
The construction of good extensible rank-1 lattices

Josef Dick, Friedrich Pillichshammer∗and Benjamin J. Waterhouse†

Abstract

It has been shown by Hickernell and Niederreiter that there exist generating vectors
for integration lattices which yield small integration errors for n = p, p

2
, . . . for all

integers p ≥ 2. This paper provides algorithms for the construction of generating
vectors which are finitely extensible for n = p, p

2
, . . . for all integers p ≥ 2. The proofs

which show that our algorithms yield good extensible rank-1 lattices are based on a
sieve principle. Particularly fast algorithms are obtained by using the fast component-
by-component construction of Nuyens and Cools. Analogous results are presented for
generating vectors with small weighted star discrepancy.

1 Introduction

We are interested in approximating a high dimensional integral

Is(f) =

∫

[0,1]s
f(x) dx

by an equal weight quadrature rule

Qn,s(f) =
1

n

n−1∑

k=0

f(tk),

where the quadrature points t0, . . . , tn−1 are deterministically chosen from [0, 1)s. Such
rules are called quasi-Monte Carlo rules. After putting some restrictions on the integrand
concerning its smoothness, the question of how to choose the quadrature points becomes im-
portant. Several branches of quasi-Monte Carlo rules, which are nowadays quite interwoven,
are known. Those are lattice rules [21, 28], Kronecker type sequences [18, 19, 20] and digital
nets and sequences, see [20, 21, 23] and the references therein.

∗Supported by the Austrian Research Foundation (FWF), Project S 9609, that is part of the Austrian
Research Network “Analytic Combinatorics and Probabilistic Number Theory”.

†The support of the Australian Research Council under its Centre of Excellence program is gratefully
acknowledged.

1

In this paper we study lattice rules, where the quadrature points are given by tk =
{kz/n + ∆}, k = 0, . . . , n − 1. Here {x} = x − bxc denotes the fractional part of each
component of a real vector x, z is an integer vector and ∆ ∈ [0, 1)s. The shift ∆ is either
chosen 0 (for periodic functions) or i.i.d. (for non-periodic functions). We shall refer to the
set of n such points as the point set Pn,s(z,∆) = {tk}

n−1
k=0 or Pn,s(z) when ∆ = 0 or when

the shift is “averaged out” (see below). An arbitrary point set will be denoted by Pn,s. The
quality of the lattice rule thus depends on the choice of the integer vector z. Until now no
explicit constructions of z are known (except for dimension s = 2), hence one has to resort
to computer search. Several construction algorithms for the generating vector z have been
introduced and analysed [3, 16, 29, 31]. For certain reproducing kernel Hilbert spaces Hs of
integrands one can obtain an explicit form of the root mean square worst-case error

en,s(Pn,s(z); Ks) =

(∫

[0,1]s
e2

n,s(Pn,s(z,∆); Ks)d∆

)1/2

, (1)

where
en,s(Pn,s(z,∆); Ks) = sup

f∈Hs

‖f‖≤1

| Is(f) − Qn,s(f) |,

with Ks the reproducing kernel (see below). Such a formula can then be used for a computer
search of the generating vector z of a lattice rule. The proofs of the upper bounds on the
integration error for certain classes of integrands depend on some averaging argument where
one obtains a bound on the average of the worst-case error over all (or a suitable subset of)
generating vectors (note that we can restrict z ∈ {1, . . . , n−1}s). As there is always at least
one generating vector which is better than average one can introduce a suitable algorithm
to find a generating vector better than average. This approach has been used successfully to
show that search algorithms (Korobov algorithm [31] or component-by-component algorithm
[3, 16, 29]) yield good generating vectors. In the case of component-by-component algorithms
the generating vector can even be extended in the number of dimensions. Though a desirable
property [10], an extension in the number of points on the other hand has until now not
been shown to be possible with these types of algorithms.

That an extension of lattice rules in the number of points is possible at least theoretically
has been shown in [11]. Such lattice rules are nowadays called extensible lattice rules. In this
case the quadrature points are given by tk = {ϕ(k)z+∆}, where for k = k0+k1p+· · ·+kmpm

the radical inverse function ϕ is defined by ϕ(k) = k0p
−1 + · · ·+kmp−m−1. Here z is a vector

of p-adic numbers (see [13] for a definition of p-adic numbers; for our purposes here it is
enough to assume that z is a vector of natural numbers hence we will not introduce p-adic
numbers here).

The existence of good extensible lattice rules has been proven in [13] (see Section 7 about
a discussion of the precise meaning of “extensible”). Therein it was shown that there exists
a generating vector z which yields a lattice rule which is good for all moduli p, p2, p3, . . ., for
any integer p ≥ 2. The proof is based on a more sophisticated averaging argument. It should

2

be noted that the lattice rules whose existence was proven in [13] are extensible in both the
number of points and the dimension. They share this property with lattice rules constructed
by the CBC algorithm. After the existence had been established it remained a challenge to
provide some construction algorithm which yields generating vectors for extensible lattice
rules. Several successful numerical investigations have been carried out [2, 12], but a proof
that those algorithms yield good extensible lattice rules was not provided.

In this paper we provide such an algorithm together with a proof (see also [4] for an
analogue for polynomial lattice rules). The argument for the proof is indeed similar to the
one used in [13] (and also [22]). It uses a combination of Markov’s inequality, Jensen’s
inequality and an extension of the following simple fact: let A, B be two subsets of a finite
set N and let |N | denote the number of elements in N . Then |A|, |B| > |N |/2 implies that
A∩B 6= ∅. (We use an extension of this to an arbitrary number of subsets of N .) Using these
principles we can obtain both, an algorithm and a proof, thereby providing first construction
algorithms for extensible lattice rules. To speed up the algorithm we show that we can also
use a component-by-component approach [29] together with the fast computation method
introduced in [24, 25]. This way we obtain a practically feasible construction of extensible
lattice rules in (for many applications) sufficiently large dimensions and range of moduli.

Unfortunately our construction algorithms are not extensible in both n and s simulta-
neously. The first sieve algorithm (see Section 3), though slow, is in principle extensible in
n, but is not extensible in the dimension. The CBC sieve algorithm and the fast CBC sieve
algorithm (see Section 4) construct generating vectors for a range of moduli and is extensible
in the dimension, but once the vector is constructed it is not possible to extend the vector
to work well also for other moduli. Hence the CBC sieve constructions provide embedded
rather then extensible lattice rules [2]. Obtaining an algorithm which is extensible in both
n and s simultaneously remains an interesting open question. See also Section 7 at the end
of the paper for a discussion of this topic.

The rest of the paper is arranged as follows. In Section 2 we discuss the function space
setting of weighted reproducing kernel Hilbert spaces. In Section 3 we introduce a sieve
algorithm which outlines the ideas used for the algorithm and the proof. In Section 4 we
extend the results from Section 3 by showing the sieve algorithm can be combined with a
component-by-component approach allowing us to efficiently construct generating vectors
of high dimension. Further we also show that the fast CBC construction of [24] can be
incorporated in the algorithm as well. Section 5 contains some brief numerical experiments,
whereas in Section 6 we develop similar results to those in Section 3 which are based on
minimising the quantity Rn,s,γ(z), rather than the worst-case error. Using these results
we are able to construct extensible lattice point sets with small weighted star discrepancy.
Finally, in Section 7 we state several remarks and mention some open problems.

3

2 Reproducing kernel Hilbert spaces

In this section we introduce classes of integrands for which we consider numerical integra-
tion. Reproducing kernel Hilbert spaces are nowadays widely used in numerical analysis and
other areas and are also used here to define function classes of integrands. The theory of
reproducing kernels was developed in [1], see also [9] where reproducing kernel Hilbert spaces
were used to investigate numerical integration.

A reproducing kernel Hilbert space over [0, 1] is a Hilbert space H admitting a function
K : [0, 1]× [0, 1] → R such that K(·, y) ∈ H for all y ∈ [0, 1] and 〈f, K(·, y)〉H = f(y) for all
y ∈ [0, 1] and f ∈ H. A kernel function K with these properties is unique and it can be shown
that K is also symmetric and positive definite. For dimensions s > 1 we consider tensor
products of one-dimensional spaces. It can be shown that the reproducing kernel for those
spaces is just the product of the one-dimensional kernels, i.e., K(x, y) =

∏s
j=1 K(xj, yj),

where x = (x1, . . . , xs) and y = (y1, . . . , ys).
In the following we introduce the particular reproducing kernel Hilbert spaces in which

numerical integration is frequently considered [3, 5, 6, 9, 13, 14, 16, 17, 28, 29, 30, 31].

2.1 Weighted Sobolev spaces

We consider a tensor product Sobolev space Hs,γ of absolutely continuous functions whose
partial mixed derivatives of order one in each variable are square integrable. The norm in
the unanchored weighted Sobolev space Hs,γ [5] is given by

‖f‖Hs,γ
=


 ∑

u⊆{1,...,s}

∏

j∈u

γj

∫

[0,1]|u|

(∫

[0,1]s−|u|

∂|u|

∂xu
f(x) dx{1,...,s}\u

)2

dxu




1/2

,

where ∂|u|/∂xuf denotes the partial mixed derivative with respect to all variables j ∈ u.
Here and in the rest of the paper the quantities γj are non-negative real numbers called
weights which are introduced to modify the importance of different coordinate directions
[30].

The reproducing kernel of the s-dimensional unanchored weighted Sobolev space [5] is
given by

Ks,γ(x, y) =
s∏

j=1

(
1 + γj

[
1

2
B2(|xj − yj|) +

(
xj −

1

2

)(
yj −

1

2

)])
, (2)

where B2(·) denotes the Bernoulli polynomial of degree 2, given by

B2(x) = x2 − x +
1

6
=

1

2π2

∞∑′

h=−∞

e2πihx

h2
∀x ∈ [0, 1]. (3)

4

Here and throughout this paper the notation
∑′ indicates a summation with the zero term

excluded.
We can associate a shift-invariant kernel [9] with Ks,γ by setting

Ksh
s,γ(x, y) =

∫

[0,1]s
Ks,γ({x + ∆}, {y + ∆}) d∆.

