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L2 DISCREPANCY OF LINEARLY DIGIT

SCRAMBLED ZAREMBA POINT SETS

Henri Faure, Friedrich Pillichshammer and Gottlieb Pirsic

ABSTRACT. We give an exact formula for the L2 discrepancy of a class of
generalized two-dimensional Hammersley point sets in base b, namely generalized

Zaremba point sets. For the construction of such point sets one needs sequences

of permutations of the form πl(k) = αk + l (mod b) for k, l ∈ {0, . . . , b− 1}. As a
corollary we obtain a condition on these sequences which yields the best possible

order of L2 discrepancy of generalized Zaremba point sets in the sense of Roth’s

lower bound, with very small leading constants.

Communicated by

1. Introduction

For a point set P = {x1, . . . ,xN} of N ≥ 1 points in the unit-square [0, 1)2

the L2 discrepancy is defined by

L2(P) :=
(∫ 1

0

∫ 1

0

|E(x; y;P)|2 dxdy

)1/2

,

where the so-called discrepancy function is given by E(x; y;P) = A([0, x) ×
[0, y);N ;P)−Nxy, where A([0, x)× [0, y);N ;P) denotes the number of indices
1 ≤ M ≤ N for which xM ∈ [0, x) × [0, y). The L2 discrepancy is a quanti-
tative measure for the irregularity of distribution of P, i.e., the deviation from
ideal uniform distribution. See [5, 6, 16, 18, 19, 20] for more information on L2

discrepancy and its relation to numerical integration.
The asymptotic behavior of the minimal possible L2 discrepancy of an N -

element point set as N tends to infinity is well-known. It was first shown by
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is part of the Austrian National Research Network ”Analytic Combinatorics and Probabilistic
Number Theory”.
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L2 DISCREPANCY OF LINEARLY DIGIT SCRAMBLED ZAREMBA POINT SETS

Roth [23] that there is a constant c > 0 with the following property: for any
N ∈ N and for any N -element point set P in [0, 1)2 we have

L2(P) ≥ c
√

log N. (1)

On the other hand it is known that there is a constant C > 0 such that for all
N ∈ N, N ≥ 2, there exists an N -element point set P in [0, 1)2 with

L2(P) ≤ C
√

log N + O(1). (2)

Today a lot of explicit constructions of point sets are known which achieve an
upper bound of the form (2); see, for example, [1, 4, 9, 10, 11, 12, 13, 15, 17, 22,
25] and [2, 3, 5] for corresponding results in arbitrary dimension s ≥ 2.

If one is interested in the constants c and C in (1) and (2) for large N it is
advisable to study the constants c and c defined as

c := lim inf
N→∞

inf
P⊂[0,1)s

#P=N

L2(P)√
log N

and c := lim sup
N→∞

inf
P⊂[0,1)s

#P=N

L2(P)√
log N

.

In [14] it is shown that (1) holds with c = 7/(216
√

log 2) = 0.038925 . . .. Further-
more, a construction presented in [12] shows that (2) holds with C = 0.17907 . . .
for infinitely many N . Therefore the best estimates for c and c known so far are

0.038925 . . . ≤ c ≤ c ≤ 0.17907 . . . . (3)

The value C = 0.17907 . . . can be achieved with so-called generalized Ham-
mersley point sets whose definition will be presented now.

Throughout the paper the base b ≥ 2 is an integer and Sb is the set of all
permutations of {0, . . . , b− 1}.

Definition 1 (generalized Hammersley point set). Let b ≥ 2 and n ≥ 1 be inte-
gers and let Σ = (σ0, . . . , σn−1) ∈ Sn

b . For an integer 1 ≤ N ≤ bn, write N −1 =∑n−1
r=0 ar(N)br in the b-adic system and define SΣ

b (N) :=
∑n−1

r=0 σr(ar(N))b−r−1.
Then the generalized two-dimensional Hammersley point set in base b consisting
of bn points associated to Σ is defined by

HΣ
b,n :=

{(
SΣ

b (N),
N − 1

bn

)
: 1 ≤ N ≤ bn

}
.

If we choose in the above definition σi = id — the identity in Sb — for all
i ∈ {0, . . . , n − 1}, then we obtain the classical two-dimensional Hammersley
point set in base b.

A lot of sequences of permutations Σ = (σ0, . . . , σn−1) ∈ Sn
b are known which

achieve an order O(
√

log N) for the L2 discrepancy of HΣ
b,n, see [9, 10, 11, 12,

15, 25] and the references therein.
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Here we deal with sequences of permutations of the following form: for σ ∈ Sb

and l ∈ {0, . . . , b− 1} let σl(k) := σ(k) + l (mod b) for all k ∈ {0, . . . , b− 1}. We
call σl the shifted permutation σ with shift l.

Definition 2 (generalized Zaremba point set). Let σ ∈ Sb. A generalized
Hammersley point set HΣ

b,n where Σ ∈ {σl : 0 ≤ l < b}n is called a generalized
Zaremba point set.

This terminology goes back to White [25] who considered sequences Σ of the
form

(id0, id1, . . . , idb−1, id0, id1, . . . , idb−1, . . .) (4)
of length n and who gave an exact formula for the L2 discrepancy of the corre-
sponding generalized Hammersley point set, which he named Zaremba point set.
This result is generalized in [11] to arbitrary sequences Σ ∈ {idl : 0 ≤ l < b}n.
The main result in [11] states that(

L2(HΣ
b,n)
)2

= n
(b2 − 1)(3b2 + 13)

720b2
+ O(1) (5)

whenever the permutations idl for 0 ≤ l < b appear with the same frequency
in the sequence Σ. It is interesting that the specific order of the idl’s is of no
importance contrary to (4). This observation was already made in [15].

