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Abstract

Point sets referred to as (t, α, β, n, m, s)-nets were recently intro-
duced and shown to generalize both digital (t, α, β, n×m, s)-nets and
classical (t, m, s)-nets. Their definition captures the geometrical prop-
erties of their digital analogue, which has recently been shown to yield
quadrature points for quasi-Monte Carlo rules which can achieve ar-
bitrary high convergence rates of the integration error for sufficiently
smooth functions. In this paper, we characterize (t, α, β, n,m, s)-nets
using Weyl sums generalizing the analogous result for (t, m, s)-nets.

As an application of this characterization we study numerical in-
tegration using such generalized nets. It is shown that for functions
having square integrable mixed partial derivatives of order α in each
variable, integration errors converge at a rate of N−(α−1+δ) for any
δ > 0, establishing that (t, α, β, n, m, s)-nets can exploit the smooth-
ness of the function under consideration.

As a further application, it can be used for the construction of new
(t, α, β, n, m, s)-nets itself: We introduce an analogue of the (u, u+v)-
construction for digital (t, α, β, n×m, s) nets and (t, m, s)-nets.

1 Introduction

Generalized digital nets and sequences were introduced in [6, 7], where it was
also shown that point sets x0, . . . ,xbm−1, obtained from a generalized digital
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net or sequence, can be used in a quasi-Monte Carlo rule b−m
∑bm−1

h=0 f(xh)
to approximate the integral

∫
[0,1]s

f(x) dx, and that the integration error

can achieve an arbitrary high rate of convergence for sufficiently smooth
functions.

In [1], the geometrical properties of those generalized digital nets and se-
quences, called digital (t, α, β, n×m, s)-nets and digital (t, α, β, σ, s)-sequences,
were analyzed. Point sets satisfying a certain geometrical property exhib-
ited by the generalized digital nets and sequences are called (t, α, β, n, m, s)-
nets, which include both digital (t, α, β, n×m, s)-nets, [7], and (t,m, s)-nets,
[13, 14], as special cases. One motivation for studying the geometrical prop-
erties of generalized digital nets and sequences lies in the conjecture that non-
digital nets and sequences may exist with better quality than their digital
counterparts [15]. Studying the geometrical properties reveals the properties
generalized non-digital, that is non-linear, nets and sequences need to have.
This information can be used for the construction of new generalized (non-
digital, i.e., non-linear) nets and sequences. Indeed, our results here also turn
out to be applicable to constructing new generalized nets and sequences.

In this paper, we firstly show how to characterize (t, α, β, n, m, s)-nets
using Weyl sums, in analogy to [12, Corollary 3], which provides the result
for (t,m, s)-nets. This result also turns out to be useful for applications,
which is the second contribution of the paper.

We study numerical integration in the Walsh space introduced in [7]. In
particular, we show that if the function under consideration has square inte-
grable mixed partial derivatives of order α in each variable, the integration
errors resulting from approximating the integral with a quasi-Monte Carlo
rule with a (t, α, β, n, m, s)-net as quadrature points, converge at a rate of
N−(α−1), multiplied by a log N factor, for sufficiently smooth functions. This
bound is not optimal as one can obtain N−α(log N)αs with generalized digital
nets [7] for example, but in Remark 2 we point out that for given concrete
constructions optimal bounds may be obtained using further information of
the construction.

We also generalize the (u, u+v) construction, which is already used to con-
struct (t,m, s)-nets [4] and digital (t, α, β, n×m, s)-nets [9], to the construc-
tion of (t, α, β, n, m, s)-nets. Again, the characterization of (t, α, β, n, m, s)-
nets using Weyl sums turns out to be the appropriate tool to establish the
result.

The main results of the paper are the following:

• Theorem 1, which shows that (t, α, β, n, m, s)-nets can be characterized
using Weyl sums.

• Theorem 2, which shows that (t, α, β, n, m, s)-nets can achieve integra-
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tion errors of order N−(α−1) multiplied by a log N factor.

• Theorem 3, which shows how to obtain new (t, α, β, n, m, s)-nets using
an analogue of the (u, u + v)-construction.

The paper is structured as follows: In Section 2, we provide the definition of
(t, α, β, n, m, s)-nets and state some of their properties, recall the definition
of Walsh functions and Weyl sums and give the basic features of the function
space under consideration. The characterization of (t, α, β, n, m, s)-nets in
terms of Weyl sums is given in Section 3. The application of the characteri-
zation to numerical integration is given in Section 4 and the characterization
is used to establish the (u, u + v)-construction for (t, α, β, n, m, s)-nets in
Section 5.

2 Basic definitions

In this section, we introduce (t, α, β, n, m, s)-nets, Walsh functions, Weyl
sums and the function space considered for numerical integration. In addition
we also generalize the construction from [7, Section 4.4] (see also [6]).