The shift-invariant kernel associated with Ks,γ is given by

Ksh
s,γ(x, y) =

s∏

j=1

(1 + γjB2(|xj − yj|)) . (4)

Using these definitions it follows that the mean square worst-case error (1) for the weighted
Sobolev space is given by [9]

e2
n,s,γ(Pn,s; Ks,γ) =

∫

[0,1]2s

Ksh
s,γ(x, y) dxdy −

2

n

n−1∑

k=0

∫

[0,1]s
Ksh

s,γ(x, tk) dx (5)

+
1

n2

n−1∑

k=0

n−1∑

i=0

Ksh
s,γ(ti, tk),

which for a randomly shifted (extensible) lattice rule can be simplified to (see for example
[29])

e2
n,s,γ(Pn,s; Ks,γ) = −1 +

1

n

n−1∑

k=0

Ksh
s,γ(tk, 0) = −1 +

1

n

n−1∑

k=0

s∏

j=1

(1 + γjB2(tk,j)). (6)

Note that the above formula can easily be evaluated using (3) for a given point set Pn,s.
Observe that the shift-invariant kernel K sh

s,γ is related to the reproducing kernel of a
certain weighted Korobov space of periodic functions which we introduce in the following.

2.2 Weighted Korobov spaces

The s-dimensional weighted Korobov space Hper,s,α,γ has a reproducing kernel of the form
[9]

Kper,s,α,γ(x, y) =
s∏

j=1

(
1 + γj

∞∑′

h=−∞

e2πih(xj−yj)

|h|α

)
(7)

=
∑

h∈Zs

e2πih·(x−y)

rα(h, γ)
,

5

where for h = (h1, . . . , hs),

rα(h, γ) =

s∏

j=1

rα(hj, γj) and rα(hj, γj) =

{
1 if hj = 0,

γ−1
j |hj|

α if hj 6= 0.

The parameter α restricts the convergence of the Fourier coefficients of the functions in the
Korobov space. Throughout the paper we will assume that α > 1.

Equation (5) can again be used to obtain a formula for the worst-case error in the
Korobov space Hper,s,α,γ,

e2
per,n,s,α,γ(Pn,s(z); Kper,s,α,γ) = − 1 +

1

n

n−1∑

k=0

s∏

j=1

(
1 + γj

∞∑′

h=−∞

e2πikhzj/n

|h|α

)
(8)

= − 1 +
1

n

n−1∑

k=0

∑

h∈Zs

e2πikh·z/n

rα(h, γ)
(9)

=
∑

h∈Z
s\{0}

h·z≡0 (mod n)

1

rα(h, γ)
. (10)

It follows from (3), (6) and (8) that

en,s,2π2γ(Pn,s(z); Ks,2π2γ) = eper,n,s,2,γ(Pn,s(z); Kper,s,α,γ), (11)

where 2π2γ denotes the sequence of weights (2π2γj)j≥1. Thus the results shown in the
following are valid for the root mean square error for numerical integration in the Sobolev
space as well as for the worst-case error for numerical integration in the Korobov space.
Hence it is enough to state them only for eper,n,s,α,γ (equation (11) can be used to obtain
results also for en,s,γ).

In the following section we introduce the arguments used for obtaining an algorithm and
a proof for the construction of good extensible lattice rules.

3 The sieve algorithm

In [13] the authors used p-adic numbers to show the existence of good extensible lattices.
Basically we could use p-adic numbers too, but as we focus on the construction of extensible
lattices by computer search, which in practice (though theoretically possible if one lets the
computer search infinitely long) can only be finite, it is enough in our case to assume that
the generating vector is in the set N

s. Throughout the paper let p be an arbitrary but fixed
integer. Then we restrict the set of admissible generating vectors to

Zs
p = {z = (z1, . . . , zs) ∈ N

s : gcd(zj, p) = 1, j = 1, . . . , s}. (12)

6

Clearly, there is an infinite number of elements in this set. Since e2
per,pm,s,α,γ(ẑ) = e2

per,pm,s,α,γ(z)
if z ≡ ẑ (mod pm), we exploit the structure inherent in lattice rules by defining the set

Zs
p,m = {z ∈ Zs

p : zj < pm, j = 1, . . . , s}. (13)

Where s = 1 for the above definitions, we will typically omit the superscript. For any
positive integer m, a vector z ∈ Zs

p has some corresponding vector z ∈ Zs
p,m such that

z ≡ z (mod pm). Note there are φ(pm)s elements in the set Zs
p,m, where φ is Euler’s totient

function.

3.1 Bounds on the worst-case error

In this section we prove some essential results which will shed light on how we intend to
construct good extensible lattice rules. In the following let ζ(α) =

∑∞
i=1 i−α denote the

Riemann zeta function.

Theorem 1 Let p, m and s be positive integers. Then we have

1

φ(pm)s

∑

z∈Zs
p,m

e2
per,pm,s,α,γ(z) ≤ E2

pm,s,α,γ

where

E2
n,s,α,γ =

1

n

(
s∏

j=1

(
1 + 2κ+1γjζ(α)

)
− 1

)
.

and κ is the number of distinct prime factors of n.
Further there exists a vector z ∈ Zs

p,m such that

e2
per,pm,s,α,γ(z) ≤ E2

pm,s,α,γ(λ)

for any λ ∈ (1/α, 1] where

E2
n,s,α,γ(λ) =

1

n1/λ

(
s∏

j=1

(
1 + 2κ+1γλ

j ζ(αλ)
)
− 1

)1/λ

.

Proof. The first part of the theorem was proven in [17, Theorem 2.2]. Note that the actual
theorem in [17] states that

E2
n,s,α,γ =

1

n

s∏

j=1

(
1 + 2κ+1γjζ(α)

)
,

7

however it is clear from the workings of the proof in [17] that the theorem holds with the
slightly improved bound of

E2
n,s,α,γ =

1

n

(
s∏

j=1

(
1 + 2κ+1γjζ(α)

)
− 1

)

as stated above.
The proof of the second part is similar to the proof of a result in [6] which makes use of

Jensen’s inequality, namely that for a sequence of positive numbers {ak}

∑

k

ak ≤

(
∑

k

aλ
k

)1/λ

for all 0 < λ ≤ 1. (14)

Note that in the theorem we make the restriction λ > 1/α so that the function ζ(αλ) is well
defined. We will make this restriction throughout the paper.

Combining the worst-case error in (10) with Jensen’s inequality we see that for any
λ ∈ (1/α, 1] we have

e2
per,pm,s,α,γ(z) ≤

(
e2
per,pm,s,αλ,γλ(z)

)1/λ
. (15)

Here and in the following γλ denotes the sequence of weights γλ = (γλ
1 , γλ

2 , . . .). From part
1 of this theorem, we know that

1

φ(pm)s

∑

z∈Zs
p,m

e2
per,pm,s,αλ,γλ(z) ≤ E2

pm,s,αλ,γλ

and hence it follows that for any λ ∈ (1/α, 1] there exists a vector zλ ∈ Zs
p,m such that

e2
per,pm,s,αλ,γλ(zλ) ≤ E2

pm,s,αλ,γλ. Putting these two results together, we find that for any

λ ∈ (1/α, 1] there exists a vector zλ ∈ Zs
p,m such that

(
e2
per,pm,s,α,γ(zλ)

)λ
≤ E2

pm,s,αλ,γλ.

Let now z ∈ Zs
p,m such that e2

per,pm,s,α,γ(z) = minz∈Zs
p,m

e2
per,pm,s,α,γ(z). Then we obtain

e2
per,pm,s,α,γ(z) ≤ e2

per,pm,s,α,γ(zλ) ≤
(
E2

pm,s,αλ,γλ

)1/λ
= E2

pm,s,α,γ(λ)

for any λ ∈ (1/α, 1]. This gives the desired result. 2

We wish to define a probability measure over the set of all generating vectors Z s
p . We

would like to do so such that the measure of corresponding vectors in Z s
p,m is equiprobable.

For m ∈ N let µs,m be the equiprobable measure on the set Zs
p,m. We say a subset A of Zs

p

is of finite type, if there exists an integer m = m(A) ∈ N and a subset A′ of Zs
p,m such that

A = {z ∈ Zs
p : (z (mod pm)) ∈ A′}.

8

The measure of the finite type subset A is then defined as

µs(A) = µs,m(A)(A
′).

Thus,

µs(A) =
#A′

φ(pm)s
. (16)

(Of course the number m = m(A) is not uniquely defined by A since if m works, then also
any number larger than m will work in the definition of a finite type subset. It is easy to see
that (16) does not depend on the specific choice of m.)

We now define the following set. For a real c ≥ 1 define the set

Cn,s,α,γ(c) = {z ∈ Zs
p : e2

per,n,s,α,γ(z) ≤ cE2
n,s,α,γ}. (17)

This set has the following property.

Theorem 2 Let p, m and s be positive integers. For any c ≥ 1 we have

µs(Cpm,s,α,γ(c)) > 1 − c−1.

Proof. This follows immediately from applying Markov’s inequality to the first part of
Theorem 1. 2

We now make a small adjustment to this set which allows us to incorporate Jensen’s
inequality, see [6] where a similar argument was used. For a real c ≥ 1 define the set

C̃n,s,α,γ(c) = {z ∈ Zs
p : e2

per,n,s,α,γ(z) ≤ c1/λE2
n,s,α,γ(λ) for all 1/α < λ ≤ 1}. (18)

We obtain the following theorem.

Theorem 3 Let p, m and s be positive integers. For any c ≥ 1 we have

µs(C̃pm,s,α,γ(c)) > 1 − c−1.

