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Everybody loves

homogeneous stuff!



Topological homogeneity
A space is homogeneous if all points “look alike” from a global
point of view:

Definition
A space X is homogeneous if for every x , y ∈ X there exists a
homeomorphism h : X −→ X such that h(x) = y .

Non-examples:

I ω + 1 (Because of the limit point)

I [0, 1]n whenever 1 ≤ n < ω
(Points on the boundary are different from points in the
interior)

I The Stone-Čech remainder ω∗ = βω \ ω
(W. Rudin, 1956, under CH, because of P-points)
(Froĺık, 1967, using a cardinality argument)
(Kunen, 1978, by proving the existence of weak P-points)



Examples:

I Any topological group

I Any product of homogeneous spaces

I Any open subspace of a zero-dimensional homogeneous space

I The Hilbert cube [0, 1]ω (Keller, 1931)

I Xω for every zero-dimensional first-countable X
(Dow and Pearl, 1997, based on work of Lawrence)

Homogeneous spaces are decently understood.
Compact homogeneous spaces are shrouded in mystery:

Question (Van Douwen, 1970s)

Is there a compact homogeneous space with more than c pairwise
disjoint non-empty open sets?

Question (W. Rudin, 1958)

Is there an infinite compact homogeneous space with no non-trivial
convergent ω-sequences?



Strong homogeneity

Definition
A space X is strongly homogeneous (or h-homogeneous) if every
non-empty clopen subspace of X is homeomorphic to X .

Examples:

I Any connected space

I Q, 2ω, ωω (Use their characterizations)

I Any product of zero-dimensional strongly homogeneous spaces
(Medini, 2011, building on work of Terada, 1993)

I Erdős space E = {x ∈ `2 : xn ∈ Q for all n ∈ ω}
(Dijkstra and van Mill, 2010)

Non-examples:

I Discrete spaces with at least two elements

I ω × 2ω



Is “strong” a good choice of word?
Not particularly. For example, ω∗ is strongly homogeneous but not
homogeneous. Things get better under additional assumptions:

Theorem (folklore)

Let X be a first-countable zero-dimensional space. If X is strongly
homogeneous then X is homogeneous.
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The locally compact case (the trivial case)
From now on, all spaces are separable and metrizable.

Proposition

Let X be a locally compact zero-dimensional space. Then the
following conditions are equivalent:

I X is homogeneous

I X is discrete, X ≈ ω × 2ω, or X ≈ 2ω

Two open questions

Question (Terada, 1993)

Is Xω strongly homogeneous for every zero-dimensional space X?

Question (Medvedev, 2012)

Is X strongly homogeneous for every meager zero-dimensional
homogeneous space X?



An example of van Douwen

Theorem (van Douwen, 1984)

There exists a subspace X of R with the following properties:

I X is a Bernstein subset of R
I X is a subgroup of (R,+)

I There exists a measure µ on the Borel subsets of X such that
A ≈ B implies µ(A) = µ(B) whenever A,B ⊆ X are Borel

Given a Borel subset A of X , the measure of A is defined by:

µ(A) = Lebesgue measure of Ã

where Ã is a Borel subset of R such that Ã ∩ X = A.

Corollary

There exists a zero-dimensional homogeneous space that is not
locally compact space and not strongly homogeneous.



The main result
In his remarkable Ph.D. thesis, van Engelen obtained a complete
classification of the zero-dimensional homogeneous Borel spaces.
As a corollary, he proved the following:

Theorem (van Engelen, 1986)

Let X be a zero-dimensional Borel space that is not locally
compact. If X is homogeneous then X is strongly homogeneous.

Can the “Borel” assumption be dropped? Certainly not in ZFC, by
van Douwen’s example. However:

Theorem (Carroy, Medini, Müller)

Work in ZF + DC + AD. Let X be a zero-dimensional space that is
not locally compact. If X is homogeneous then X is strongly
homogeneous.

