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THE b-ADIC DIAPHONY OF DIGITAL

(T, s)-SEQUENCES

Julia Greslehner

ABSTRACT. The b-adic diaphony is a quantitative measure for the irregularity
of distribution of a sequence in the unit cube. In this article we give an upper
bound on the b-adic diaphony of digital (T, s)-sequences over Zb. And we derive
a condition on the quality function T such that the b-adic diaphony of the digital
(T, s)-sequence over Zb is of order O((logN)s/2N−1). We also give a metrical

result; for µs-almost all generators of a digital (T, s)-sequence over Zb the b-adic

diaphony of the sequence is of order O((log logN)2(logN)3s/2N−1).

Communicated by Vassil Grozdanov

1. Introduction

The b-adic diaphony is a quantitative measure for the irregularity of distribu-
tion of a sequence in the s-dimensional unit cube. This notion was introduced
by Hellekalek and Leeb [6] for b = 2 and later generalized by Grozdanov and
Stoilova [5] for general integers b ≥ 2. We recall now the definition of b-adic
Walsh functions, which will be needed for the definition of the b-adic diaphony.

Let b ≥ 2 be an integer. For a nonnegative integer k with base b representation
k = κa−1b

a−1 + · · ·+ κ1b+ κ0, with κi ∈ {0, . . . , b− 1} and κa−1 6= 0, we define
the Walsh function bwalk : [0, 1) → C by

bwalk(x) := e2πi(x1κ0+···+xaκa−1)/b,

for x ∈ [0, 1) with base b representation x = x1

b + x2

b2 + · · · (unique in the sense
that infinitely many of the xi must be different from b− 1).
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For higher dimensions s ≥ 1, k = (k1, . . . , ks) ∈ Ns
0 and x = (x1, . . . , xs) ∈

[0, 1)s we write

bwalk(x) :=

s∏

j=1

bwalkj
(xj).

Now we are ready to define the b-adic diaphony (see [5] or [6]).Definition 1. Let b ≥ 2 be an integer. The b-adic diaphony of the first N
elements of a sequence ω = (xn)n≥0 in [0, 1)s is defined by

Fb,N (ω) :=







1

(1 + b)s − 1

∑

k∈N
s
0

k 6=0

rb(k)

∣
∣
∣
∣
∣

1

N

N−1∑

n=0

bwalk(xn)

∣
∣
∣
∣
∣

2







1/2

,

where for k = (k1, . . . , ks) ∈ Ns
0, rb(k) :=

∏s
j=1 rb(kj) and for k ∈ N0,

rb(k) :=

{
1 if k = 0

b−2a if ba ≤ k < ba+1 where a ∈ N0.

Throughout this article we will write a(k) = a, if a is the unique determined
integer such that ba ≤ k < ba+1. If b = 2 we also speak of dyadic diaphony.

The b-adic diaphony is a quantitative measure for the irregularity of distri-
bution of a sequence: a sequence ω in the s-dimensional unit cube is uniformly
distributed modulo one if and only if limN→∞ Fb,N (ω) = 0. This was shown in
[6] for the case b = 2 and in [5] for the general case. Further it is shown in [1]
that the b-adic diaphony is – up to a factor depending on b and s – the worst
case error for quasi-Monte Carlo integration of functions from a certain Hilbert
space Hwal,s,γ , which has been introduced in [2].

In the following let b be a prime, i.e. we can always take Zb for the finite field
of prime order b. We consider the b-adic diaphony of digital (T, s)-sequences
over Zb. Here s is the dimension of the sequence and T : N0 → N0 is the quality
function of the sequence; lower quality functions imply stronger equidistribution
properties. A special class among these functions are the digital (t, s)-sequences
over Zb, where the quality function T is a constant t. Digital (t, s)-sequences were
introduced by Niederreiter [8, 9]. The concept of (T, s)-sequences was introduced
by Larcher and Niederreiter in [7], as a quality function T is a more sensitive
measure than a quality parameter t. For more information on (T, s)-sequences
see [3, Chapter 4].

In [4] the author showed a formula for the b-adic diaphony of digital (0, s)-
sequences over Zb, s = 1, . . . , b, and an upper bound for the b-adic diaphony of
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digital (t, s)-sequences over Zb for primes b. In both cases we obtained for the
asymptotic order

Fb,N (ω) = O

(
(logN)s/2

N

)

(as N → ∞). (1)

In this article we would like now to find in analogy to [4] an upper bound on the
b-adic diaphony of digital (T, s)-sequences over Zb and give a condition on the
quality function T, so that we obtain the same order as in (1). With a weaker
condition on T we still obtain the asymptotic order

(NFb,N (ω))2 = O





⌈logb N⌉
∑

u=1

us−1b2T(u)



 (as N → ∞).