Proof. Let c ≥ 1 be given and choose 1/α < λ∗ ≤ 1 such that c1/λ∗
E2

pm,s,α,γ(λ∗) ≤

c1/λE2
pm,s,α,γ(λ) for all 1/α < λ ≤ 1. From Theorem 2 we see that

µs(Cpm,s,αλ∗,γλ∗ (c)) > 1 − c−1. (19)

Now, if z ∈ Cpm,s,αλ∗,γλ∗(c), then

e2
per,pm,s,αλ∗,γλ∗ (z) ≤ cE2

pm,s,αλ∗,γλ∗ .

9

By (15) this implies that

(
e2
per,pm,s,α,γ(z)

)λ∗

≤ cE2
pm,s,αλ∗,γλ∗ ,

which can be re-written as

e2
per,pm,s,α,γ(z) ≤ c1/λ∗

(
E2

pm,s,αλ∗,γλ∗

)1/λ∗

= c1/λ∗

E2
pm,s,α,γ(λ∗),

which in turn implies that z ∈ C̃pm,s,α,γ(c). This means that Cpm,s,αλ∗,γλ∗ (c) ⊆ C̃pm,s,α,γ(c).
Using (19) as a lower bound, we find that

µs(C̃pm,s,α,γ(c)) ≥ µs(Cpm,s,αλ∗,γλ∗ (c)) > 1 − c−1.

2

In the following we will use the above theorem to construct lattices for a range of moduli.

3.2 The sieve principle

We now want to construct lattice rules which work well for several choices of m. Let pm1

be the lowest number of points and pm2 be the highest number of points in which we are
interested in, i.e., m1 ≤ m2. Then for each m = m1, . . . , m2 we can define a set C̃pm,s,α,γ(cm)
as in (18). In order to obtain a generating vector which works well for all choices of

m = m1, . . . , m2 we need to show that the intersection
⋂m2

m=m1
C̃pm,s,α,γ(cm) is not empty,

or equivalently, has measure greater than 0. To this end choose cm ≥ 1 such that

m2∑

m=m1

c−1
m ≤ 1, (20)

then the measure of the intersection of the sets above can be shown to be strictly positive.
In the following we will write C̃c

pm,s,α,γ(cm) to denote the complement of the set C̃pm,s,α,γ(cm)
in Zs

p .

Theorem 4 Let p and s be positive integers and let 0 < m1 ≤ m2. Let cm ≥ 1 for all
m = m1, . . . , m2 such that

∑m2

m=m1
c−1
m ≤ 1. Then there exists a vector z ∈ Zs

p such that

e2
per,pm,s,α,γ(z) ≤ c1/λ

m E2
pm,s,α,γ(λ)

for all 1/α < λ ≤ 1 and m = m1, . . . , m2.

10

Proof. We need to show that µs

(⋂m2

m=m1
C̃pm,s,α,γ(cm)

)
> 0. This is a simple calculation,

µs

(
m2⋂

m=m1

C̃pm,s,α,γ(cm)

)
= 1 − µs

(
m2⋃

m=m1

C̃c
pm,s,α,γ(cm)

)

≥ 1 −
m2∑

m=m1

µs(C̃
c
pm,s,α,γ(cm))

> 1 −
m2∑

m=m1

c−1
m ≥ 0.

2

The arguments used to prove Theorem 4 are very similar to the arguments used in
[13]. (Using p-adic numbers we could indeed also allow m2 to be infinite. As in [13], using
the above arguments, it is also possible to show the existence of a large number of good
generating vectors.) An advantage of our presentation is maybe that it is more apparent of
how an algorithm for the construction of good generating vectors can be obtained from the
arguments in the proof. This is done in the following section.

3.3 The sieve algorithm

In this subsection we introduce the idea of how a good generating vector can be found by
describing a sieve algorithm for the construction of a generating vector z∗ ∈ Zs

p which works
well for m = m1, . . . , m2. This algorithm is quite slow, but in later sections we will give
some modifications which speed up the sieve algorithm.

We wish to find a vector z∗ ∈ Zs
p which satisfies

e2
per,pm,s,α,γ(z∗) ≤ c1/λ

m E2
pm,s,α,γ(λ) for all 1/α < λ ≤ 1 and m = m1, . . . , m2.

That is, we wish to find a vector z∗ ∈ Zs
p that lies in

⋂m2

m=m1
C̃pm,s,α,γ(cm). For m = m1 we

use a computer search to find b(1 − c−1
m1

)φ(pm1)sc + 1 of the φ(pm1)s vectors in Zs
p,m1

, which

satisfy e2
per,pm1 ,s,α,γ(z) ≤ c

1/λ
m1 E2

pm1 ,s,α,γ(λ) for all 1/α < λ ≤ 1 and label this set Tm1 . By
Theorem 3 we know that at least such a number of them exist.

We then construct the set Sm1+1 of all vectors z ∈ Zs
p,m1+1, such that there exists some z ∈

Tm1 with z ≡ z (mod pm1). From the set Sm1+1 we only keep b(1−(c−1
m1

+c−1
m1+1))φ(pm1+1)sc+

1 vectors which satisfy the inequality e2
per,pm1+1,s,α,γ

(z) ≤ c
1/λ
m1+1E

2
pm1+1,s,α,γ

(λ) for all 1/α <
λ ≤ 1 and label this set Tm1+1.

Again by Theorem 3 we know there must be at least b(1 − c−1
m1+1)φ(pm1+1)sc + 1 vec-

tors in Zs
p,m1+1 which satisfy e2

per,pm1+1,s,α,γ
(z∗) ≤ c

1/λ
m1+1E

2
pm1+1,s,α,γ

(λ) for all 1/α < λ ≤ 1.

11

Therefore, there must be at least b(1 − (c−1
m1

+ c−1
m1+1))φ(pm1+1)sc + 1 vectors which satisfy

e2
per,pm1 ,s,α,γ(z∗) ≤ c

1/λ
m1 E2

pm1 ,s,α,γ(λ) for all 1/α < λ ≤ 1 as well.
In the same way, we construct the sets Sm1+2, Tm1+2, . . . , Sm2 and Tm2 . Finally, by The-

orem 4 above, Tm2 is guaranteed not to be empty. We may select z∗ to be any vector from
Tm2 (see Section 4.2 for some comments on how to choose a vector from Tm2).

Remark 1 In principle we can allow m2 to be infinite, i.e., we can choose cm such that∑∞
m=m1

c−1
m ≤ 1. Then we can stop the computer search at some finite m′ > m1. If one

stores all the necessary values from the initial search it is then also possible to resume the
computer search at a later point in time to obtain an extensible lattice rules also for moduli
larger than pm′

. Hence the construction is truly extensible in the modulus (see also Section 7
for more information on extensibility). As we will show in the next section, the vector can
also be extended in the dimension using a CBC approach, but once this is done, it becomes
“embedded” (see [2]) rather than extensible in the modulus, since the values of m1 and m2

may not be altered once chosen.
Further, as can be seen from the arguments above, one need not choose successive values

of m, i.e., one could choose an arbitrary subset K ⊂ N and construct a good lattice rule with
pm points for all m ∈ K. See also [4] for further comments.

Remark 2 The constants cm ≥ 1 for m = m1, . . . , m2 may be chosen to be any positive
sequence of reals such that (20) is satisfied. If m2 is finite, one possible choice of cm to
satisfy (20) is cm = m2 − m1 + 1. This corresponds to the lattice rule having in some sense
the same quality for each value of m. This choice will be used later in Section 5.

If m2 is chosen to be infinite, we cannot choose cm to be independent of m as we did
above. Instead, the constants cm must grow with m sufficiently fast so that the sum in (20)
converges. One possible choice is cm = Cm(log(m + 1))1+ε for any ε > 0 where C is chosen
to be larger than

∑∞
m=m1

m−1(log(m + 1))−(1+ε). This is the choice used in [13]. A similar
choice would be cm = ζ(1 + ε)m1+ε again for any ε > 0.

The following theorem now applies to generating vectors constructed by the sieve algo-
rithm.

Theorem 5 Let p and s be positive integers and let 0 < m1 ≤ m2. Let cm ≥ 1 for all
m = m1, . . . , m2 such that

∑m2

m=m1
c−1
m ≤ 1. Then the sieve algorithm constructs a vector

z∗ ∈ Zs
p such that

e2
per,pm,s,α,γ(z∗) ≤ c1/λ

m E2
pm,s,α,γ(λ)

for all 1/α < λ ≤ 1 and m = m1, . . . , m2.

Note that it is always possible to choose cm of order m1+ε for some ε > 0, hence the
factor cm in the bound in the above theorem contributes at most another factor of m(1+ε)/λ =
(log n)(1+ε)/λ, where n is the number of points. It can be shown that for every 0 < δ < 1

12

there is a constant Dδ > 0 such that (log n)cn−1 ≤ Dδn
−δ, hence for every 1/α < λ ≤ 1

there is a constant Cλ > 0 such that

e2
per,pm,s,α,γ(z∗) ≤

Cλ

pm/λ

s∏

j=1

(
1 + 2κ+1γλ

j ζ(αλ)
)1/λ

for all m = m1, . . . , m2. (Here the constant Cλ may depend on the particular choice of cm;
on the other hand there is also a constant Cλ even if m2 = ∞, see [13]). So using the sieve
algorithm we can construct generating vectors for lattice rules which achieve the optimal
rate of convergence for a range of moduli.

4 The component-by-component sieve algorithm

In the previous section we gave the idea of how to construct extensible lattice rules. In this
section we show that the sieve algorithm can be combined with a component-by-component
(CBC) approach [29] to obtain a faster construction algorithm which will allow us to con-
struct good lattice rules for a practically relevant range of moduli and dimensions. This also
gives the added benefit of obtaining a construction which is also extensible in the dimension,
but unfortunately the range of moduli in this case has to be chosen in advance and cannot
be extended anymore. In this sense our lattice rules are embedded rather then extensible,
see also Section 7 and [13].