This gives consistent “yes” answers to Terada’s and Medvedev’s
questions. (It is still open whether AD is really needed for those.)
From now on, we will work in ZF + DC.
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Wadge theory: basic definitions
Let Z be a set and Γ ⊆ P(Z ). Define Γ̌ = {Z \ A : A ∈ Γ}.
We say that Γ is selfdual if Γ = Γ̌. Also define ∆(Γ) = Γ ∩ Γ̌.

Definition (Wadge, 1984)

Let Z be a space. Given A,B ⊆ Z , we will write A ≤ B if there
exists a continuous function f : Z −→ Z such that A = f −1[B]. In
this case, we will say that A is Wadge-reducible to B, and that f
witnesses the reduction.

Definition (Wadge, 1984)

Let Z be a space. Given A ⊆ Z , define

[A] = {B ⊆ Z : B ≤ A}

We will say that Γ ⊆ P(Z ) is a Wadge class if there exists A ⊆ Z
such that Γ = [A]. The set A is selfdual if [A] is selfdual.



First examples of Wadge classes
From now on, unless we specify otherwise, we will always assume
that Z is an uncountable zero-dimensional Polish space.

I {∅} and {Z} (These are the minimal ones)

I ∆0
1(Z ) is their immediate successor

(Generated by an arbitrary proper clopen set)

Let 1 ≤ ξ < ω1. Recall that Σ0
ξ(Z ) has a 2ω-universal set U.

This means that U ∈ Σ0
ξ(2ω × Z ) and

Σ0
ξ(Z ) = {Ux : x ∈ 2ω}

where Ux = {y ∈ Z : (x , y) ∈ U} denotes the vertical section.

I Σ0
ξ(Z ) and Π0

ξ(Z ) (Generated by a universal set)

I Σ1
n(Z ) and Π1

n(Z ) for n ≥ 1 (As above)



The Wadge hierachy: a first glimpse
...

Σ0
2(Z ) Π0

2(Z )

???

Σ0
1(Z ) Π0

1(Z )

∆0
1(Z )

{∅} {Z}



Why do we need determinacy?

Lemma (Wadge, 1984)

Assume AD. Let A,B ⊆ Z . Then either A ≤ B or B ≤ Z \ A.

Here are two simple (but very useful) applications:

I In the poset W(Z ) of all Wadge classes in Z ordered by ⊆,
antichains have size at most 2

I If Γ is a Wadge class and A ∈ Γ \ Γ̌ then [A] = Γ

Theorem (Martin, Monk)

Assume AD. The poset W(Z ) is well-founded.

This yields the definition of Wadge rank.

I By the two results above, W(Z ) becomes a well-order if we
identify every Wadge class Γ with its dual class Γ̌

I The length of this well-order is Θ

From now on, we will always assume that AD holds.



The analysis of selfdual Wadge classes

Definition
Given ξ < ω1, define PUξ(Γ) as the collection of all sets of the form⋃

n∈ω
(An ∩ Vn)

where An ∈ Γ for n ∈ ω and {Vn : n ∈ ω} ⊆ ∆0
1+ξ(Z ) is a partition

of Z . A set in this form is called a partitioned union of sets in Γ.

The following fundamental result reduces the study of selfdual
Wadge classes to the study of non-selfdual Wadge classes:

Theorem (see Motto Ros, 2009)

Let ∆ be a selfdual Wadge class. Then there exist non-selfdual
Wadge classes Γn for n ∈ ω such that

∆ = PU0

(⋃
n∈ω

(Γn ∪ Γ̌n)

)



Hausdorff operations

Definition (Hausdorff, 1927)

Given D ⊆ P(ω), define

HD(A0,A1, . . .) = {x ∈ Z : {n ∈ ω : x ∈ An} ∈ D}

whenever A0,A1, . . . ⊆ Z . We will call functions of this form
Hausdorff operations (or ω-ary Boolean operations).