Now we give a definition of digital (T, s)-sequences over Zb. The quality func-
tion T is closely related to a quantity ρm, which in some sense “measures” the
“linear independence” of s infinite matrices C1, . . . , Cs (see [3, Chapter 4.4]).
Let C1, . . . , Cs be N × N matrices over the finite field Zb. For any integers

1 ≤ i ≤ s and m ≥ 1 by C
(m)
i we denote the left upper m × m sub-matrix

of Ci. Then

ρm = ρm(C1, . . . , Cs) := ρ(C
(m)
1 , . . . , C(m)

s ),

where ρ is the independence parameter defined for s-tuples of m ×m matrices
over Zb, i.e. ρ is the largest integer such that for any choice d1, . . . , ds ∈ N0 with
d1 + · · ·+ ds = ρ, the following holds:

the first d1 row vectors of C
(m)
1 together with

the first d2 row vectors of C
(m)
2 together with

...

the first ds row vectors of C
(m)
s

are linearly independent over the finite field Zb.Definition 2. For n ≥ 0 let n = n0 + n1b + n2b
2 + · · · be the base b repre-

sentation of n. For j ∈ {1, . . . , s} multiply the vector n = (n0, n1, . . .)
⊤ by the

matrix Cj ,

Cj · n =: (xjn(1), x
j
n(2), . . .)

⊤ ∈ Z
∞
b ,

and set

x(j)n :=
xjn(1)

b
+
xjn(2)

b2
+ · · · .

Finally set xn := (x
(1)
n , . . . , x

(s)
n ).
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The digital sequence ω constructed this way by the N×N matrices C1, . . . , Cs

over Zb is a strict (T, s)-sequence in base b with T(m) = m− ρm for all m ∈ N.
The matrices C1, . . . , Cs are called the generator matrices of the sequence.Remark 1. (1) Any strict digital (T, s)-sequence over Zb is a digital (U, s)-

sequence over Zb for all U with U(m) ≥ T(m) for all m.

(2) The concept of (t, s)-sequences in base b is contained in the concept of
(T, s)-sequences in base b. We just have to take for T the constant function
T(m) = t for all m (resp. T(m) = m for m ≤ t).

For more information on digital (T, s)-sequences we refer to [3].Definition 3. Let ω be a uniformly distributed strict digital (T, s)-sequence
in base b. For r ∈ N0 we set

η(r) := min{m : m−T(m) ≥ r}.

This minimum exists for all r, because limm→∞m−T(m) = ∞ if ω is uniformly
distributed modulo 1 (see [3, Theorem 4.32]).

We will need the following properties of the function η:

(1) η is non-decreasing.

(2) The condition η(r) > u is equivalent to u−T(u) < r.

These properties follow easily from the fact that S(m) := m−T(m) is non-
decreasing (see [3, p.133]) and from the definition of η.

Finally we need the definition of the function ψb.Definition 4. Let β be an integer in {1, . . . , b − 1}. For x ∈
[
j
b ,

j+1
b

)
, j ∈

{0, . . . , b− 1} we set

ψ
β
b (x) :=

b2(b2 − 1)

12

∣
∣
∣
∣
∣

1

b

z
j
β − 1

zβ − 1
+ z

j
β

(

x−
j

b

)
∣
∣
∣
∣
∣

2

,

where zβ = e
2πi
b

β = bwal1

(
β
b

)

; then the function is extended to the reals by

periodicity. The function ψb is now defined as the mean of the functions ψβ
b :

ψb(x) :=
1

b− 1

b−1∑

β=1

ψ
β
b (x).

We will need two facts about ψb:

(1) The function ψb is bounded (see [4, Lemma 12]),
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(2) ψb(x) =
b2(b2−1)

12 x2 on the interval
[
0, 1b

)
(see [4, Lemma 11(1)]).

For further properties of the function ψb we refer to [4, Lemma 11,
Lemma 13].