4.1 The CBC sieve algorithm

We may reduce the construction cost by constructing the vector z∗ component-by-component.
This approach has been shown to be very useful and effective in constructing lattice rules
for fixed n where one has φ(n)s choices of z. In short, the CBC algorithm works the
following way: choose the first component of the generating vector z∗

1 = 1. Then, for
z∗

s = (z∗1 , . . . , z
∗
s) already chosen, we will choose a component z∗

s+1 such that the worst-
case error e2

per,pm,s+1,α,γ(z∗
s, z

∗
s+1) satisfies a certain bound. This way we can obtain a good

generating vector inductively [3, 16, 29].
We will now establish a similar sequence of theorems to those of Theorems 1–4 which

now include the component-by-component approach. Since we construct a vector z∗
s+1 =

(z∗
s, zs+1) with z∗

s fixed, we are concerned only with the incremental impact of the choice of
zs+1 on the worst-case error.

We shall require the following technical lemma.

Lemma 1 For any positive integers p and m we have

pm−1∑

k=0

∣∣∣∣
1

φ(pm)

∑

z∈Zp,m

∞∑′

h=−∞

e2πikhz/pm

|h|α

∣∣∣∣ ≤ 2κ+1ζ(α),

13

where κ is the number of distinct prime factors of p.

Proof. This follows directly from [17, Lemma 2.1 and Lemma 2.3]. 2

We define the quantity

θpm,s+1,α,γ(z∗
s, zs+1) = e2

per,pm,s+1,α,γ(z∗
s, zs+1) − e2

per,pm,s,α,γ(z∗
s)

which will be needed in the following.
We modify Theorem 1 as follows.

Theorem 6 Let p, m and s be positive integers. Then we have

1

φ(pm)

∑

zs+1∈Zp,m

θpm,s+1,α,γ(z∗
s, zs+1) ≤ θpm,s+1,α,γ,

where

θpm,s+1,α,γ =
2κ+1

pm
γs+1ζ(α)

s∏

j=1

(1 + 2γjζ(α)) ,

and κ is the number of distinct prime factors of p.

Proof. Note that by (10), θpm,s+1,α,γ(z∗
s, zs+1) can be written in the form

θpm,s+1,α,γ(z∗
s, zs+1) =

∑

(h,hs+1)∈Z
s+1\{0}

(h,hs+1)·(z∗
s ,zs+1)≡0 (mod pm)

1

rα((h, hs+1), γ)

−
∑

h∈Z
s\{0}

h·z∗
s≡0 (mod pm)

1

rα(h, γ)

=
∑

(h,hs+1)∈Z
s+1 ,hs+1 6=0

(h,hs+1)·(z∗
s ,zs+1)≡0 (mod pm)

1

rα((h, hs+1), γ)
(21)

14

and so each term θpm,s+1,α,γ(z∗
s, zs+1) is non-negative. From (9) we see that

1

φ(pm)

∑

zs+1∈Zp,m

θpm,s+1,α,γ(z∗
s, zs+1)

=

∣∣∣∣∣
1

pm

pm−1∑

k=0

s∏

j=1

(
1 + γj

∞∑′

h=−∞

e2πikhz∗j /pm

|h|α

)
×


 γs+1

φ(pm)

∑

zs+1∈Zp,m

∞∑′

h=−∞

e2πikhzs+1/pm

|h|α



∣∣∣∣∣∣

≤
1

pm

pm−1∑

k=0

s∏

j=1

∣∣∣∣∣1 + 2γj

∞∑

h=1

cos(2πkhz∗j /p
m)

hα

∣∣∣∣∣×
∣∣∣∣∣∣

γs+1

φ(pm)

∑

zs+1∈Zp,m

∞∑′

h=−∞

e2πikhzs+1/pm

|h|α

∣∣∣∣∣∣

≤
1

pm

pm−1∑

k=0

s∏

j=1

(1 + 2γjζ(α))

∣∣∣∣∣∣
γs+1

φ(pm)

∑

zs+1∈Zp,m

∞∑′

h=−∞

e2πikhzs+1/pm

|h|α

∣∣∣∣∣∣
.

We see that the result now follows by Lemma 1. 2

We now define a set which is analogous to (17). For a real c ≥ 1 and z∗
s ∈ Zs

p let

Cpm,s+1,α,γ(c; z∗
s) = {zs+1 ∈ Zp : θpm,s+1,α,γ(z∗

s, zs+1) ≤ c θpm,s+1,α,γ}. (22)

The following theorem follows immediately from Markov’s inequality. Recall that each term
θpm,s+1,α,γ(z∗

s, zs+1) is non-negative as seen in (21) and hence Markov’s inequality can be
applied. As in this section we only deal with sets of one-dimensional vectors we simply write
µ for the measure µ1.

Theorem 7 Let p, m and s be positive integers. Then for any c ≥ 1 we have

µ(Cpm,s+1,α,γ(c ; z∗
s)) > 1 − c−1.

Proof. This follows immediately from applying Markov’s inequality to Theorem 6. 2

We will be able to achieve stronger convergence results for the worst-case error if we use
Jensen’s inequality. We define the set

C̃pm,s+1,α,γ(c; z∗
s) =

{
zs+1 ∈ Zp : θpm,s+1,α,γ(z∗

s, zs+1) ≤ c1/λ
(
θpm,s+1,αλ,γλ

)1/λ

for all 1/α < λ ≤ 1
}
. (23)

This new set has the following property.

15

Theorem 8 Let p, m and s be positive integers. Then for any c ≥ 1 we have

µ(C̃pm,s+1,α,γ(c; z∗
s)) > 1 − c−1.

Proof. From Theorem 7 we can say

µ(Cpm,s+1,αλ,γλ(c; z∗
s)) > 1 − c−1. (24)

Now, if zs+1 ∈ Cpm,s+1,αλ,γλ(c; z∗
s) then

θpm,s+1,αλ,γλ(z∗
s, zs+1) ≤ c θpm,s+1,αλ,γλ.

Applying Jensen’s inequality to (21) we see that

(θpm,s+1,α,γ(z∗
s, zs+1))

λ ≤ θpm,s+1,αλ,γλ(z∗
s, zs+1).

Combining the last two inequalities implies

θpm,s+1,α,γ(z∗
s, zs+1) ≤ c1/λ

(
θpm,s+1,αλ,γλ

)1/λ

which implies that zs+1 ∈ C̃pm,s+1,α,γ(c; z∗
s). This means that Cpm,s+1,αλ,γλ(c; z∗

s) ⊆ C̃pm,s+1,α,γ(c; z∗
s),

which by using (24) as a lower bound implies that

µ(C̃pm,s+1,α,γ(c; z∗
s)) ≥ µ(Cpm,s+1,αλ,γλ(c; z∗

s)) > 1 − c−1.

2

In the same vein as Theorem 4, we show in the following theorem that there exists a
component z∗s+1 ∈ Zp such that the worst-case error e2

per,pm,s,α,γ(z∗
s, z

∗
s+1) is small for all

m = m1, . . . , m2.

Theorem 9 Let p, m and s be positive integers. Let z∗
s ∈ Zs

p . Let cm ≥ 1 for all m =
m1, . . . , m2 such that

∑m2

m=m1
c−1
m ≤ 1. Then there exists a z∗

s+1 ∈ Zp such that

θpm,s+1,α,γ(z∗
s, z

∗
s+1) ≤ c1/λ

m

(
θpm,s+1,αλ,γλ

)1/λ

for all 1/α < λ ≤ 1 and m = m1, . . . , m2.

Proof. We need to show that µ
(⋂m2

m=m1
C̃pm,s+1,α,γ(cm; z∗

s)
)

> 0. This is a simple calcula-

tion,

µ

(
m2⋂

m=m1

C̃pm,s+1,α,γ(cm; z∗
s)

)
=1 − µ

(
m2⋃

m=m1

C̃c
pm,s+1(cm; z∗

s)

)

≥ 1 −
m2∑

m=m1

µ(C̃c
pm,s+1(cm; z∗

s))

> 1 −
m2∑

m=m1

c−1
m ≥ 0.

2

16

We can put the existing vector z∗
s together with the new component z∗

s+1 to show that
the vector z∗

s+1 = (z∗
s, z

∗
s+1) has the following properties.

Theorem 10 Let p, m and s be positive integers. Let z∗
s be chosen so that

e2
per,pm,s,α,γ(z∗

s) ≤ c1/λ
m E2

pm,s,α,γ(λ)

and z∗s+1 be chosen so that

θpm,s+1,α,γ(z∗
s, z

∗
s+1) ≤ c1/λ

m

(
θpm,s+1,αλ,γλ

)1/λ

for all 1/α < λ ≤ 1. Then

e2
per,pm,s+1,α,γ(z∗

s+1) ≤ c1/λ
m E2

pm,s+1,α,γ(λ)

for all 1/α < λ ≤ 1, where z∗
s+1 = (z∗

s, z
∗
s+1).

Proof. We have

e2
per,pm,s+1,α,γ(z∗

s, z
∗
s+1) = e2

per,pm,s,α,γ(z∗
s) + θpm,s+1,α,γ(z∗

s, z
∗
s+1)

≤
c
1/λ
m

pm/λ

(
s∏

j=1

(
1 + 2κ+1γλ

j ζ(αλ)
)
− 1

)1/λ

+
c
1/λ
m

pm/λ

(
2κ+1γλ

s+1ζ(αλ)

s∏

j=1

(
1 + 2κ+1γλ

j ζ(αλ)
)
)1/λ

≤
c
1/λ
m

pm/λ

(
s∏

j=1

(
1 + 2κ+1γλ

j ζ(αλ)
)
− 1 + 2κ+1γλ

s+1ζ(αλ)

s∏

j=1

(
1 + 2κ+1γλ

j ζ(αλ)
)
)1/λ

=
c
1/λ
m

pm/λ

(
s+1∏

j=1

(
1 + 2κ+1γλ

j ζ(αλ)
)
− 1

)1/λ

= c1/λ
m E2

pm,s+1,α,γ(λ),

where the second inequality uses another application of Jensen’s inequality. 2

We may now construct the extensible generating vector z∗ using the CBC method. The
algorithm to do this is stated formally in Algorithm 1.