Given n ∈ ω, set Un = {A ⊆ ω : n ∈ A}. Then:

I HUn(A0,A1, . . .) = An

I
⋂

i∈I HDi
(A0,A1, . . .) = HD(A0,A1, . . .), where D =

⋂
i∈I Di

I
⋃

i∈I HDi
(A0,A1, . . .) = HD(A0,A1, . . .), where D =

⋃
i∈I Di

I Z \ HD(A0,A1, . . .) = HP(ω)\D(A0,A1, . . .) for all D ⊆ P(ω)

Hence, any operation obtained by combining unions, intersections
and complements can be expressed as a Hausdorff operation.



The difference hierarchy
Given 1 ≤ η < ω1, define the Hausdorff operation Dη as follows:

I D1(A0) = A0

I D2(A0,A1) = A1 \ A0

I D3(A0,A1,A2) = A0 ∪ (A2 \ A1)
...

I Dω(A0,A1, . . .) = (A1 \ A0) ∪ (A3 \ A2) ∪ · · ·
I Dω+1(A0,A1, . . . ,Aω) = A0 ∪ (A2 \A1)∪ · · · ∪ (Aω \

⋃
n<ω An)

...

Given 1 ≤ ξ < ω1, define:

Dη(Σ0
ξ) = {Dη(Aµ : µ < η) : each Aµ ∈ Σ0

ξ

and (Aµ : µ < η) is increasing}

It can be shown that Dη(Σ0
ξ) ( Dµ(Σ0

ξ) whenever η < µ.



Wadge classes from Hausdorff operations

Definition
Given D ⊆ P(ω), define

ΓD(Z ) = {HD(A0,A1, . . .) : A0,A1, . . . ∈ Σ0
1(Z )}

By fixing a 2ω-universal set for Σ0
1(Z ) and “applying HD to it”,

one obtains the following:

Theorem (Addison for Z = ωω)

Let D ⊆ P(ω). Then ΓD(Z ) is a non-selfdual Wadge class.

In particular, each Dη(Σ0
1(Z )) is a non-selfdual Wadge class.

In fact, it can be shown that they and their duals exhaust the
non-selfdual Wadge classes contained in ∆0

2(Z ).
The analog statement for ∆0

3(Z ) is false! However:

Theorem (Hausdorff and Kuratowski)

∆0
ξ+1(Z ) =

⋃
1≤η<ω1

Dη(Σ0
ξ(Z ))



Relativization: yet another reason to love
Hausdorff operations
When one tries to give a systematic exposition of Wadge theory, it
soon becomes apparent that it would be very useful to be able to
say when A and B belong to “the same” Wadge class Γ, even
when A ⊆ Z and B ⊆W for distinct ambient spaces Z and W .
(This is clear in some particular cases, like Γ = Π0

2 or Γ = D5(Σ0
1),

but what about arbitrary, possibly more “exotic” Wadge classes?)

It turns out that Hausdorff operations allow us to do exactly that
in a rather elegant way. The first ingredient is the following result,
proved by Van Wesep in his Ph.D. thesis:

Theorem (Van Wesep, 1977, for Z = ωω)

The following are equivalent:

I Γ is a non-selfdual Wadge class in Z

I There exists D ⊆ P(ω) such that Γ = ΓD(Z )



Robert Van Wesep: medical
scientist, mathematician, poet

Plus Ultra

The whole world having been
into its ultrapower injected
The latter being founded well,
if all goes as expected
The sets whose images contain
the point of criticality
Return an ultrafilter with
a dividend: normality!



Relativization: the crucial lemma
The second ingredient is the following “Relativization Lemma”.
(Similar result have appeared in work of van Engelen, and even
earlier in work of Louveau and Saint-Raymond.)

Lemma
Let Z and W be arbitrary topological spaces, and let D ⊆ P(ω).

