: A ∈ q. Then {n : en = x} ∈ q, otherwise

{n : en 6= x} ∩ A ∈ q,

contradicting the fact that p is a weak-P-point.
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Case 2: B ∈ q. Define

f : B −→ ω
n 7−→ m such that en ∈ Um.

Claim: q = {f−1[S] : S ∈ p}, contradicting RK-incomparability.
It suffices to show that S ∈ q implies f [S] ∈ p.
So let S ∈ q. We want

p ∈ cl(f [S]) = cl

 ⋃
n∈f [S]

Un

 ∩ βN.

(The = follows from X being an F -space.)
But that follows from

p ∈ cl({en : n ∈ S ∩ B}) ⊆ cl

 ⋃
m∈f [S∩B]

Um

 .
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Case 3: C ∈ q. One can inductively construct Fσ sets Vn for
every n ∈ ω and Wn for every n ∈ C such that

dn ∈ Vn for every n ∈ ω,
en ∈ Wn for every n ∈ C,
{Vn : n ∈ ω} ∪ {Wn : n ∈ C} is a disjoint family.

But then

x ∈ cl

(⋃
n∈ω

Vn

)
∩ cl

(⋃
n∈C

Wn

)

contradicting the definition of F -space.K
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Sequentially small spaces
Definition
A topological space X is sequentially small if for every infinite
subset A of X there exists an infinite B ⊆ A, such that βN does
not embed in cl(B).

Examples:
Any compact metric (= second countable) space.
Actually, any sequentially compact space, such as a
compact LOTS. (βN contains no non-trivial convergent
sequences.)
Any space of weight less than 2ℵ0 . (Since w(βN) = 2ℵ0 .)
Actually, any space of character less than 2ℵ0 . (Since by a
theorem of Pospíšil, there is a point of character 2ℵ0 in βN.)
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Non-homogeneity of products
One might hope to construct a large homogeneous compact
space by taking products. Using Frolík’s method, Kunen
showed that the factors should be chosen very carefully.

Theorem (Kunen, 1990)

Assume X =
∏

i∈I Xi is a product of infinite F-spaces, spaces
containing a weak P-point, and spaces containing a
sequentially small open subset. Also assume that Xi is an
infinite F-space for at least one index i ∈ I. Then X is not
homogeneous.

j F -spaces are intoxicatingly non-homogeneous... j
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Continuous images of homogeneous spaces
Since every compact metric space is a continuous image of the
Cantor set, the following is a natural question:

Problem
Is every compact space the continuous image of a compact
homogeneous space?

If the answer is ‘yes’ (at least for a compact space of cellularity
bigger than 2ℵ0) then the answer is ‘yes’ to Van Douwen’s
question as well.

Theorem (Motorov,1985)
Not every compact space is a retract of a compact
homogeneous space.
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Retracts of homogeneous spaces
The representable cellularity induced by q (we will not care
about the nature of q) on X is a function

F : X −→ {closed subsets of X}

satisfying certain properties, among which the following.
x ∈ F (x) for every x ∈ X .
If y ∈ F (x) then F (y) ⊆ F (x).

The closed sets F (x) are called the terms of the cellularity F .
An example is given by

F (x) = smallest closed superset of {x} closed under paths.

Theorem (Arhangel’skiı̆,1985)

A compact space X is homogeneous iff every representable
cellularity on X has disjoint terms.
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The following lemma shows that representable cellularities
behave well with respect to retractions.

Lemma (Arhangel’skiı̆,1985)

Assume Y ⊆ X and let r : X −→ Y be a retraction. If F and G
are the representable cellularities induced by the same q on X
and Y respectively, then G(x) = F (x) ∩ Y for every x ∈ Y.

In particular, representable cellularities with disjoint terms
remain so after retractions.
Hence the following spaces are not retracts of any compact
homogeneous space.

Motorov’s original example: the closure of the graph of
sin(1/x) for x ∈ (0, 1].
The one-point compactification of the long line: the ordered
space ω1 ×lex [0, 1) + 1.
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Van Douwen’s inequality
Definition
A collection B of non-empty open subsets of a space X is a
π-base if for every open set U there exists V ∈ B such that
V ⊆ U. The π-weight of X is defined by

π(X ) = min{|B| : B is a π-base for X}.

The π-weight can be strictly less than the weight: for example
ℵ0 = π(βN) < w(βN) = 2ℵ0 .

Theorem (Van Douwen, 1978)

If some power of X is homogeneous then |X | ≤ 2π(X).
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De la Vega’s inequality
Definition
The tightness t(x , X ) of x in X is the least cardinal κ such that
for every Y ⊆ X

if x ∈ cl(Y ) then there exists Z ∈ [Y ]≤κ such that x ∈ cl(Z ).

As usual, we define t(X ) = supx∈X t(x , X ).

Theorem (De la Vega, 2005)

If X is compact and homogeneous then |X | ≤ 2t(X).

Arhangel’skiı̆, Van Mill and Ridderbos (2007) showed that we
can substitute ‘homogeneous’ with ‘some power of X is
homogeneous’.
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Theorem (Čech-Pospíšil)

If X is compact and χ(x , X ) ≥ κ for every x ∈ X then |X | ≥ 2κ.

Kunen and Hart observed that the above theorem plus
Arhangel’skiı̆’s theorem imply |X | = 2χ(X) whenever X is a
compact homogeneous space.

Problem (Arhangel’skiı̆,1987)

Is every homogeneous compact space of countable tightness
first-countable?

De la Vega’s inequality implies that the answer is consistently
‘yes’: under CH,

2χ(X) = |X | ≤ 2t(X) = 2ℵ0 = ℵ1.
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Could it be independent?
Sure, why not?
By carefully glueing together many copies of the ω1-torus along
a Cantor set, Van Mill obtained a space whose homogeneity is
independent of ZFC.

Theorem (Van Mill, 2003)
There is a compact space X such that X is homogeneous
under MA + ¬CH but not homogeneous under CH.

The space X satisfies π(X ) = ℵ0 and χ(X ) = ℵ1.
Therefore, under CH, non-homogeneity follows from Van
Douwen’s inequality: otherwise we would have

2ℵ1 = 2χ(X) = |X | ≤ 2π(X) = 2ℵ0 = ℵ1.
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