Theorem 11 Let p and s be positive integers and 0 < m1 ≤ m2. Let cm ≥ 1 for all
m = m1, . . . , m2 such that

∑m2

m=m1
c−1
m ≤ 1. Then Algorithm 1 constructs a vector z∗ ∈ Zs

p

such that
e2
per,pm,s,α,γ(z∗) ≤ c1/λ

m E2
pm,s,α,γ(λ)

for all 1/α < λ ≤ 1 and m = m1, . . . , m2.

17

Algorithm 1 CBC construction of z∗ with small e2
per,pm,s,α,γ(z∗) for m = m1, . . . , m2

Require: m1 ≤ m2 ∈ N0, α > 1 , a positive sequence of weights γ, p and smax positive
integers and a sequence cm1 , . . . , cm2 such that

∑m2

m=m1
c−1
m ≤ 1

1: Set z∗1 = 1
2: for s = 1 to smax − 1 do

3: Find b(1 − c−1
m1

)φ(pm1)c + 1 components zs+1 ∈ Zp,m1 to populate the set

Tm1,s+1 ⊆ {zs+1 ∈ Zp,m1 : e2
per,pm,s+1,α,γ(z∗

s, zs+1) ≤ c1/λ
m E2

pm,s+1,α,γ(λ)

for all 1/α < λ ≤ 1}.

4: for m = m1 + 1 to m2 do

5: Define the set

Sm,s+1 = {zs+1 ∈ Zp,m, ∃ z ∈ Tm−1,s+1 such that zs+1 ≡ z (mod pm−1)}

6: Find b(1 −
∑m

i=m1
c−1
i)φ(pm)c + 1 vectors to populate the set

Tm,s+1 ⊆ {zs+1 ∈ Sm,s+1 : e2
per,pm,s+1,α,γ(z∗

s, zs+1) ≤ c1/λ
m E2

pm,s+1,α,γ(λ)

for all 1/α < λ ≤ 1}.

7: end for

8: Select z∗s+1 ∈ Tm2,s+1

9: Set z∗
s+1 = (z∗

s, z
∗
s+1)

10: end for

11: Set z∗ = z∗
smax

18

4.2 Optimising the CBC sieve algorithm

The classical CBC algorithm constructs one component of the generating vector at a time.
For each dimension, it takes the component which minimises the worst-case error. The re-
quirement that this component is the minimum is important in using Jensen’s inequality
to gain the optimal rate of convergence (see [16]). The sieve algorithm does not have this
requirement. Rather than finding the minimiser at each step, we require a certain number of
admissible vectors, that is, vectors whose worst-case error is lower than some bound. There-
fore, Algorithm 1 will find an extensible lattice rule without the need for any optimisation.

However, it is instinctive that we should attempt to go beyond looking for simply a set
of admissible vectors and attempt to find the best (in some sense) generating vectors at
each step. This can be done by modifying the choice of the set Tm,s+1 for m = m1, . . . , m2

and s = 1, . . . , smax − 1 in Algorithm 1. Rather than just constructing Tm,s+1 with the first
b(1 −

∑m
i=m1

c−1
i)φ(pm)c + 1 components zs+1 such that

e2
per,pm,s+1,α,γ(z∗

s, zs+1) ≤ c1/λ
m E2

pm,s+1,α,γ(λ)

for all 1/α < λ ≤ 1, we construct the set Tm,s+1 to contain all components that satisfy the
bound. We then truncate the set Tm,s+1 to contain exactly those b(1−

∑m
i=m1

c−1
i)φ(pm)c+1

elements which have the smallest worst-case error e2
per,pm,s+1,α,γ(z∗

s, zs+1), for the given z∗
s.

As we will see in the numerical section, the bound is significantly larger than the actual errors
and hence using such an optimisation step ensures that we do not choose a component which
barely satisfies the bound but rather is amongst the best possibilities.

4.3 The fast CBC sieve algorithm

In the previous section we constructed the components of the generating vector by first
choosing the first m1 digits and then extending those up to m2 digits step-by-step for a set of
good components. Though this algorithm is feasible for practical values, it does not allow us
to use the fast component-by-component algorithm introduced by Nuyens and Cools [24, 25].
Their construction algorithm reduces the usual construction cost of the CBC algorithm from
O(sn2) to O(sn log n) (which is a remarkable speed-up for large n) by exploiting the structure
of the calculation.

In order to make use of the fast CBC algorithm we modify the previous construction al-
gorithms. In this case it is necessary to search over all possible choices of the new component
zs+1, rather than just those which have been shown to be good for earlier values of m. Here
we simply store all the good components zs+1 for the generating vector (z∗

s, zs+1) for each
value of m. The construction is then performed by minimising a new error measure, which,
for given z∗

s ∈ Zs
p,m2

, is defined by

Fm1,m2,s+1,α,γ(zs+1) =

m2∑

m=m1

max
1/α<λ≤1

e2
per,pm,s+1,α,γ((z∗

s, zs+1))

c
1/λ
m E2

pm,s+1,α,γ(λ)
. (25)

19

Using this measure we now construct a generating vector component-by-component, in each
step choosing z∗s+1 which minimises the quantity Fm1,m2,s+1,α,γ .

Algorithm 2 Fast CBC sieve construction of a good generating vector z∗ with small
e2
per,pm,s,α,γ(z∗)

Require: m1 ≤ m2 ∈ N0, α > 1 , a positive sequence of weights γ, p and smax positive
integers and the positive sequence cm1 , . . . , cm2 such that

∑m2

m=m1
c−1
m ≤ 1

1: Set z∗1 = 1
2: for s = 1 to smax − 1 do

3: for m = m1 to m2 do

4: Compute λ∗
m ∈ (1/α, 1] which minimises Nm,cm

(λ) = c
1/λ
m E2

pm,s+1,α,γ(λ) as a function
of λ.

5: For each zs+1,m ∈ Zp,m compute

e2
per,pm,s+1,α,γ((z∗

s, zs+1))

Nm,cm
(λ∗

m)
.

6: end for

7: Set

Ts+1 =

{
zs+1 ∈ Zp,m2 : max

m1≤m≤m2

e2
per,pm,s+1,α,γ((z∗

s, zs+1))

Nm,cm
(λ∗

m)
≤ 1

}
.

8: Select z∗s+1 ∈ Ts+1 which minimises

m2∑

m=m1

e2
per,pm,s+1,α,γ((z∗

s, zs+1))

Nm,cm
(λ∗

m)

.
9: Set z∗

s+1 = (z∗
s, z

∗
s+1)

10: end for

11: Set z∗ = z∗
smax

We can now use Theorem 9 to show that there must be at least one choice of zs+1 ∈ Zp

which is good for all m = m1, . . . , m2.

Theorem 12 Let p and s be positive integers and 0 < m1 ≤ m2. Let cm ≥ 1 for all
m = m1, . . . , m2 such that

∑m2

m=m1
c−1
m ≤ 1. Then Algorithm 2 constructs a vector z∗ ∈ Zs

p

such that
e2
per,pm,s,α,γ(z∗) ≤ c1/λ

m E2
pm,s,α,γ(λ)

for all 1/α < λ ≤ 1 and m = m1, . . . , m2.

20

Remark 3 In Algorithm 2 note that instead of choosing z∗
s+1 ∈ Ts+1 which minimises the

quantity
m2∑

m=m1

e2
per,pm,s+1,α,γ((z∗

s, zs+1))

Nm,cm
(λ∗

m)

it would be enough in theory to pick any z∗
s+1 ∈ Ts+1 (which must be non-empty by Theorems 9

and 10). But as searching for the minimum increases the construction cost only marginally
it is advisable to include this step since the bound is typically very loose (see Section 5). Note
that another legitimate choice in line 8 would be to select the z∗

s+1 ∈ Ts+1 which minimises

F ′
m1,m2,s+1,α,γ(zs+1) = max

m1≤m≤m2

e2
per,pm,s+1,α,γ((z∗

s, zs+1))

Nm,cm
(λ∗

m)
. (26)

In this instance we have chosen the former because it gives smaller worst case errors in the
numerical experiments.

The minimum of Nm,cm
(λ) can be found with sufficient accuracy using any standard one-

dimensional constrained optimisation software. Computing the normalised worst-case error
Algorithm 2 can be done in order n log n operations using the fast CBC algorithm of [25].

4.4 Theoretical bounds on the algorithm of Cools et al

Algorithm 2 is very similar in nature to the algorithm suggested in [2]. Their algorithm is
different in that given z∗

s they choose z∗s+1 to minimise the error measure defined by

Vp,m1,m2,s+1,α,γ((z∗
s, zs+1)) = max

m1≤m≤m2

e2
per,pm,s+1,α,γ((z∗

s, zs+1))

e2
per,pm,s+1,α,γ(z(m))

(27)

for s = 1, . . . , smax − 1 where z(m) is the generating vector with the CBC algorithm for
n = pm for m = m1, . . . , m2. In [2] there was no formal proof with any bound on the size
of the error measure Vp,m1,m2,s,α,γ(z), although the numerical experiments suggested that it
remained small.

Observe that the quality measures F ′
m1 ,m2,s+1,α,γ(zs+1), which is given by (26), and

Vp,m1,m2,s+1,α,γ((z∗
s, zs+1)) used in [2] are very similar. Indeed we will show in the following

that with a few slight modifications we can change Algorithm 2 such that it is the same as
the algorithm considered in [2].