I Assume that W ⊆ Z . Then A ∈ ΓD(W ) iff there exists
Ã ∈ ΓD(Z ) such that A = Ã ∩W

I If f : Z −→W is continuous and B ∈ ΓD(W ) then
f −1[B] ∈ ΓD(Z )

I If h : Z −→W is a homeomorphism then A ∈ ΓD(Z ) iff
h[A] ∈ ΓD(W )

It is hard to understate how much confusion and ugliness was
cleared up by this lemma...



Reasonably closed Wadge classes
Given i ∈ 2, set:

Qi = {x ∈ 2ω : x(n) = i for all but finitely many n ∈ ω}

Notice that every element of 2ω \ (Q0 ∪ Q1) is obtained by
alternating finite blocks of zeros and finite blocks of ones.

Define the function φ : 2ω \ (Q0 ∪ Q1) −→ 2ω by setting

φ(x)(n) =

{
0 if the nth block of zeros of x has even length
1 otherwise

where we start counting with the 0th block of zeros. It is easy to
check that φ is continuous.

Definition (Steel, 1980)

Let Γ be a Wadge class in 2ω. We will say that Γ is reasonably
closed if φ−1[A] ∪ Q0 ∈ Γ for every A ∈ Γ.



Why would anybody need that?

Lemma (Harrington)

Let Γ = [B] be a reasonably closed Wadge class in 2ω. If A ≤ B
then this is witnessed by an injective function.

The above lemma will be useful to us because every injective
continuous function f : 2ω −→ 2ω is an embedding.

Proof.
Let A∗ = φ−1[A] ∪ Q0. Since Γ is reasonably closed, we can fix
σ : 2<ω −→ 2<ω such that fσ : 2ω −→ 2ω witnesses A∗ ≤ B. We
will construct τ : 2<ω −→ 2<ω such that fτ : 2ω −→ 2ω witnesses
A ≤ A∗ and fσ ◦ fτ is injective.
Make sure that

1. τ(s) always ends with a 1

2. There are exactly |s| blocks of zeros in τ(s)

3. s(n) is the parity of the nth block of zeros in τ(s)



Begin by setting τ(∅) = 〈1〉.
Given s ∈ 2<ω, notice that τ(s)_~0 ∈ A∗ and τ(s)_~1 /∈ A∗.
Since fσ witnesses that A∗ ≤ B, we must have fσ(τ(s)_~0) ∈ B
and fσ(τ(s)_~1) /∈ B. Therefore, we can find k ∈ ω such that

σ(τ(s)_0k) 6= σ(τ(s)_1k)

Now simply pick τ(s_i) ⊇ τ(s)_ik for i = 0, 1 satisfying
conditions (1), (2) and (3).
To check that fτ has the desired properties, observe that

I ran(fτ ) ⊆ 2ω \ (Q0 ∪ Q1) (By conditions 1 and 2)

I φ(fτ (x)) = x for every x ∈ 2ω (By conditions 1 and 3)



Our main tool: Steel’s theorem
Given a Wadge class Γ in 2ω and X ⊆ 2ω, we will say that X is
everywhere properly Γ if X ∩ [s] ∈ Γ \ Γ̌ for every s ∈ 2<ω.

Theorem (Steel, 1980)

Let Γ be a reasonably closed Wadge class in 2ω. Assume that X
and Y are subsets of 2ω that satisfy the following:

I X and Y are everywhere properly Γ

I X and Y are either both meager or both comeager

Then there exists a homeomorphism h : 2ω −→ 2ω such that
h[X ] = Y .

Proof.
Without loss of generality, fix closed nowhere dense subsets Xn and
Yn of 2ω for n ∈ ω such that X ⊂

⋃
n∈ω Xn and Y ⊂

⋃
n∈ω Yn.

We will combine Harrington’s Lemma with Knaster-Reichbach
systems. (To be continued...)