Definition and construction of (t, α, β, n, m, s)-nets. Before we can
state the definition of (t, α, β, n, m, s)-nets we need some notation.

Let n, s ≥ 1, b ≥ 2 be integers. For ν = (ν1, . . . , νs) ∈ {0, . . . , n}s let
|ν|1 =

∑s
j=1 νj and define iν = (i1,1, . . . , i1,ν1 , . . . , is,1, . . . , is,νs) with integers

1 ≤ ij,νj
< . . . < ij,1 ≤ n in case νj > 0 and

{
ij,1, . . . , ij,νj

}
= ∅ in case

νj = 0, for j = 1, . . . , s. For given ν and iν let aν ∈ {0, . . . , b− 1}|ν|1 , which
we write as aν = (a1,i1,1 , . . . , a1,i1,ν1

, . . . , as,is,1 , . . . , as,is,νs
).

A generalized elementary interval in base b is a subset of [0, 1)s of the
form

J(iν , aν) =
s∏

j=1

q−1⋃
aj,l=0

l∈{1,...,n}\{ij,1,...,ij,νj
}

[
aj,1

b
+ · · ·+ aj,n

bn
,
aj,1

b
+ · · ·+ aj,n

bn
+

1

bn

)
,

where
{
ij,1, . . . , ij,νj

}
= ∅ in case νj = 0 for 1 ≤ j ≤ s.

From [1, Lemmas 3.1 and 3.2] it is known that for ν ∈ {0, . . . , n}s and iν

defined as above and fixed, the generalized elementary intervals J(iν , aν) for

aν ∈ {0, . . . , b− 1}|ν|1 form a partition of [0, 1)s and the volume of J(iν , aν)
is b−|ν|1 .

We can now recall the definition of (t, α, β, n, m, s)-nets which is based
on [1, Definition 3.1].
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Definition 1 Let n, m, s, α ≥ 1 and b ≥ 2 be integers, let 0 < β ≤ 1 be a
real number and let 0 ≤ t ≤ βn be an integer. Let P = (xn)bm−1

n=0 ⊆ [0, 1)s be a
point set in the s-dimensional unit cube. We say that P is a (t, α, β, n, m, s)-
net in base b, if for all integers 1 ≤ ij,νj

< . . . < ij,1, where νj ≥ 0, with

s∑
j=1

min(νj ,α)∑
l=1

ij,l ≤ βn− t,

where for νj = 0 we set the empty sum
∑0

l=1 ij,l = 0, the generalized el-
ementary interval J(iν , aν) contains exactly bm−|ν|1 points of P for each

aν ∈ {0, . . . , b− 1}|ν|1.

Some remarks on the definition of (t, α, β, n, m, s)-nets are in order (for
more information see [1]).

Remark 1 1. We obtain the definition of a classical (t,m, s)-net (accord-
ing to [13, 14]) from Definition 1 by setting α = β = 1, n = m, and
considering all ν1, . . . , νs ≥ 0 so that

∑s
j=1 νj ≤ m − t, where we set

ij,k = νj − k + 1 for k = 1, . . . , νj. Hence a (t, 1, 1, m, m, s)-net is a
(t,m, s)-net.

2. Definition 1 says that for every generalized elementary interval J(iν , aν)
of volume b−|ν|1 we have

|{0 ≤ h < bm : xh ∈ J(iν , aν)}|
bm

− λs(J(iν , aν)) = 0,

where λs denotes the s dimensional Lebesgue measure.

For concrete constructions of (t, α, β, n, m, s)-nets for various parameters
see [7, Section 4.4], and also [1, 9] for bounds and further constructions of
such nets. Most of these methods rely on the digital construction method,
which is already well known for classical nets.

A method which does not necessarily use the digital construction scheme,
but relies on classical (t,m, s)-nets instead, is as follows: for a fixed d ∈ N, let
{x0, x1, . . . ,xbm−1} form a (t′, m, sd)-net in base b. Let xh = (xh,1, . . . , xh,sd),
xh,j = ξh,j,1b

−1 + ξh,j,2b
−2 + · · · for h = 0, . . . , bm − 1 and 1 ≤ j ≤ sd. Then

we construct a point set yh = (yh,1, . . . , yh,s), h = 0, . . . , bm − 1, by

yh,j =
m∑

i=1

d∑
k=1

ξh,(j−1)d+k,ib
−k−(i−1)d,
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for any 1 ≤ j ≤ s. It has been shown in [3] that for every α ≥ 1, the point
set

{
y0, y1, . . . ,ybm−1

}
forms a (t, α, min(1, α

d
), dm, m, s)-net in base b with

t = min(d, α) min

(
m, t′ +

⌊
s(d− 1)

2

⌋)
.

We remark that in Section 5, we will show how to combine two (t, α, β, n, m, s)-
nets to form another one using the (u, u + v)-construction.