Let λ′
m1

, . . . , λ′
m2

∈ (1/α, 1] (we will see later how those values could be chosen) and let

cm =

(
e2
per,pm,s+1,α,γ(z(m))

E2
pm,s+1,α,γ(λ′

m)

)λ′
m




m2∑

k=m1

(
E2

pk,s+1,α,γ(λ′
k)

e2
per,pk,s+1,α,γ

(z(k))

)λ′
k




λ′
mα

. (28)

Further choose λ∗
m in Algorithm 2 as λ′

m and select z∗s+1 in step 8 by minimising F ′
m1,m2,s+1,α,γ(zs+1)

with the constant cm given by (28). Then

Nm,cm
(λ′

m) = c1/λ′
m

m E2
pm,s+1,α,γ(λ′

m) = Ce2
per,pm,s+1,α,γ(z(m)),

21

where C =

(
∑m2

k=m1

(
E2

pk,s+1,α,γ
(λ′

k
)

e2
per,pk,s+1,α,γ

(z(k))

)λ′
k

)α

is independent of m. This way we obtain the

same algorithm as proposed by [2]. Note that the constant C does not have any influence
on which z∗s+1 will be chosen and can actually be left out in Algorithm 2.

The basic principles used to obtain Theorem 12 now still apply as long as
∑m2

m=m1
c−1
m ≤ 1,

that is
m2∑

m=m1

c−1
m

=




m2∑

k=m1

(
E2

pk,s+1,α,γ(λ′
k)

e2
per,pk,s+1,α,γ

(z(k))

)λ′
k




−λ′
mα

m2∑

m=m1

(
e2
per,pm,s+1,α,γ(z(m))

E2
pm,s+1,α,γ(λ′

m)

)−λ′
m

≤




m2∑

k=m1

(
E2

pk,s+1,α,γ
(λ′

k)

e2
per,pk,s+1,α,γ

(z(k))

)λ′
k




−1
m2∑

m=m1

(
e2
per,pm,s+1,α,γ(z(m))

E2
pm,s+1,α,γ(λ′

m)

)−λ′
m

= 1.

Hence we obtain the bound

e2
per,pm,smax,α,γ(z∗) ≤ e2

per,pm,smax,α,γ(z(m))




m2∑

k=m1

(
E2

pk,smax,α,γ(λ′
k)

e2
per,pk,smax,α,γ

(z(k))

)λ′
k




α

for all m = m1, . . . , m2, where z∗ is constructed by Algorithm 2 based on the quality measure
F ′

m1,m2,s+1,α,γ(zs+1) with the constant cm given by (28). This shows that the error criteria
used in [2] has to satisfy the bound

Vp,m1,m2,s,α,γ(z∗
s) ≤




m2∑

k=m1

(
E2

pk,s,α,γ
(λ′

k)

e2
per,pk,s,α,γ

(z(k))

)λ′
k




α

for s = 1, . . . , smax.
The values λ′

m1
, . . . , λ′

m2
do not have any influence on the algorithm as seen above, they

only appear in the bound above. Hence we have the following result.

Theorem 13 Let p and smax be positive integers and 0 < m1 ≤ m2. Let cm be given by (28)
for all m = m1, . . . , m2. Then the modification of Algorithm 2 proposed above, or equivalently
the construction algorithm used in [2], constructs a vector z∗ ∈ Zs

p such that

Vp,m1,m2,s,α,γ(z∗
s) ≤ min

1/α<λ′
m1

,...,λ′
m2

≤1




m2∑

k=m1

(
E2

pk,s,α,γ
(λ′

k)

e2
per,pk,s,α,γ

(z(k))

)λ′
k




α

for s = 1, . . . , smax.

22

Compared with the numerical results in [2], the bound is certainly conservative. Further,
the bound also depends on m1 and m2 as each summand in the sum in the bound above is
at least 1.

Note that in the theory above we could also use the bound from [3, Theorem 6] instead
of E2

pk,s,α,γ
(λ′

k), which states that the error is bounded by

e2
per,n,s,α,γ(z∗

s) ≤
Cα(log log n)α

nα

s∏

j=1

(
1 + 2γ

1/α
j (1 − log 2 + ζ(α)1/α + log n)

)α

for all n ∈ N (we just used the fact that there is a constant C such that φ(n)−1 <
C(log log n)/n, see for example [8, Theorem 328]). If we use the lower bound from [26]
instead of e2

per,pk,s,α,γ
(z(k)) we obtain that the bound in Theorem 13 is at most of order m2

to some power. Hence also for the algorithm of [2] the worst-case error for the extensible
lattice rule can only be worse by a factor of m2 to some power compared to the worst-case
error for a lattice rule constructed by a component-by-component algorithm only for a fixed
value of number of points.

5 Numerical testing

We have shown that it is possible to construct a generating vector z∗ such that

e2
per,pm,s,α,γ(z∗) ≤ c1/λ

m E2
pm,s,α,γ(λ)

for all 1/α < λ ≤ 1 where cm ≥ 1 for m = m1, . . . , m2 such that
∑m2

m=m1
c−1
m ≤ 1. The testing

was all performed using the fast CBC algorithm since it is the fastest computationally. There
are several parameters for each calculation which we must choose. In each example we take
p = α = 2. We also assume that the constants cm for m = m1, . . . , m2 are equal for each m,
that is cm = m2 −m1 +1. For these experiments we take m1 = 10, m2 = 20 and smax = 360.

There are two conclusions which can be drawn from our numerical experiments. The first
conclusion we may draw is that the worst-case error for the extensible lattice rule is much
smaller than the bound in Theorem 12 suggests. To demonstrate this we define the quantity

Up,m1,m2,smax,α,γ = max
1≤s≤smax

eper,pm,s,α,γ(z∗(m1 ,m2))

c
1/2λ∗

m Epm,s,α,γ(λ∗)
(29)

where c
1/λ∗

m E2
pm,s,α,γ(λ∗) ≤ c

1/λ
m E2

pm,s,α,γ(λ) for all 1/α < λ ≤ 1 and z∗(m1 ,m2) is an extensible
lattice rule constructed with Algorithm 2. Theorem 12 shows that Up,m1,m2,smax,α,γ is bounded
by 1.

In Tables 1–3 we compare the values of U2,10,20,360,2,γ for different choices of γ. We see
that in each case U2,10,20,360,2,γ is orders of magnitude less than 1. In fact, the numerical tests
do not find any examples where U2,10,20,360,2,γ is greater than 0.062.

23

eper,2m,360,2,γ(z∗) c
1/λ∗

m E2m ,360,2,γ(λ∗) U2,10,20,360,2,γ

m = 10 8.20e-02 1.44e+00 5.71e-02
m = 11 5.33e-02 1.01e+00 5.25e-02
m = 12 3.41e-02 7.17e-01 4.76e-02
m = 13 2.21e-02 5.07e-01 4.37e-02
m = 14 1.44e-02 3.59e-01 4.00e-02
m = 15 9.41e-03 2.54e-01 3.71e-02
m = 16 5.81e-03 1.79e-01 3.24e-02
m = 17 3.73e-03 1.27e-01 2.94e-02
m = 18 2.37e-03 8.97e-02 2.65e-02
m = 19 1.53e-03 6.34e-02 2.41e-02
m = 20 9.89e-04 4.48e-02 2.20e-02

Table 1: Worst-case error of the extensible lattice rule where γj = 1/j2

eper,2m,360,2,γ(z∗) c
1/λ∗

m E2m ,360,2,γ(λ∗) U2,10,20,360,2,γ

m = 10 4.00e+02 3.50e+05 5.55e-02
m = 11 2.83e+02 2.47e+05 5.04e-02
m = 12 2.00e+02 1.75e+05 4.63e-02
m = 13 1.41e+02 1.24e+05 4.20e-02
m = 14 9.99e+01 8.75e+04 4.23e-02
m = 15 7.06e+01 6.18e+04 3.55e-02
m = 16 5.00e+01 4.37e+04 3.25e-02
m = 17 3.53e+01 3.09e+04 2.95e-02
m = 18 2.50e+01 2.19e+04 2.76e-02
m = 19 1.77e+01 1.55e+04 2.42e-02
m = 20 1.25e+01 1.09e+04 2.27e-02

Table 2: Worst-case error of the extensible lattice rule where γj = 0.9j

24

eper,2m,360,2,γ(z∗) c
1/λ∗

m E2m ,360,2,γ(λ∗) U2,10,20,360,2,γ

m = 10 2.51e+10 1.80e+21 6.19e-02
m = 11 1.77e+10 1.27e+21 5.85e-02
m = 12 1.25e+10 9.01e+20 5.58e-02
m = 13 8.87e+09 6.37e+20 5.09e-02
m = 14 6.27e+09 4.51e+20 4.85e-02
m = 15 4.44e+09 3.19e+20 4.46e-02
m = 16 3.14e+09 2.25e+20 4.23e-02
m = 17 2.22e+09 1.59e+20 4.04e-02
m = 18 1.57e+09 1.13e+20 3.74e-02
m = 19 1.11e+09 7.96e+19 3.56e-02
m = 20 7.84e+08 5.63e+19 3.43e-02

Table 3: Worst-case error of the extensible lattice rule where γj = 0.05

The second conclusion we may draw is that the worst-case error for the extensible lattice
rule is not significantly greater than the worst-case error for the “near optimal” lattice rule
as constructed by the CBC algorithm. To demonstrate this we examine the error measure
Vp,m1,m2,s,α,γ(z∗) defined above.

In Figure 1 we see when m1 = 10, m2 = 20 and p = α = 2 the greatest ratio of the
worst-case error of the extensible lattice z∗ and the worst-case error of the corresponding
near optimal choice z(m) (as constructed by the CBC algorithm) is always less than 2 for
these particular choices of γ. This is similar to the results in [2, Table 6.1].