2. Results

We show now an upper bound on the b-adic diaphony of digital (T, s)-
sequences. From this we derive (under certain conditions on the quality function
T) the asymptotic order of the b-adic diaphony of these sequences. We also give
a metrical result. The proofs of the results below are given in Section 3.Theorem 1. Let ω be a digital (T, s)-sequence over Zb. For any N ≥ 1 we have

(NFb,N (ω))2

≤
1

(b+ 1)s − 1

12

b3(b+ 1)

s∑

w=1

(
s

w

)(
b4

b2 − 1

)w ∞∑

u=1

ψb

(
N

bu

)

bu
∞∑

v=u−1

vw−1

bv
b2T(v)

≤ c

∞∑

u=1

ψb

(
N

bu

)

bu
∞∑

v=u−1

vs−1

bv
b2T(v),

where c is a constant that does not depend on N .

From the above theorem we obtain now the asymptotic behaviour of certain
digital (T, s)-sequences over Zb.Corollary 1. Let ω be a digital (T, s)-sequence over Zb satisfying the property
that

∞∑

v=u−1

vs−1

bv
b2T(v) ≤ c1

us−1

bu
b2T(u) for all u ∈ N,

where c1 is a constant that does not depend on u. Then for the b-adic diaphony
of the first N ≥ 2 elements of ω we have

(NFb,N (ω))2 = O





⌈logb N⌉
∑

u=1

us−1b2T(u)



 (as N → ∞).Remark 2. (1) For u ∈ N, s ∈ N0 we have

∞∑

v=u−1

vs

bv
≤

(

2b

∞∑

v=0

vs

bv

)

us

bu
≤ c1

us

bu
.
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(2) For T(v) = t the above condition is satisfied and we get immediately the
asymptotic order of the b-adic diaphony of digital (t, s)-sequences over Zb

Fb,N (ω) = O

(
(logN)s/2

N

)

(as N → ∞),

(see also [4, Corollary 10]).

(3) For T(m) ≤ max(C, logb logm), C ≥ 0, the above condition is satisfied
and we get

Fb,N (ω) = O

(
(log logN)(logN)s/2

N

)

(as N → ∞).

In the last example we already came close to the desired asymptotic order
O((logN)s/2N−1). In the next corollary we give an additional condition on T,
which guarantees such an asymptotic behaviour.Corollary 2. Let ω be a digital (T, s)-sequence over Zb satisfying

(1)
∑∞

v=u−1
vs−1

bv b2T(v) ≤ c1
us−1

bu b2T(u) for all u ∈ N,

(2) 1
m

∑m
u=1 b

2T(u) ≤ c2 for all m ∈ N,

where the constants c1, c2 do not depend on u and m, respectively. Then we have

Fb,N (ω) = O

(
(logN)s/2

N

)

(as N → ∞).

Now we are interested in the order of the b-adic diaphony of digital (T, s)-
sequences, when the quality function T does not necessarily fulfill the conditions
from Corollary 2 or Corollary 1, i.e. what order we can get for almost all digital
(T, s)-sequences. In the following we explain what we mean by “almost all”.

Let Ms denote the set of all s-tuples of N × N matrices over Zb. We define
the probability measure µs on Ms as the product measure induced by a certain
probability measure µ on the set M of all infinite matrices over Zb. We can
view M as the product of denumerable many copies of the sequence space Z

N

b

over Zb, and so we define µ as the product measure induced by a certain prob-
ability measure µ̃ on ZN

b . For µ̃ we just take the measure on ZN

b induced by the
equiprobability measure on Zb.

We use now the result from [3, Example 5.50.], that µs-almost all s-tuples
(C1, . . . , Cs) ∈ Ms generate a digital (T, s)-sequence over Zb such that for some
constant L we have

T(m) ≤ s logbm+ 2 logb logm+ L (2)
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for all integers m ≥ 2, to obtain the following metrical result as a consequence
of Corollary 1.Corollary 3. µs-almost all s-tuples (C1, . . . , Cs) ∈ Ms generate a digital
(T, s)-sequence over Zb such that

Fb,N (ω) = O

(
(log logN)2(logN)3s/2

N

)

(as N → ∞).

3. Proofs

In this section we provide now the proofs of the previous results from
Section 2.