Walsh functions and Weyl sums. In this subsection, we recall the con-
cept of Weyl sums based on Walsh functions, see e.g. [12]; it turns out, see
Section 3, that (t, α, β, n, m, s)-nets can be characterized using Weyl sums.

Let, in the following, N0 denote the set of non-negative and N the set
of positive integers and fix b ∈ N, b ≥ 2. Each k ∈ N0 has a unique b-
adic representation k =

∑a
i=0 κib

i, κi ∈ {0, . . . , b − 1}, where κa 6= 0. Each
x ∈ [0, 1) has a b-adic representation x =

∑∞
i=1 ξib

−i, ξi ∈ {0, . . . , b − 1},
which is unique in the sense that infinitely many of the ξi must differ from
b− 1. We define the k-th Walsh function in base b, walk : [0, 1) → C by

walk(x) := exp

(
2πi

b
(ξ1κ0 + · · ·+ ξa+1κa)

)
.

For dimension s ≥ 2 and vectors k = (k1, . . . , ks) ∈ Ns
0 and x = (x1, . . . , xs) ∈

[0, 1)s we define walk : [0, 1)s → C by

walk(x) :=
s∏

j=1

walkj
(xj).

It follows from the definition above that Walsh functions are piecewise
constant functions. For more information on Walsh functions, see e.g. [5, 19].

We can now recall the concept of a Weyl sum.

Definition 2 For a point set P = (xn)N−1
n=0 ∈ [0, 1)s, N ∈ Ns

0 let

SN(f,P) =
1

N

N−1∑
n=0

f(xn).

If f = walk for some k ∈ Ns
0, then SN(walk,P) is called a Weyl sum (based

on Walsh functions).
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The function space Wα,s,γ. The function space under consideration in
this paper is the space Wα,s,γ ⊆ L2([0, 1)s) as introduced in [7]. Here γ =
(γj)

∞
j=1 is a sequence of positive, non-increasing weights, which are introduced

to model the importance of different variables for our approximation problem,
see [17]. Given a positive integer k with base b expansion k = κ1b

a1−1 +
κ2b

a2−1 + · · ·+ κvb
av−1, 1 ≤ av < . . . < a1, v ≥ 1, we define

µα(k) := a1 + · · ·+ amin(v,α). (1)

Furthermore, µα(0) := 0 and for k ∈ Ns
0, k = (k1, . . . , ks), µα(k) =

∑s
j=1 µα(kj).

For k ∈ N0 and a weight γ > 0, we define a function

rα,γ(h) :=

{
1 if h = 0,

γb−µα(h) otherwise.

If we consider a vector k ∈ Ns
0, k = (k1, . . . , ks), we set

rα,s,γ(h) :=
s∏

j=1

rα,γj
(hj).

In this paper, we study integration errors resulting from the approxima-
tion of an integral based on (t, α, β, n, m, s)-nets by considering the Walsh
series of the integrand f ; we remark that this approach has also been used
when studying integration errors resulting from the application of digital and
generalized digital nets, see e.g. [7, 10]. In particular, for f ∈ L2([0, 1)s), the
Walsh series of f is given by

f(x) ∼
∑
k∈Ns

0

f̂(k)walk(x), (2)

where the Walsh coefficients f̂(k) are given by

f̂(k) =

∫
[0,1]s

f(x)walk(x) dx.

In general, the Walsh series given in Eq. (2) need not converge to f ,
however, for the space of Walsh series Wα,s,γ , which we define in the following,
it does converge absolutely, see also [7].

The space Wα,s,γ consists of all Walsh series f =
∑

k∈Ns
0
f̂(k)walk for

which the norm

‖f‖Wα,s,γ
:= sup

k∈Ns
0

∣∣∣f̂(k)
∣∣∣

rα,s,γ(k)
,



7

is finite. It follows immediately that for any f ∈ Wα,s,γ , and any k ∈ Ns
0,∣∣∣f̂(k)

∣∣∣ ≤ ‖f‖Wα,s,γ
rα,s,γ(k). (3)

For α ≥ 2, the following property was shown in [7]: Let f : [0, 1]s → R
be such that all mixed partial derivatives up to order α in each variable
are square integrable, then f ∈ Wα,s,γ . Furthermore, an inequality using a
Sobolev type norm and the norm (3) has been shown, see also [6, 8]. Conse-
quently, the results we are going to establish in the following for functions in
Wα,s,γ also apply automatically to smooth functions. The assumption α > 1
is needed to ensure that the sum of the absolute values of the Walsh coef-
ficients converges, the case α = 1 requires a different analysis, which was
carried out in [10] for numerical integration.

3 Characterization of (t, α, β, n, m, s)-nets us-

ing Weyl sums

In this section, we characterize (t, α, β, n, m, s)-nets using Weyl sums. Our
results generalize [12, Lemmas 1 and 2 and Corollary 3].