Knaster-Reichbach covers
Fix a homeomorphism h : C −→ D between closed nowhere dense
subsets of 2ω. We will say that 〈U ,V, ψ〉 is a Knaster-Reichbach
cover (briefly, a KR-cover) for 〈2ω \ C , 2ω \ D, h〉 if the following
conditions hold:

I U is a cover of 2ω \ C consisting of pairwise disjoint
non-empty clopen subsets of 2ω

I V is a cover of 2ω \ D consisting of pairwise disjoint
non-empty clopen subsets of 2ω

I ψ : U −→ V is a bijection

I If f : 2ω −→ 2ω is a bijection such that h ⊆ f and
f [U] = ψ(U) for every U ∈ U (we say that f respects ψ),
then f is continuous on C and f −1 is continuous on D

Lemma (van Engelen, 1986; see also Medini, 2015)

Let h : C −→ D be a homeomorphism between closed nowhere
dense subsets of 2ω. Then there exists a KR-cover for
〈2ω \ C , 2ω \ D, h〉.
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Knaster-Reichbach systems
Fix an admissible metric on 2ω. We will say that a sequence
〈〈hn,Kn〉 : n ∈ ω〉 is a Knaster-Reichbach system (briefly, a
KR-system) if the following conditions are satisfied:

I Each hn : Cn −→ Dn is a homeomorphism between closed
nowhere dense subsets of 2ω

I hm ⊆ hn whenever m ≤ n

I Each Kn = 〈Un,Vn, ψn〉 is a KR-cover for 〈2ω \Cn, 2
ω \Dn, hn〉

I mesh(Un) ≤ 2−n and mesh(Vn) ≤ 2−n for each n

I Um refines Un and Vm refines Vn whenever m ≥ n

I Given U ∈ Um and V ∈ Un with m ≥ n, then U ⊆ V if and
only if ψm(U) ⊆ ψn(V )



Knaster-Reichbach systems
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Knaster-Reichbach systems



Why do we care about Knaster-Reichbach
systems?

Because they give us homeomorphisms!

Theorem (see Medini, 2015)

Assume that 〈〈hn,Kn〉 : n ∈ ω〉 is a KR-system. Then there exists
a homeomorphism h : 2ω −→ 2ω such that h ⊇

⋃
n∈ω hn.

Corollary

Let X and Y be subspaces of 2ω. Assume that 〈〈hn,Kn〉 : n ∈ ω〉
is a KR-system satisfying the following additional conditions:

I X ⊆
⋃

n∈ω Cn

I Y ⊆
⋃

n∈ω Dn

I hn[X ∩ Cn] = Y ∩ Dn for each n

Then there exists a homeomorphism h : 2ω −→ 2ω such that
h ⊇

⋃
n∈ω hn and h[X ] = Y .



Proof of Steel’s theorem
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Proof of Steel’s theorem
Remember that our strategy is to construct a KR-system
〈〈hn,Kn〉 : n ∈ ω〉. We have seen how to begin:

I C0 = X0 ∪ g [Y0]

I D0 = Y0 ∪ f [X0]

I h0 = (f � X0) ∪ (g−1 � g [Y0])

Then obtain a KR-cover 〈U0,V0, ψ0〉 for 〈2ω \ C0, 2
ω \ D0, h0〉.

The next step is like the first one, but with the following changes:

I Instead of working between 2ω and 2ω, work between U and
ψ0(U), where U ∈ U0

I Instead of looking at X0 and Y0, look at X1 ∩ U and
Y1 ∩ ψ0(U)

I Repeat for every U ∈ U0, then union up the partial
homeomorphisms to get h1

Keep going like this for ω more steps...



A sufficient condition for reasonability

Lemma (Step 3)

Let Γ be a Wadge class in 2ω that is closed under intersections
with Π0

2 sets and unions with Σ0
2 sets. Then Γ is reasonably closed.

Proof.
Pick A ∈ Γ. We need to show that φ−1[A] ∪ Q0 ∈ Γ.
By Van Wesep’s Theorem, fix D ⊆ P(ω) such that Γ = ΓD(2ω).