P r o o f o f T h e o r e m 1. It is enough to show Theorem 1 for strict digital
(T, s)-sequences over Zb. If ω is not uniformly distributed modulo one the upper
bound in Theorem 1 is infinite and therefore trivially fulfilled. So let in the
following ω be a uniformly distributed, strict digital (T, s)-sequence over Zb, i.e.
the function η is always well defined. The first steps of this proof are the same
as in [4, Proof of Theorem 6]. So we just recall these steps without a detailed

elaboration. For a point xn of ω and for ∅ 6= u ⊆ {1, . . . , s}, we define x
(u)
n as

the projection of xn onto the coordinates in u. We have

(NFb,N (ω))2 =
1

(b + 1)s − 1

∑

∅6=u⊆{1,...,s}
u={w1,...,w|u|}

Σ(u),

where

Σ(u) :=
∞∑

kw1=1

· · ·
∞∑

kw|u|
=1




∏

j∈u

1

b2a(kj)





∣
∣
∣
∣
∣

N−1∑

n=0

bwal(kw1 ,...,kw|u|
)(x

(u)
n )

∣
∣
∣
∣
∣

2

.

For the sake of simplicity we assume in the following u = {1, . . . , σ}, 1 ≤ σ ≤ s,
and set kσ := (k1, . . . , kσ), where kj , 1 ≤ j ≤ σ, has b-adic expansion kj =

κ
(j)
0 + κ

(j)
1 b + · · · + κ

(j)
aj b

aj , κ
(j)
aj 6= 0. The other cases are dealt with a similar

fashion. Let Cj = (c
(j)
v,w)v,w≥1 and let c

(j)
i be the i-th row vector of the generator

matrix Cj . Define

u(kσ) := min






l ≥ 1 :

σ∑

j=1

(κ
(j)
0 c

(j)
1,l + · · ·+ κ(j)aj

c
(j)
aj+1,l) 6= 0






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and

βkσ
= (βkσ,0, βkσ,1, . . .)

⊤ :=

σ∑

j=1

(κ
(j)
0 c

(j)
1 + · · ·+ κ(j)aj

c
(j)
aj+1).

Since C1, . . . , Cs generate a digital (T, s)-sequence over Zb one can verify with

the same arguments as in [4, Proof of Theorem 6] that u(kσ) ≤ η
(
∑σ

j=1 aj + σ
)

=: η(Rσ + σ), since the η(Rσ + σ)× (Rσ + σ) matrix

C(a1, . . . , aσ)

:=









c
(1)
1,1 . . . c

(1)
a1+1,1 . . . c

(σ)
1,1 . . . c

(σ)
aσ+1,1

c
(1)
1,2 . . . c

(1)
a1+1,2 . . . c

(σ)
1,2 . . . c

(σ)
aσ+1,2

...
...

...
...

c
(1)
1,η(Rσ+σ) . . . c

(1)
a1+1,η(Rσ+σ) . . . c

(σ)
1,η(Rσ+σ) . . . c

(σ)
aσ+1,η(Rσ+σ)









has rank Rσ + σ. We have

Σ({1, . . . , σ})

=
12

b2(b2 − 1)

∞∑

a1=0

· · ·
∞∑

aσ=0

1

b2Rσ

η(Rσ+σ)
∑

u=1

b−1∑

β=1

b2uψ
β
b

(
N

bu

) ba1+1−1∑

k1=ba1

· · ·
baσ+1−1∑

kσ=baσ

1

︸ ︷︷ ︸

u(kσ )=u
β
kσ,u(kσ)−1=β

.

We need to evaluate the sum

ba1+1−1∑

k1=ba1

· · ·
baσ+1−1∑

kσ=baσ

1

︸ ︷︷ ︸

u(kσ )=u
β
kσ,u(kσ)−1=β

for 1 ≤ u ≤ η(Rσ + σ) and β ∈ {1, . . . , b − 1}. This is the number of digits

κ
(1)
0 , . . . , κ

(1)
a1−1, θ1, . . . , κ

(σ)
0 , . . . , κ

(σ)
aσ−1, θσ ∈ {0, . . . , b − 1}, θ1 6= 0, . . . , θσ 6= 0,
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such that

C(a1, . . . , aσ)





















κ
(1)
0

...

κ
(1)
a1−1

θ1
...

κ
(σ)
0

...

κ
(σ)
aσ−1

θσ





















=















0
...
0
β

xu+1

...
xη(Rσ+σ)















(3)

for arbitrary xu+1, . . . , xη(Rσ+σ) ∈ Zb. Let now 1 ≤ u ≤ η(Rσ + σ) and β ∈
{1, . . . , b − 1} be fixed. For a fixed choice of xu+1, . . . , xη(Rσ+σ) the system (3)

has at most one solution. There are bη(Rσ+σ)−u possible choices for the xu+1, . . . ,

xη(Rσ+σ). So we have

ba1+1−1∑

k1=ba1

· · ·
baσ+1−1∑

kσ=baσ

1

︸ ︷︷ ︸

u(kσ)=u

β
kσ,u(kσ)−1=β

≤ bη(Rσ+σ)−u.