6 Extensible lattice rules with small star discrepancy

In the sections above, we have developed three algorithms to construct an extensible lattice
rule with small worst-case error. Another measure of the quality of a lattice rule (or any
quasi-Monte Carlo rule for that matter) is the weighted star discrepancy of the underlying
nodes. The weighted star discrepancy for a point set Pn consisting of n points in the s-
dimensional unit cube is defined by

D∗
n,s,γ(Pn) = sup

∅6=u⊆{1,...,s}

γ
u

sup
xu∈[0,1]|u|

| disc((xu, 1), Pn)|, (30)

where

disc(x, Pn) =
#(Pn ∩ [0, x))

n
− Vol([0, x)), (31)

γu =
∏

j∈u
γj and for x = (x1, . . . , xs) the vector (xu, 1) denotes the vector where the j-th

component is xj if j ∈ u and 1 otherwise.

25

0 50 100 150 200 250 300 350
0.8

1

1.2

1.4

1.6

1.8

2

γ
j
 = 0.05

γ
j
 = 0.9j

γ
j
 = 1 / j2

s

V
2,

10
,2

0,
s,

2,
γ

Figure 1: Graph of V2,10,20,s,2,γ for 3 choices of γ and s = 1, . . . , 360

If Pn is the node set of a lattice rule with generating vector z we will in the following
write D∗

n,s,γ(z) instead of D∗
n,s,γ(Pn).

The quantity D∗
n,s,γ(z) is difficult to compute. However, from [15] we easily deduce that

the weighted star discrepancy is bounded by

D∗
n,s,γ(z) <

1

2
Rn,s,γ(z) +

∑

∅6=u⊆{1,...,s}

γu

(
1 −

(
1 −

1

n

)|u|
)

,

where the quantity Rn,s,γ(z) is defined by

Rn,s,γ(z) =
∑

h∈B∗
n,s

h·z≡0 (mod n)

1

r̃(h, γ)
, (32)

with

r̃(h, γ) =

s∏

j=1

r̃(hj, γj) and r̃(hj, γj) =

{
(1 + γj)

−1 if hj = 0,

γ−1
j |hj| if hj 6= 0,

and
Bn,s = Z

s ∩ (−n/2, n/2]s and B∗
n,s = Bn,s \ {0}.

In the case where s = 1, we will usually drop the subscript s.

26

It was proved by Joe [15] that if the vector of weights γ = (γ1, γ2, . . .) satisfies
∑∞

j=1 γj <
∞, then we have

∑

∅6=u⊆{1,...,s}

γu

(
1 −

(
1 −

1

n

)|u|
)

≤
max(1, Γ)e

P∞
i=1 γi

n
∀s ≥ 1,

where Γ =
∑∞

i=1
γi

1+γi
.

We therefore aim to construct extensible lattice rules with small weighted star discrepancy
by minimising the quantity Rn,s,γ(z), for n = pm and m = m1, . . . , m2.

In this section we will provide theorems analogous to theorems above which are based
upon the worst-case error. These theorems can be used to derive algorithms which are almost
identical to the ones above. Given the similarity between the theorems, some of the results
below are stated without proof.

6.1 The CBC sieve algorithm

The following theorems are the natural analogs of Theorems 6–7 and Theorems 9–12.
The CBC sieve algorithm is Algorithm 1 where one replaces the worst-case error with

the quantity Rpm,s,γ(z) and Epm,s,α,γ with Rpm,s,γ, where

Rn,s,γ =
1

n

(
s∏

j=1

(
1 + γj + γj

(
4 log n +

2κ+1π2

3

))
−

s∏

j=1

(1 + γj)

)
,

and κ is the number of distinct prime factors of n.
We will now prove that a CBC sieve algorithm similar to Algorithm 1 will construct a

generating vector z ∈ Zs
p,m such that Rpm,s,γ(z) ≤ Rpm,s,γ. We begin by noting that when

s = 1, and we take z1 = 1, the quantity Rpm,1,γ1(z1) = 0 and which is clearly less than
Rpm,1,γ1 .

The quantity

Υpm,s+1,γ(z∗
s, zs+1) = Rpm,s+1,γ(z∗

s, zs+1) − (1 + γs+1)Rpm,s,γ(z∗
s).

will be needed subsequently. It will also be more convenient to write Rn,s,γ(z) in the form

Rn,s,γ(z) = −
s∏

j=1

(1 + γj) +
1

n

n−1∑

k=0

s∏

j=1


1 + γj + γj

∑

hj∈B∗
n

e2πikhjzj/n

|h|


 , (33)

which is easily derived by noting that

1

n

n−1∑

k=0

e2πikh·z/n =

{
1, if h · z ≡ 0 (mod n);

0, otherwise.

The construction of z∗ component-by-component is justified by the following theorem.

27

Theorem 14 Let p, m and s be positive integers. Then

1

φ(pm)

∑

zs+1∈Zp,m

Υpm,s+1,γ(z∗
s, zs+1) ≤ Υpm,s+1,γ,

where

Υn,s+1,γ =
γs+1

n

(
4 log n +

2κ+1π2

3

) s∏

j=1

(
1 + γj + γj

(
4 log n +

2κ+1π2

3

))
.

Proof. Note first that using (33)

Υpm,s+1,γ(z∗
s, zs+1) =

γs+1

pm

pm−1∑

k=0

(
C(k, pm, zs+1)

s∏

j=1

(1 + γj + γjC(k, pm, zj))

)
,

where

C(k, n, z) =
∑

h∈B∗
n

e2πikhz/n

|h|
.

Now, following a similar argument as in the proof of Theorem 6, and introducing the
function L(n) =

∑
h∈B∗

n

1
|h|

, we see

1

φ(pm)

∑

zs+1∈Zp,m

Υpm,s+1,γ(z∗
s, zs+1)

≤
γs+1

pm
L(pm)

s∏

j=1

(1 + γj + γjL(pm))

+
γs+1

pm

pm−1∑

k=1


 1

φ(pm)

∑

zs+1∈Zp,m

C(k, pm, zs+1)




s∏

j=1

(1 + γj + γjC(k, pm, zj)) .

While the quantity L(n) may be computed exactly, for large n, it may be more practical
to approximate L(n) by the following function [21, Eq. (5.18)]

L(n) = 2 log n + 2γ − log 4 + ε(n) with |ε(n)| < 4n−2, (34)

where γ = limN→∞

(∑N
m=1

1
m
− log N

)
= 0.577 . . . is the Euler-Mascheroni constant.

Now, clearly for all k = 1, . . . , pm − 1

|1 + γj + γjC(k, pm, zj)| ≤ 1 + γj + γjL(pm).

Further,
pm−1∑

k=1

1

φ(pm)

∑

zs+1∈Zp,m

C(k, pm, zs+1) ≤

pm−1∑

k=1

|T (k, pm)|

φ(pm)
,

28

where

T (k, pm) =
∑

z∈Zp,m

∑

h∈B∗
pm

e2πikhjzj/pm

|h|
.

Following the proof of [21, Theorem 5.10], we see that for k = 1, . . . , pm − 1 we can write
T (k, pm) as

T (k, pm) = −2H(k, pm) + V (k, pm),

with

H(k, n) =
∑

d|n

ν
(n

d

)
gcd(d, k) log

(
d

gcd(d, k)

)

and

V (k, n) =
∑

d|n

ν
(n

d

)
gcd(d, k)ε

(
n gcd(d, k)

d

)

where ν here denotes the well-known Möbius function from number theory and ε is the
function introduced in (34). From [21] we see that for k = 1, . . . , pm − 1 the term H(k, pm)
is non-negative, and indeed

pm−1∑

k=1

H(k, pm) = φ(pm) log pm.

Further, as shown in [27], we can write

|V (k, pm)| ≤
∑

d|pm

∣∣∣∣ν
(

pm

d

)∣∣∣∣ gcd(d, k)

∣∣∣∣ε
(

pm gcd(d, k)

d

)∣∣∣∣

≤ 4
∑

d|pm

(
d

pm

)2

= 4
∑

d|pm

1

d2
≤

2π2

3
.

Putting all this together we get

pm−1∑

k=1

|T (k, pm)|

φ(pm)
≤ 2 log pm +

2π2(pm − 1)

3φ(pm)

≤ 2 log pm +
2κ+1π2

3
,

since n
φ(n)

≤ 2κ for all n where κ is the number of distinct prime factors of n. Combining

everything together and noting that for all positive integers n the inequality L(n) ≤ 2 log n

29

holds, we see that

1

φ(pm)

∑

zs+1∈Zp,m

Υpm,s+1,γ(z∗
s, zs+1)

≤
γs+1

pm
L(pm)

s∏

j=1

(1 + γj + γjL(pm))

+
γs+1

pm

(
2 log pm +

2κ+1π2

3

) s∏

j=1

(1 + γj + γjL(pm))

≤
γs+1

pm

(
4 log pm +

2κ+1π2

3

) s∏

j=1

(
1 + γj + γj

(
4 log pm +

2κ+1π2

3

))

= Υpm,s+1,γ.

2

For b ≥ 1 and z∗
s ∈ Zs

p , define

Bpm,s+1,γ(b; z∗
s) =

{
zs+1 ∈ Zp : Υpm,s+1,γ(z∗

s, zs+1) ≤ b Υpm,s+1,γ

}
. (35)

As before we again write simply µ for the measure µ1. Then we have

Theorem 15 Let p, m and s be positive integers. Then for any b ≥ 1 we have

µ(Bpm,s+1,γ(b ; z∗
s)) > 1 − b−1.

Theorem 16 Let p and s be positive integers and let 0 < m1 ≤ m2. Let bm ≥ 1 for
m = m1, . . . , m2 such that

∑m2

m=m1
b−1
m ≤ 1. Then there exists a z∗

s+1 ∈ Zs
p such that

Υpm,s+1,γ((z∗
s, zs+1)) ≤ bmΥpm,s+1,γ for m = m1, . . . , m2.