Lemma 1 Let P = (xn)bm−1
n=0 be a (t, α, β, n, m, s)-net in base b ≥ 2, where

α ≥ 2 is an integer, β a real number such that 0 < β ≤ 1 and n,m, s ∈ N.
Then for all k ∈ Ns

0 satisfying 0 < µα(k) ≤ βn− t we have

Sbm(walk,P) = 0.

Proof. Let k = (k1, . . . , ks) ∈ Ns
0, be such that 0 < µα(k) ≤ βn − t (hence

k 6= 0) and for kj 6= 0 let

kj = κj,1b
ij,1−1 + · · ·+ κj,νj

bij,νj
−1,

with κj,l ∈ {1, . . . , b− 1} be the b-adic expansion of kj, 1 ≤ j ≤ s. Then for
j with kj 6= 0 and x =

∑∞
l=1 ξlb

−l ∈ [0, 1) we have

walkj
(x) = exp

(
2πi

b
(κj,1ξij,1

+ · · ·+ κj,νj
ξij,νj

)

)
.

Hence, if we set iν = (i1,1, . . . , i1,ν1 , . . . , is,1, . . . , is,νs), which only depends on
k, then walk(x) is constant on generalized elementary intervals of the form

J(iν , aν) =
s∏

j=1

b−1⋃
aj,l=0

l∈{1,...,n}\{ij,1,...,ij,νj
}

[
aj,1

b
+ · · ·+ aj,n

bn
,
aj,1

b
+ · · ·+ aj,n

bn
+

1

bn

)
.
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Furthermore we denote the value assumed by walk(x) on J(iν , aν) by caν .

As J(iν , aν), aν ∈ {0, . . . , b− 1}|ν|1 is a partition of [0, 1)s we obtain

walk(x) =
∑

aν∈{0,...,b−1}|ν|1

caν1J(iν ,aν)(x),

where 1J(iν ,aν) denotes the characteristic function of J(iν , aν).
For k 6= 0 we have

∫
[0,1]s

walk(x) dx = 0, and hence it follows that the

sum
∑

aν∈{0,...,b−1}|ν|1 caν = 0, as the volume of J(iν , aν) depends only on ν.
Consequently,

Sbm(walk,P) =
∑

aν∈{0,...,b−1}|ν|1

caνSbm(1J(iν ,aν) − λs(J(iν , aν)),P).

As J(iν , aν) is a generalized elementary interval of volume b−|ν|1 for which
by assumption

s∑
j=1

min(νj ,α)∑
l=1

ij,l = µα(k) ≤ βn− t,

it follows that J(iν , aν) contains bm−|ν|1 points of P and hence

Sbm(1J(iν ,aν) − λs(J(iν , aν)),P) =
1

bm
(bm−|ν|1 − bmλs(J(iν , aν)) = 0

as desired. �

To establish the converse, we need the following lemma, which generalizes
[11, Lemma 3(i)] and which can be proven along the same lines as [11, Remark
(iv), Lemma 2(i) and Lemma 3(i)].

Lemma 2 For given ν, iν and aν let

J(iν , aν) =
s∏

j=1

b−1⋃
aj,l=0

l∈{1,...,n}\{ij,1,...,ij,νj
}

[
aj,1

b
+ · · ·+ aj,n

bn
,
aj,1

b
+ · · ·+ aj,n

bn
+

1

bn

)

and let f(x) = 1J(iν ,aν)(x)− λs(J(iν , aν)). Define

∆iν :=
{
k = (k1, . . . , ks) ∈ Ns : kj = κj,1b

ij,1−1 + · · ·+ κj,νj
bij,νj

−1;

κj,1, . . . κj,νj
∈ {1, . . . , b− 1} if νj > 0 and kj = 0 for νj = 0

}
,

Then for all k 6∈ ∆iν we have |f̂(k)| = 0.
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The following lemma generalizes [12, Lemma 2].

Lemma 3 Let P = (xn)bm−1
n=0 be a fixed sequence of bm points in the s-

dimensional unit cube [0, 1)s and suppose that for each k ∈ Ns
0 satisfying

0 < µα(k) ≤ βn− t we have

Sbm(walk,P) = 0.

Then P is a (t, α, β, n, m, s)-net in base b.

Proof. Suppose that J is an arbitrary generalized elementary interval of the
form

J(iν , aν) =
s∏

j=1

b−1⋃
aj,l=0

l∈{1,...,n}\{ij,1,...,ij,νj
}

[
aj,1

b
+ · · ·+ aj,n

bn
,
aj,1

b
+ · · ·+ aj,n

bn
+

1

bn

)
,

with νj ≥ 0, 1 ≤ ij,νj
< . . . < ij,1 so that

∑s
j=1

∑min(νj ,α)
l=1 ij,l ≤ βn − t. We

define f(x) = 1J(x)−λs(J). In order to show that P is a (t, α, β, n, m, s)-net
in base b, it suffices to prove that Sbm(f,P) = 0. If 1̂J(k) denotes the k-th
Walsh coefficient of 1J , then due to Lemma 2, for all x ∈ [0, 1)s we have

f(x) =
∑
k∈∆∗

1̂J(k)walk(x)

and hence
Sbm(f,P) =

∑
k∈∆∗

1̂J(k)Sbm(walk,P).