Now we have

Σ({1, . . . , σ})

≤
12

b2(b2 − 1)

∞∑

a1,...,aσ=0

1

b2Rσ

η(Rσ+σ)
∑

u=1

b−1∑

β=1

b2uψ
β
b

(
N

bu

)

bη(Rσ+σ)−u

=
12

b2(b+ 1)

∞∑

a1,...,aσ=0

1

b2Rσ

η(Rσ+σ)
∑

u=1

ψb

(
N

bu

)

bubη(Rσ+σ)

=
12

b2(b+ 1)

∞∑

u=1

ψb

(
N

bu

) ∞∑

a1,...,aσ=0
η(Rσ+σ)≥u

bubη(Rσ+σ)

b2Rσ

=
12

b2(b+ 1)

∞∑

u=1

ψb

(
N

bu

) ∞∑

a1,...,aσ=0
(u−1)−T(u−1)<Rσ+σ

bubη(Rσ+σ)

b2Rσ

9
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≤
12

b2(b+ 1)

∞∑

u=1

ψb

(
N

bu

) ∞∑

w=(u−1)−T(u−1)−σ+1

(
w + σ − 1

σ − 1

)
bubη(w+σ)

b2w

≤
12

b2(b+ 1)

∞∑

u=1

ψb

(
N

bu

) ∞∑

v=u−1

bubv+1

(v+1)−T(v+1)−σ
∑

w=v−T(v)−σ+1

(
w + σ − 1

σ − 1

)
1

b2w

<
12

b(b+ 1)

∞∑

u=1

ψb

(
N

bu

) ∞∑

v=u−1

bubv
∞∑

w=v−T(v)−σ+1

(
w + σ − 1

σ − 1

)
1

b2w

≤
12

b(b+ 1)

∞∑

u=1

ψb

(
N

bu

) ∞∑

v=u−1

bubv
1

b2v−2T(v)−2σ+2

(
v −T(v)

σ − 1

)(

1−
1

b2

)−σ

≤
12

b3(b+ 1)

(
b4

b2 − 1

)σ ∞∑

u=1

ψb

(
N

bu

)

bu
∞∑

v=u−1

vσ−1

bv
b2T(v),

where we have used [3, Lemma 13.24] for the penultimate inequality. So we get

(NFb,N (ω))2

=
1

(b+ 1)s − 1

∑

∅6=u⊆{1,...,s}
u={w1,...,w|u|}

Σ(u)

≤
1

(b+ 1)s − 1

12

b3(b + 1)

s∑

w=1

(
s

w

)(
b4

b2 − 1

)w ∞∑

u=1

ψb

(
N

bu

)

bu
∞∑

v=u−1

vw−1

bv
b2T(v).

�

P r o o f o f C o r o l l a r y 1. For any bm−1 < N ≤ bm we obtain out of Theo-
rem 1 and the special form of ψb on

[
0, 1b
)
that

(NFb,N (ω))2

≤ c

∞∑

u=1

ψb

(
N

bu

)

bu
∞∑

v=u−1

vs−1

bv
b2T(v)

≤ cc1

m∑

u=1

ψb

(
N

bu

)

us−1b2T(u) + cc1

∞∑

u=m+1

b2(b2 − 1)

12

N2

b2u
us−1b2T(u)

≤ cc1

m∑

u=1

ψb

(
N

bu

)

us−1b2T(u) + cc1
b2(b2 − 1)

12

N

bm+1
bm

∞∑

u=m−1

us−1

bu
b2T(u)

≤ c̃1

m∑

u=1

us−1b2T(u) + c̃2m
s−1b2T(m)

10
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= O

(
m∑

u=1

us−1b2T(u)

)

,

where all appearing constants may depend only on b and s. �

P r o o f o f C o r o l l a r y 2. From Corollary 1 and the additional condition that
1
m

∑m
u=1 b

2T(u) ≤ c2 for all m ∈ N, we get for any bm−1 < N ≤ bm

(NFb,N (ω))2 ≤ c̃

m∑

u=1

us−1b2T(u)

≤ c̃ms 1

m

m∑

u=1

b2T(u)

≤ c̃c2m
s,

where all appearing constants may depend only on b and s. From this it follows
immediately that

Fb,N (ω) = O

(
(logN)s/2

N

)

(as N → ∞).
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