Proof. The proof is analogous to that of Theorem 9. 2

Theorem 17 Let p, m and s be positive integers. Let z∗
s be chosen so that

Rpm,s,γ(z∗
s) ≤ bmRpm,s,γ

and let z∗s+1 be chosen so that

Υpm,s+1,γ(z∗
s, z

∗
s+1) ≤ bmΥpm,s+1,γ .

Then
Rpm,s+1,γ(z∗

s+1) ≤ bmRpm,s+1,γ,

where z∗
s+1 = (z∗

s, z
∗
s+1).

30

Theorem 18 Let p and s be positive integers and let 0 < m1 ≤ m2. Let bm ≥ 1 for
m = m1, . . . , m2 such that

∑m2

m=m1
b−1
m ≤ 1. Then an algorithm equivalent to Algorithm 1

constructs a vector z∗ ∈ Zs
p such that for m = m1, . . . , m2

Rpm,s,γ(z∗) ≤ bmRpm,s,γ.

Finally, the fast CBC sieve construction may be used to find a generating vector z∗

with small Rpm,s,γ(z∗) for m = m1, . . . , m2 again by making the necessary adjustments, i.e.,
replacing the worst-case error with the quantity Rpm,s,γ and replacing the bound Epm,s,α,γ

with Rpm,s,γ.
The following theorem now applies to generating vectors constructed using the fast CBC

algorithm based on Rpm,s,γ.

Theorem 19 Let p and s be positive integers and let 0 < m1 ≤ m2. Let bm ≥ 1 for
m = m1, . . . , m2 such that

∑m2

m=m1
b−1
m ≤ 1. Then an algorithm equivalent to Algorithm 2

constructs a vector z∗ ∈ Zs
p such that for m = m1, . . . , m2

Rpm,s,γ(z∗) ≤ bmRpm,s,γ.

7 Concluding remarks

Though we provide some useful constructions here there are still some open questions. First
let us address the meaning of “extensible”. In the introduction we wrote that the existence
of good extensible lattice rules was shown in [13]. Here the meaning of extensible is from a
practical point of view, namely that there exists a lattice rule whose generating vector z∗

is such that one can obtain good lattice rules for all moduli p, p2, What would be an
interesting result in this direction, but was not shown in [13], is the following:

For any generating vector of a good lattice rule in dimension s with number of points pm,
there exists an extension of this generating vector such that one obtains a good lattice rule
for some other number of points pm′

with m′ 6= m.

(Compare this statement with a probabilistic version in Remark 1. Further, an analogous
result for the dimension is known if s′ > s, see [3, 16].) Such a result would indeed be
interesting, but at present it is not even known whether this statement is true, let alone
how it can be made constructive. This seems to be a much more challenging question as the
probabilistic arguments used in [4, 13, 22] and here do not seem to apply, rather one would
have to find some number theoretic reason to prove such a result (a constructive algorithm
which achieves this might be even more difficult to obtain). Hence in terms of construction,
what is known until now is only the existence of good “embedded” lattice rules (embedded
in the number of points n), i.e. lattice rules which work well for a whole range of moduli,
rather than extensible. Hence the algorithms introduced here are feasible constructions of
good lattice rules achieving what is known until now about their existence. Thus everything

31

known about the existence of extensible lattice rules has been made practical in this paper
(see [4] for the analogue for polynomial lattice rules).

To make even more precise what we mean here let us give an example of true extensibility.
Namely using the CBC algorithm good lattice rules are truly extensible in the dimension,
that is, if one is given a good extensible lattice rule in some finite dimension s then one
can add another coordinate to obtain a good lattice rule in s + 1 dimensions [3, 16, 29].
On the other hand such a lattice rule does not have to be embedded in the dimension: for
example, construct a good Korobov lattice rule in dimension s (i.e., the generating vector is
of the form (1, z, z2, . . . , zs−1)), then using the CBC algorithm we can add arbitrarily many
coordinates to obtain a good lattice rule in s′ > s dimensions [7]. But until now we cannot
prove that we can extract an s − 1 dimensional good lattice rule from the s′ dimensional or
s dimensional lattice rule given at the beginning. Hence our lattice rule is extensible in the
dimension, but not necessarily embedded (meaning that we can extract a good lattice rule
from a given one in dimensions s = 1, 2, 3, . . .). Using the CBC algorithm from dimension
one onwards we can of course obtain a lattice rule which is extensible and embedded in the
dimension in this sense.

Thus, in this terminology, what was shown in [13] is the existence of a good lattice rule
which is embedded in n and s simultaneously and this has been made constructive in this
paper. Note that in this paper we even improved this result by showing the existence of a
lattice rule which is embedded in n and extensible and embedded in s and this is also made
constructive in our algorithms (which is achieved by incorporating the CBC approach).

References

[1] N. Aronszajn, Theory of reproducing kernels. Trans. Amer. Math. Soc., 68 (1950), 337–
404.

[2] R. Cools, F.Y. Kuo and D. Nuyens, Constructing embedded lattice rules for multivariate
integration. To appear in SIAM J. Sci. Comput..

[3] J. Dick, On the convergence rate of the component-by-component construction of good
lattice rules. J. Complexity, 20 (2004), 493–522.

[4] J. Dick, The construction of extensible polynomial lattice rules with small weighted star
discrepancy. To appear in Math. Comp..

[5] J. Dick, I.H. Sloan, X. Wang and H. Woźniakowski, Liberating the weights. J. Com-
plexity, 20 (2004), 593–623.

[6] J. Dick, I.H. Sloan, X. Wang and H. Woźniakowski, Good lattice rules in weighted
Korobov spaces with general weights. Numerische Mathematik, 103 (2006), 63–97.

32

[7] J. Dick and X. Wang, A hybrid construction method for good lattice rules in weighted
Korobov spaces. Preprint.

[8] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th Ed.,
Clarendon Press, Oxford, 1979.

[9] F.J. Hickernell, A generalized discrepancy and quadrature error bound. Math. Comp.,
67 (1998), 299–322.

[10] F.J. Hickernell, My dream quadrature rule. J. Complexity, 19 (2003), 420–427.

[11] F.J. Hickernell and H.S. Hong, Computing multivariate normal probabilities using rank-
1 lattice sequences. Scientific computing (Hong Kong, 1997), pp. 209–215, Springer,
Singapore, 1997.

[12] F.J. Hickernell, H.S. Hong, P. L’Ecuyer and C. Lemieux, Extensible lattice sequences
for quasi-Monte Carlo quadrature. SIAM J. Sci. Comput., 22 (2000), 1117–1138.

[13] F.J. Hickernell and H. Niederreiter, The existence of good extensible rank-1 lattices. J.
Complexity, 19 (2003), 286–300.

[14] F.J. Hickernell and H. Woźniakowski, Tractability of multivariate integration for peri-
odic functions. J. Complexity, 17 (2001), 660–682.

[15] S. Joe, Construction of good rank-1 lattice rules based on the weighted star discrepancy.
In: Monte Carlo and Quasi-Monte Carlo Methods 2004. (Niederreiter H. and Talay D.,
eds.), pp. 181–196, Springer, Berlin Heidelberg New York, 2006.

[16] F.Y. Kuo, Component-by-component constructions achieve the optimal rate of conver-
gence for multivariate integration in weighted Korobov and Sobolev spaces. J. Com-
plexity, 19 (2003), 301–320.

[17] F.Y. Kuo and S. Joe, Component-by-component construction of good lattice rules with
composite number of points. J. Complexity, 18 (2002), 943–976.

[18] G. Larcher, On the distribution of an analog to classical Kronecker-sequences. J. Number
Theory, 52 (1995), 198–215.

[19] G. Larcher and H. Niederreiter, Generalized (t, s)-sequences, Kronecker-type sequences,
and Diophantine approximations of formal Laurent series. Trans. Amer. Math. Soc., 347
(1995), 2051–2073.

[20] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer.
Math. Soc., 84 (1978), 957–1041.

33

[21] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS–
NSF Series in Applied Mathematics 63, SIAM, Philadelphia, 1992.

[22] H. Niederreiter, The existence of good extensible polynomial lattice rules. Monatsh.
Math., 139 (2003), 295–307.

[23] H. Niederreiter, Constructions of (t, m, s)-nets and (t, s)-sequences. Finite Fields and
their Applications, 11 (2005), 578–600.

[24] D. Nuyens and R. Cools, Fast algorithms for component-by-component construction of
rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp.,
75 (2006), 903–920.

[25] D. Nuyens and R. Cools, Fast construction of rank-1 lattice rules with non-prime number
of points. J. Complexity, 22 (2006), 4–28.

[26] I.F. Sharygin, A lower estimate for the error of quadrature formulas for certain classes
of functions. Zh. Vychisl. Mat. i Mat. Fiz., 3 (1963), 370–376.

[27] V. Sinescu and S. Joe, Good lattice rules with composite number of points based on the
product weighted star discrepancy. Submitted.

[28] I.H. Sloan, S. Joe, Lattice Methods for Multiple Integration, Oxford University Press,
Oxford, 1994.

[29] I.H. Sloan, F.Y. Kuo and S. Joe, Constructing randomly shifted lattice rules in weighted
Sobolev spaces. SIAM J. Numer. Anal., 40 (2002), 1650–1665.

[30] I.H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for
high-dimensional integrals? J. Complexity, 14 (1998), 1–33.

[31] X. Wang, I.H. Sloan and J. Dick, On Korobov lattice rules in weighted spaces. SIAM
J. Numer. Anal., 42 (2004), 1760–1779.

Author’s Adress:

Josef Dick, UNSW Asia, 1 Kay Siang Road, Singapore 248922. Email: j.dick@unswasia.edu.sg
Friedrich Pillichshammer, Institut für Finanzmathematik, Universität Linz, Altenbergstraße
69, A-4040 Linz, Austria. Email: friedrich.pillichshammer@jku.at
Benjamin J. Waterhouse, School of Mathematics and Statistics, University of New South
Wales, Sydney 2052, Australia. Email: benjw@maths.unsw.edu.au

34