But k ∈ ∆∗ implies that µα(k) =
∑s

j=1

∑min(νj ,α)
l=1 ij,l ≤ βn − t, hence

Sbm(walk,P) = 0. This implies that Sbm(f,P) = 0. �

Combining Lemma 1 and Lemma 3 we obtain the following characteriza-
tion of (t, α, β, n, m, s)-nets in terms of Weyl sums (for the Walsh function
system).

Theorem 1 Let P = (xn)bm−1
n=0 be a finite sequence of bm points in the s-

dimensional unit cube [0, 1)s. Then P is a (t, α, β, n, m, s)-net in base b if
and only if for all k ∈ Ns

0 satisfying 0 < µα(k) ≤ βn− t we have

Sbm(walk,P) = 0.
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4 Application to numerical integration

In this section we establish that (t, α, β, n, m, s)-nets can exploit the smooth-
ness α of a function f ∈ Wα,s,γ . We need to introduce some notation: Let
S = {1, . . . , s}. For k = (k1, . . . , ks) ∈ Ns

0 and for ∅ 6= u ⊆ S let ku be the

vector in N|u|
0 which consists of all components of k whose index belongs to

u. Furthermore let (ku,0) be the vector k with all components whose index
is not in u replaced by 0. With this notation we have µα(ku) = µα(ku,0).
For a sequence γ = (γj)j≥1 we write γu =

∏
j∈u γj.

We need the following lemma.

Lemma 4 Let (xn)bm−1
n=0 be a (t, α, β, n, m, s)-net in base b and let f ∈ Wα,s,γ,

then ∣∣∣∣∣
∫

[0,1]s
f(x) dx− 1

bm

bm−1∑
n=0

f(xn)

∣∣∣∣∣ ≤ ∑
∅6=u⊆S

γu

∑
ku∈N|u|

µα(ku)>βn−t

b−µα(ku). (4)

Proof. For f ∈ Wα,s,γ and (xn)bm−1
n=0 a (t, α, β, n, m, s)-net, we can write∣∣∣∣∣

∫
[0,1]s

f(x) dx− 1

bm

bm−1∑
n=0

f(xn)

∣∣∣∣∣ =

∣∣∣∣∣∣f̂(0)− 1

bm

bm−1∑
n=0

∑
k∈Ns

0

f̂(k)walk(xn)

∣∣∣∣∣∣
=

∣∣∣∣∣∣f̂(0)−
∑
k∈Ns

0

f̂(k)
1

bm

bm−1∑
n=0

walk(xn)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈Ns
0\{0}

f̂(k)
1

bm

bm−1∑
n=0

walk(xn)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

k∈Ns
0\{0}

µα(k)>βn−t

f̂(k)
1

bm

bm−1∑
n=0

walk(xn)

∣∣∣∣∣∣∣∣ , (5)

where we used Lemma 1. Using the triangular inequality it now follows that∣∣∣∣∣
∫

[0,1]s
f(x) dx− 1

bm

bm−1∑
n=0

f(xn)

∣∣∣∣∣ ≤ ∑
k∈Ns

0\{0}
µα(k)>βn−t

∣∣∣f̂(k)
∣∣∣

≤ ‖f‖Wα,s,γ

∑
k∈Ns

0
µα(k)>βn−t

rα,s,γ(k) = ‖f‖Wα,s,γ

∑
∅6=u⊆S

γu

∑
ku∈N|u|

µα(ku)>βn−t

b−µα(ku)

as desired. �
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Remark 2 Comparing Eq. (4) to [7, Eq. (5.1)], we note that in Eq. (4),
the second sum runs over all ku ∈ N|u| for which µα(ku) > βn − t, whereas
in [7, Eq. (5.1)], the corresponding sum is over all ku in the dual space
corresponding to the set u. We obtain this estimation as we estimate the
absolute value of the character sum b−m

∑bm−1
n=0 walk(xn) in (5) by 1. Given

concrete constructions, better estimations of this sum may be obtained, as
is the case for digital nets and sequences.

To establish the main result of this section, we need the following lemma.

Lemma 5 Let l ≥ 1 and α ≥ 2 be integers. Then∑
k∈N

µα(k)=l

1 ≤ 2

(
l + α− 1

α− 1

)
(b− 1)αbbl/αc.