Set Z = 2ω \ (Q0 ∪ Q1), and notice that φ−1[A] ∈ ΓD(Z ) by the
Relativization Lemma. Therefore, again by the Relativization
Lemma, there exists B ∈ ΓD(2ω) = Γ such that B ∩ Z = φ−1[A].

Since Z ∈ Π0
2(2ω), it follows from our assumptions that

φ−1[A] ∈ Γ, hence φ−1[A] ∪ Q0 ∈ Γ.

In particular, it follows that both Σ0
ξ(2ω) and Π0

ξ(2ω) are
reasonably closed whenever 3 ≤ ξ < ω1. (But we will need to be
much more sophisticated than that!)



Three steps to reasonability

Γ = [X ] for some homogeneous X ⊆ 2ω such that X /∈ ∆(Dω(Σ0
2))

��

Γ is a good Wadge class

��

Γ is closed under ∩Π0
2 and ∪Σ0

2

��

Γ is reasonably closed



The notion of level
From now on, ξ < ω1 and Γ, Λ are Wadge classes in Z .

Definition (Louveau, Saint-Raymond, 1988)

I `(Γ) ≥ ξ if PUξ(Γ) = Γ

I `(Γ) = ξ if `(Γ) ≥ ξ and `(Γ) 6≥ ξ + 1

I `(Γ) = ω1 if `(Γ) ≥ ξ for every ξ < ω1

We refer to `(Γ) as the level of Γ.

Examples:

I `(Γ) ≥ 0 for every Γ

I `({∅}) = `({Z}) = ω1

I `(Σ1
n) = `(Π1

n) = ω1 for every n ∈ ω
I `(Σ0

1+ξ) = `(Π0
1+ξ) = ξ

It is true (but not easy to prove) that for every non-selfdual Wadge
class Γ there exists ξ ≤ ω1 such that `(Γ) = ξ.



The expansion theorem

Definition (Wadge, 1984)

Γ(ξ) = {f −1[A] : A ∈ Γ and f : Z −→ Z is Σ0
1+ξ-measurable}

We will refer to Γ(ξ) as an expansion of Γ. To see what happens
with regard to Hausdorff operations, it can be shown that

ΓD(Z )(ξ) = {HD(A0,A1, . . .) : A0,A1, . . . ∈ Σ0
1+ξ(Z )}

Theorem (Louveau)

Assume that Γ is non-selfdual. Then the following conditions are
equivalent:

I `(Γ) ≥ ξ
I There exists a non-selfdual Λ such that Λ(ξ) = Γ



Good Wadge classes

Definition
We will say that Γ is good if the following are satisfied:

I Γ is non-selfdual

I ∆(Dω(Σ0
2)) ⊆ Γ

I `(Γ) ≥ 1

Lemma (Step 2)

If Γ is good then Γ is closed under ∩Π0
2 and ∪Σ0

2.

Proof.
Andretta, Hjorth and Neeman proved that if ∆(Dω(Σ0

1)) ⊆ Λ then
Λ is closed under ∩Π0

1 and ∪Σ0
1. Since `(Γ) ≥ 1 there exists Λ

such that Λ(1) = Γ. Apply the above mentioned result to Λ, then
transfer it to Γ using expansions.



The proof of Step 1
Let X ⊆ 2ω be dense and homogeneous, with X /∈ ∆(Dω(Σ0

2)).
We need to show that [X ] is a good Wadge class.

Fix a minimal non-selfdual Γ such that there exists a non-empty
U ∈ Σ0

1(2ω) such that X ∩ U ∈ Γ or X ∩ U ∈ Γ̌. Assume that
X ∩ U ∈ Γ. First we will show that Γ is good, then that [X ] = Γ.

Assume, in order to get a contradiction, that X ∩U ∈ ∆(Dω(Σ0
2)).

Notice that

U = {h[X ∩ U] : h is a homeomorphism of X}

is a cover of X because X is homogeneous and dense in 2ω.

Furthermore, since Dω(Σ0
2) is a good Wadge class, the following

lemma shows that each element of U belongs to it:

Lemma (Good Wadge classes are “topological”)

Let Γ be a good Wadge class in Z . If A ∈ Γ and B ≈ A then
B ∈ Γ.



Using a countable subcover of U , write X as a partitioned union of
sets in Dω(Σ0

2), where the elements of the partition are ∆0
2.

More specifically, let V = {h[Un ∩ X ] : n ∈ ω} be a countable

subcover of U , and set An = h[Un ∩ X ]. Let Ṽn ∈ Σ0
1(2ω) be such

that Ṽn ∩ X = An. Let Vn disjointify the Ṽn, then set
V−1 = 2ω \ (

⋃
n∈ω Ṽn) and A−1 = ∅. It is clear that each Vn is

∆0
2, while

X =
⋃

−1≤n<ω
(An ∩ Vn)

Since `(Dω(Σ0
2)) ≥ 1, it follows that X ∈ Dω(Σ0

2). A similar
argument shows that X ∈ Ďω(Σ0

2). This contradicts our
assumptions, so X ∩ U /∈ ∆(Dω(Σ0

2)).

Notice that the above reasoning actually proves the following:

Lemma
Let Γ be a good Wadge class, and let X ⊆ Z be homogeneous. If
X ∩ U ∈ Γ for some non-empty U ∈ Σ0

1(Z ) then X ∈ Γ.



It remains to show that `(Γ) ≥ 1. Assume, in order to get a
contradiction, that `(Γ) = 0. Then, applying the following with
Z = U will contradict the minimality of Γ:

Lemma
Assume that Γ is non-selfdual and that `(Γ) = 0. Let X ∈ Γ be
codense in 2ω. Then there exist a non-empty V ∈ ∆0

1(Z ) and a
non-selfdual Λ such that Λ ( Γ and X ∩ V ∈ Λ.

Now that we know that Γ is a good Wadge class, since X ∩ U ∈ Γ,
we can apply the previous lemma to see that X ∈ Γ, so [X ] ⊆ Γ. It
remains to show that [X ] ( Γ is impossible.

If X is non-selfdual, this would directly contradict minimality of Γ.
Otherwise, minimality would be contradicted after applying the
analysis of the selfdual sets.



Finishing the proof
Let X be a zero-dimensional homogeneous space that is not locally
compact. Without loss of generality, assume that X is a dense
subspace of 2ω. If X ∈ ∆(Dω(Σ0

2)), then X is strongly
homogeneous by van Engelen’s results. Therefore, we can also
assume without loss of generality that X /∈ ∆(Dω(Σ0

2)).

Fix s ∈ 2<ω, and let Y = X ∩ [s]. As in the proof of Step 1, using
also the Relativization Lemma, one can show that X and Y are
everywhere properly Γ = [X ] (in 2ω and [s] ≈ 2ω respectively).

Since X is homogeneous, either X is meager or it is Baire (hence
comeager in 2ω by AD). The same will be true of Y .

Hence Y ≈ X by Steel’s theorem. The following result concludes
the proof that X is strongly homogeneous:

Theorem (Terada, 1993)

Let X be a space. Assume that X has a base B ⊆ ∆0
1(X ) such

that U ≈ X for every U ∈ B. Then X is strongly homogeneous.



Open questions
As we have seen, for spaces of complexity higher than ∆(Dω(Σ0

2)),
Baire category and Wadge class are sufficient to uniquely identify a
homogeneous zero-dimensional space. This is the “uniqueness”
part of the classification. But the “existence” part is still open:

Question
For exactly which good Wadge classes Γ is there a homogeneous X
such that Γ = [X ]? For which ones is there a meager such X?
For which ones is there a Baire such X?

Does the usual pattern of results under AD hold?

Question
Assuming V = L, is it possible to construct a zero-dimensional Π1

1

or Σ1
1 space that is homogeneous, not locally compact, and not

strongly homogeneous?