Proof. For k ∈ N let νk denote the number of non-zero digits in the base b
representation of k. We represent k ∈ N in the form

k = κ1b
a1−1 + · · ·+ κνk

baνk
−1,

where κ1, . . . , κνk
∈ {1, . . . , b− 1} and a1 > . . . > aνk

≥ 1. We firstly
consider those k ∈ N for which νk ≤ α. In that case, we put a bound on the
number of k for which µα(k) = a1 + · · ·+ aνk

= l. Then we have

|{(a1, . . . , aνk
) : a1 + · · ·+ aνk

= l, a1 > . . . > aνk
≥ 1}|

≤ |{(a1, . . . , aνk
) : a1 + · · ·+ aνk

= l, a1 ≥ 0, . . . , aνk
≥ 0}|

≤ |{(a1, . . . , aα) : a1 + · · ·+ aα = l, a1 ≥ 0, . . . , aα ≥ 0}|

≤
(

l + α− 1

α− 1

)
.

The coefficients κ1, . . . , κνk
take values in the set {1, . . . , b− 1}, such that

there are (b− 1)νk ≤ (b− 1)α possibilities, hence∑
k∈N

µα(k)=l,νk≤α

1 ≤ (b− 1)α

(
l + α− 1

α− 1

)
.

We now consider those k for which νk > α. Then

k = κ1b
a1−1 + · · ·+ καbaα−1 + κα+1b

aα+1−1 + · · ·+ κνk
baνk

−1,
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and we put a bound on the number of k for which µα(k) = a1 + · · ·+ aα = l.
Now,

|{(a1, . . . , aα) : a1 + · · ·+ aα = l, a1 > · · · > aα ≥ 1}|
≤ |{(a1, . . . , aα) : a1 + · · ·+ aα = l, a1 ≥ 0, . . . , aα ≥ 0}|

≤
(

l + α− 1

α− 1

)
.

Regarding the coefficients, it is clear that κ1, . . . , κνk
∈ {1, . . . , b− 1}, so the

first α coefficients, κ1, . . . , κα can assume (b−1)α different values. Regarding
the sum

κα+1b
aα+1−1 + · · ·+ κνk

baνk
−1, (6)

where κα+1, . . . , κνk
∈ {1, . . . , b− 1} and aα+1 > . . . > aνk

≥ 1, it is clear
that the number of different values that the sum in Eq. (6) can assume is
bounded by baα−1. But by assumption, aα + · · ·+ a1 = l, hence aα ≤ bl/αc,
so we conclude that ∑

k∈N
µα(k)=l,νk>α

1 ≤ (b− 1)αbbl/αc
(

l + α− 1

α− 1

)

and the result follows by summing up the two cases. �

The next theorem establishes that (t, α, β, n, m, s)-nets can exploit the
smoothness α of a function f ∈ Wα,s,γ .

Theorem 2 Let (xn)bm−1
n=0 be a (t, α, β, n, m, s)-net in base b and let f ∈

Wα,s,γ. Then∣∣∣∣∣
∫

[0,1]s
f(x) dx− 1

bm

bm−1∑
n=0

f(xn)

∣∣∣∣∣
≤ b−(1−1/α)(bβn−tc+1)

∑
∅6=u⊆S

γu

(
b1−1/α(b− 1)

(b1−1/α − 1)

)α|u|
(bβn− tc+ α|u|)!

(|u| − 1)!(bβn− tc+ 1)!
.

Proof. Lemma 4 established that∣∣∣∣∣
∫

[0,1]s
f(x) dx− 1

bm

bm−1∑
n=0

f(xn)

∣∣∣∣∣ ≤ ∑
∅6=u⊆S

γu

∑
ku∈N|u|

µα(ku)>βn−t

b−µα(ku). (7)
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For a given ∅ 6= u ⊆ S we rewrite

∑
ku∈N|u|

µα(ku)>βn−t

b−µα(ku) =
∞∑

l=bβn−tc+1

b−l
∑

ku∈N|u|
µα(ku)=l

1.

Using Lemma 5 we obtain

∑
ku∈N|u|

µα(ku)=l

1 =
∑

l1+···+l|u|=l

|u|∏
j=1

∑
kj∈N

µα(kj)=lj

1

≤
∑

l1+···+l|u|=l

|u|∏
j=1

[
2

(
lj + α− 1

α− 1

)
(b− 1)αbblj/αc

]

≤ 2|u|(b− 1)α|u|bl/α
∑

l1+···+l|u|=l

|u|∏
j=1

(
lj + α− 1

α− 1

)
.

For any 1 ≤ j ≤ |u| we have
(

lj+α−1
α−1

)
≤ (1 + lj)

α−1. Since l1, . . . , l|u| ≥ 1 and

α ≥ 2 and l1 + · · ·+ l|u| = l we have 1 + lj ≤ l and therefore
(

lj+α−1
α−1

)
≤ lα−1.

Hence we obtain

2|u|(b− 1)α|u|bl/α
∑

l1+···+l|u|=l

|u|∏
j=1

(
lj + α− 1

α− 1

)
≤ 2|u|(b− 1)α|u|bl/α

∑
l1+···+l|u|=l

l(α−1)|u|

≤ 2|u|(b− 1)α|u|bl/αl(α−1)|u|
(

l + |u| − 1

|u| − 1

)
.

Hence

∞∑
l=bβn−tc+1

b−l
∑

u∈N|u|
µα(ku)=l

1 ≤ 2|u|(b− 1)α|u|
∞∑

l=bβn−tc+1

b−lbl/αl(α−1)|u|
(

l + |u| − 1

|u| − 1

)
.
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Invoking the inequality l(α−1)|u|(l+|u|−1
|u|−1

)
≤

(
l+α|u|−1
α|u|−1

) (α|u|−1)!
(|u|−1)!

we get

2|u|(b− 1)α|u|
∞∑

l=bβn−tc+1

b−lbl/αl(α−1)|u|
(

l + |u| − 1

|u| − 1

)

≤ 2|u|(b− 1)α|u| (α|u| − 1)!

(|u| − 1)!

∞∑
l=bβn−tc+1

b−(1−1/α)l

(
l + α|u| − 1

α|u| − 1

)

≤ 2|u|
(

b1−1/α(b− 1)

(b1−1/α − 1)

)α|u|
(α|u| − 1)!

(|u| − 1)!
b−(1−1/α)(bβn−tc+1)

(
bβn− tc+ α|u|

α|u| − 1

)
,

where we used an inequality which was for example also used in the proof of
[7, Lemma 5.2]. Hence∑

∅6=u⊆S

γu

∑
ku∈N|u|

µα(ku)>βn−t

b−µα(ku)

≤ b−(1−1/α)(bβn−tc+1)∑
∅6=u⊆S

γu2
|u|

(
b1−1/α(b− 1)

(b1−1/α − 1)

)α|u|
(α|u| − 1)!

(|u| − 1)!

(
bβn− tc+ α|u|

α|u| − 1

)
= b−(1−1/α)(bβn−tc+1)∑

∅6=u⊆S

γu2
|u|

(
b1−1/α(b− 1)

(b1−1/α − 1)

)α|u|
(bβn− tc+ α|u|)!

(|u| − 1)!(bβn− tc+ 1)!
,

which establishes the result. �

Remark 3 For βn = αm, we obtain a convergence rate of the integration er-
ror of N−(α−1) multiplied by a log N factor. This rate, although not optimal,
see [6, 7], does establish that (t, α, β, n, m, s)-nets can exploit the smoothness
of functions lying in Wα,s,γ . This was not possible with the classical concept
of (t,m, s)-nets.

5 The (u, u + v) construction

In this section, we will generalize the (u, u + v)-construction from coding
theory, which seems to stem from [18], to (t, α, β, n, m, s)-nets. We remark
that the (u, u + v)-construction has already been used to construct (t,m, s)-
nets, see [4], and recently to construct generalized digital nets, see [9]. As in
Section 4, the main tool in proving the result is Theorem 1. We now outline
the (u, u + v)-construction.
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Assume we are given a (t1, α, β1, n1, m1, s1)-net P1 denoted by (xi)
bm1−1
i=0

and a (t2, α, β2, n2, m2, s2)-net P2 denoted by (yi)
bm2−1
i=0 , where we assume

s1 ≤ s2. W.l.o.g. we may assume that xi = (xi,1, . . . , xi,s1) with xi,j =
ξi,j,1/b + · · · + ξi,j,n1/b

n1 and yi = (yi,1, . . . , yi,s2) with yi,j = ηi,j,1/b + · · · +
ηi,j,n2/b

n2 (if there are digits ξi,j,r 6= 0 for r > n1 or ηi,j,r 6= 0 for r > n2

we can slightly change P1, P2 by setting ξi,j,r = 0 for r > n1 and ηi,j,r = 0
for r > n2, without changing the (tw, α, βw, nw, mw, sw)-net property of Pw,
w = 1, 2).

We now define a new point set P = (zi)
bm1+m2−1
i=1 , zi = (zi,1, . . . , zi,s1+s2),

consisting of bm1+m2 points in [0, 1)s1+s2 as follows: first we set

` := min(2β1n1 − 2t1 + 1, β2n2 − t2).

We denote the addition modulo b by ⊕ and the subtraction modulo b by 	
(for short we use 	x := 0	 x).

• For j = 1, . . . , s1, h = 0, . . . , bm2 − 1 and i = 0, . . . , bm1 − 1 we set

zhbm1+i,j =
ξi,j,1 	 ηh,j,1

b
+ · · ·+

ξi,j,min(`,n1) 	 ηh,j,min(`,n1)

bmin(`,n1)

+

(
ξi,j,`+1

b`+1
+ · · ·+ ξi,j,n1

bn1

)
1n1≥`

+

(
	ηh,j,n1+1

bn1+1
+ · · ·+ 	ηh,j,`

b`

)
1n1<`.