What happens below ∆(Dω(Σ0
2))?

Q

**

Q× 2ω

ttωω

��

Q× ωω
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Q× T

**

Q× S

tt· · ·



Filters and semifilters
Whenever X ⊆ P(ω), we will identify X with the subspace of 2ω

consisting of the characteristic functions of elements of X .

Definition
A semifilter is a collection S ⊆ P(ω) that satisfies the following
conditions:

1. ∅ /∈ S and ω ∈ S
2. If X ∈ S and X =∗ Y ⊆ ω then Y ∈ S
3. If X ∈ S and X ⊆ Y ⊆ ω then Y ∈ S

Notice that Fin ∩ S = ∅ and Cof ⊆ S for every semifilter S. In
particular, no semifilter is locally compact.

Definition
A filter is a semifilter F such that the following holds:

4. If X ,Y ∈ F then X ∩ Y ∈ F



Filters are deliciously
homogeneous!

Filter

xx �� %%

Topological group
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A characterization of Borel filters
As we have seen, the combinatorial structure of filters imposes
strong constraints on their topology. But is it possible to go in the
other direction as well?
In other words, given a space, is it possible to recognize whether it
is homeomorphic to a filter?
This problem has a very elegant solution in the Borel realm:

Theorem (van Engelen, 1994)

Let X be a zero-dimensional Borel space that is not locally
compact. Then the following conditions are equivalent:

I X is homeomorphic to a filter

I X is homogeneous, meager, and homeomorphic to its square

The above characterization inspired the following ZF + DC result:

Theorem (Medini and Zdomskyy, 2016)

Every filter is homeomorphic to its square.



What about semifilters?

Theorem (Medini, 2019)

Let X be a zero-dimensional Borel space that is not locally
compact. Then the following conditions are equivalent:

I X is homeomorphic to a semifilter

I X is homogeneous

Easy counterexamples show that the “Borel” assumption cannot
be altogether dropped in ZFC, but the following two natural
questions are open (hopefully, not for long):

Question
Under AD, can the “Borel” assumption be dropped in the above
characterization of semifilters?

Question
Under AD, can the “Borel” assumption be dropped in van
Engelen’s characterization of filters?



Two concrete non-trivial examples: S and T
Theorem (van Mill, 1983; van Douwen)

Let X be a zero-dimensional space.

I X ≈ S if and only if X is the union of a complete subspace
and a σ-compact subspace, X is nowhere σ-compact, and X
is nowhere the union of a complete and a countable subspace

I X ≈ T if and only if X is the union of a complete subspace
and a countable subspace, X is nowhere σ-compact, and X is
nowhere complete

Fix infinite sets Ω1 and Ω2 such that Ω1 ∪ Ω2 = ω and
Ω1 ∩ Ω2 = ∅. Define

T = {x1 ∪ x2 : x1 ⊆ Ω1, x2 ⊆ Ω2, and

(x1 /∈ Fin(Ω1) or x2 ∈ Cof(Ω2))}



It is clear that T is a semifilter. Furthermore, T is the union of the
following spaces:

I {x ⊆ ω : x ∩ Ω1 /∈ Fin(Ω1)} ≈ ωω × 2ω ≈ ωω

I {x1 ∪ x2 : x1 ∈ Fin(Ω1) and x2 ∈ Cof(Ω2)} ≈ Q
Using the fact that T is homogeneous, one can easily see that T is
nowhere σ-compact and nowhere complete. Hence T ≈ T.

To describe S, also fix an infinite Ω ⊆ Ω2 such that Ω2 \ Ω is
infinite. Define

S = {x1 ∪ x2 : x1 ⊆ Ω1, x2 ⊆ Ω2, and

(x1 /∈ Fin(Ω1) or Ω ⊆∗ x2)}

Using an argument similar to the one that works for T , one can
show that S ≈ S.



Thank you for your attention

and have a good evening!