• For j = s1 + 1, . . . , s1 + s2, h = 0, . . . , bm2 − 1 and i = 0, . . . , bm1 − 1 we
set

zhbm+i,j = yh,j−s1 .

Note that for every component of zi at most the first max(n1, n2) ≤
n1 + n2 =: n digits in its b-adic expansion are non-zero.

In the following we analyze the Weyl sum Sbm1+m2 (walk,P) for k ∈ Ns1+s2
0

satisfying µα(k) ≤ `. For this analysis we need to introduce some notation:
For vectors k, l ∈ Ns

0, k = (k1, . . . , ks), l = (l1, . . . , ls), k⊕ l := (k1 ⊕ l1, k2 ⊕
l2, . . . , ks ⊕ ls).

We embed a vector u ∈ Ns1
0 into Ns2

0 by filling up the remaining compo-
nents with zeros. This vector will be denoted by (u,0) ∈ Ns2

0 . In the following
we will represent a vector k ∈ Ns1+s2

0 in the form k = (u, (u,0)⊕ v), where
u ∈ Ns1

0 , v ∈ Ns2
0 , i.e., k is the concatenation of the two vectors u ∈ Ns1

0 and
(u,0)⊕ v ∈ Ns2

0 .

Lemma 6 For k ∈ {0, . . . , b`− 1}s1+s2 and for P1,P2 and P given above we
have

Sbm1+m2 (walk,P) = Sbm1 (walu,P1)Sbm2 (walv,P2)
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Proof. For yh ∈ [0, 1)s2 we denote its projection to the first s1 components

by y
(s1)
h . Then we have

1

bm1+m2

bm1+m2−1∑
h′=0

walk(zh′) =
1

bm1+m2

bm2−1∑
h=0

bm1−1∑
i=0

wal(u,(u,0)⊕v)(zhbm1+i)

=
1

bm1+m2

bm2−1∑
h=0

bm1−1∑
i=0

walu(xi 	 y
(s1)
h )wal(u,0)⊕v(yh)

=
1

bm1

bm1−1∑
i=0

walu(xi)
1

bm2

bm2−1∑
h=0

walv(yh).

The last two equalities use the assumption that k ∈ {0, . . . , b` − 1}s1+s2 ,
which means that for all components of k at most the first ` digits in their
b-adic expansion are different from zero. �

We need the following lemma, which is [2, Lemma 5].

Lemma 7 For α ≥ 2, k, l ∈ Ns
0 we have µα(k ⊕ l) ≥ µα(k)− µα(l).

The following theorem establishes the main result of this section.

Theorem 3 Let b ∈ N, b ≥ 2, let P1 be a (t1, α, β1, n1, m1, s1)-net in base b,
and P2 be a (t2, α, β2, n2, m2, s2)-net in base b. Then P defined as above is a
(t, α, β, n, m, s)-net in base b, where n = n1 + n2, m = m1 + m2, s = s1 + s2

and
β = min(β1, β2), t = βn− `.

Proof. We will use Theorem 1 to establish the result, i.e., we need to show
that for all k ∈ Ns1+s2

0 satisfying 0 < µα(k) ≤ βn− t we have

Sbm1+m2 (walk,P) = 0.

For k ∈ Ns1+s2
0 satisfying 0 < µα(k) ≤ βn − t = ` we necessarily have that

k ∈ {0, . . . , b` − 1}s1+s2 . Hence we may use Lemma 6 which states that

Sbm1+m2 (walk,P) = Sbm1 (walu,P1)Sbm2 (walv,P2).

We proceed in a manner very similar to the proof of [16, Theorem 5.3] and
distinguish three cases.

Case 1: We firstly assume that v 6= 0 and µα(k) ≤ βn − t. We want to
show that 0 < µα(v) ≤ β2n2− t2, in which case we obtain Sbm2 (walv,P2) = 0
by Theorem 1. As v 6= 0 we have µα(v) > 0. Also, using Lemma 7,

µα(v) ≤ µα((u,0)⊕ v) + µα(u) = µα(k) ≤ βn− t ≤ β2n2 − t2.
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Case 2: We now assume that v = 0, u 6= 0 and 0 < µα(k) ≤ βn − t.
We want to show that 0 < µα(u) ≤ β1n1 − t1, in which case we obtain
Sbm1 (walu,P1) = 0 by Theorem 1. As u 6= 0 we have µα(u) > 0. Also,

2(β1n1 − t1) + 1 ≥ βn− t ≥ µα(k) = µα((u,0)⊕ v) + µα(u) = 2µα(u).

Hence µα(u) ≤ β1n1 − t1, as µα(u) is an integer.
Case 3: We now assume that v = 0 and u = 0 and 0 < µα(k) ≤ βn− t.

However, as v = 0 and u = 0, it follows that µα(k) = 0 such that this case
need not be considered.

Thus we have Sbm1+m2 (walk,P) = 0 whenever 0 < µα(k) ≤ βn − t and
this completes the proof. �
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