It is the aim of this paper to generalize the results from [11] to sequences of
permutations Σ belonging to {πl : 0 ≤ l < b}n, where π is a linear permutation
in Sb, i.e., of the form π(k) = αk (mod b) for some α ∈ {1, . . . , b − 1} with
gcd(α, b) = 1. This generalization allows a drastic improvement of the leading
factor (b2−1)(3b2+13)

720b2 in Formula (5).
Doing so, we continue to explore the L2 discrepancy of various classes of

Hammersley point sets with the help of an exact formula for the discrepancy
function first used in [9] and then in [10, 11, 12] (see Lemma 3 below). Apart
from number theory, permutations πl are of interest since they are widely used
in quasi-Monte Carlo methods under the name linear digit scramblings, to im-
prove Halton sequences and (0, s)-sequences (so-called Faure sequences); see for
instance [8, 18].

The paper is organized as follows. In Section 2 we present the main results
of the paper and in Section 3 we provide some auxiliary results which are nec-
essary for the proofs in Section 4. We close this introductory section with some
notations which are used throughout the paper.

Basic Notations. The analysis of the L2 discrepancy is based on special func-
tions which have been first introduced by Faure [7] and which are defined as
follows:
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For σ ∈ Sb let Zσ
b = (σ(0)/b, σ(1)/b, . . . , σ(b− 1)/b). For h ∈ {0, 1, . . . , b− 1}

and x ∈ [(k − 1)/b, k/b), where k ∈ {1, . . . , b}, we define

ϕσ
b,h(x) =

{
A([0, h/b); k;Zσ

b )− hx if 0 ≤ h ≤ σ(k − 1),
(b− h)x−A([h/b, 1); k;Zσ

b ) if σ(k − 1) < h < b,

where here for a sequence X = (xM )M≥1 we denote by A(I; k;X) the number
of indices 1 ≤ M ≤ k such that xM ∈ I. Further, the function ϕσ

b,h is extended
to the reals by periodicity. Note that ϕσ

b,0 = 0 for any σ and that ϕσ
b,h(0) = 0 for

any σ ∈ Sb and any 0 ≤ h < b.
For r ∈ N define ϕ

σ,(r)
b :=

∑b−1
h=0(ϕ

σ
b,h)r and we simply write ϕσ

b := ϕ
σ,(1)
b . Note

that ϕσ
b is continuous (see [1, Propriété 3.3] and [7, Propriété 3.2.2]), piecewise

linear on the intervals [k/b, (k + 1)/b] and ϕσ
b (0) = ϕσ

b (1).

Further, for our purpose, we will need the integrals Φσ
b := (1/b)

∫ 1

0
ϕσ

b (x) dx

and Φσ,(2)
b := (1/b)

∫ 1

0
ϕ

σ,(2)
b (x) dx.

2. The results

First we state a generalization of [11, Theorem 1] and of [15, Theorem 1].

Proposition 1. Let π ∈ Sb be linear and let Σ = (σ0, . . . , σn−1) ∈ {πl : 0 ≤
l < b}n. For 0 ≤ l < b define λl := #{0 ≤ i < n : σi = πl}. Then we have

(
L2(HΣ

b,n)
)2

=

(
b−1∑
l=0

λlΦπl

b

)2

+ nΦπ,(2)
b +

b−1∑
l=0

λlΦπl

b

+
b−1∑
l=0

λl

b

[
ϕ

π,(2)
b

(
π−1(l)

b

)
− 2Fπ

b (l)− b (Φπl

b )2
]

+ O(1),

where Fπ
b (l) := (1/b)

∑b−1
h,j=0 ϕπ

b,h

(
π−1(l)/b

)
ϕπ

b,h (j/b) .

The proof of this result will be presented in Section 4. Although the idea for
the proof is the same as for π = id in [11], the proof is much more sophisticated
and a lot of technical difficulties must be overcome before to reach the proposed
formula. A short outline is given below, just before Lemma 4.

The following result provides a choice of Σ which yields the best possible order
of L2 discrepancy with respect to Roth’s lower bound (1). This result generalizes
[11, Corollary 1] (see formula (5)).
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Figure 1. Comparison of
p

Copt(b)/ log b and
p

C1(b)/ log b for b = 2, . . . , 50.

Theorem 1. Let π ∈ Sb be linear and let Σ ∈ {πl : 0 ≤ l < b}n be such that
λl = bn/bc+ θl with θl ∈ {0, 1} for all 0 ≤ l < b. Then we have(

L2(HΣ
b,n)
)2

= n(Φπ,(2)
b − (Φπ

b )2) + O(1).

Thus we obtain the optimal order O(
√

n) for the L2 discrepancy of HΣ
b,n

whenever the permutations πl for 0 ≤ l < b appear with the same frequency in
the sequence Σ, independently of the specific order of the πl’s.

The result of Theorem 1 yields a drastic improvement of [11, Corollary 1] (see
formula (5)) when we use the “optimal” linear permutation π(k) = αk (mod
b) instead of π(k) = id (i.e. α = 1). For α = 1 we have Φπ,(2)

b − (Φπ
b )2 =

(b2−1)(3b2+13)
720b2 =: C1(b). Let now Copt(b) := min{Φπ,(2)

b − (Φπ
b )2 : 1 ≤ α <

b and gcd(α, b) = 1}. Using results from [12] the value Φπ,(2)
b − (Φπ

b )2 for a
given permutation π can easily be calculated, for example with Mathematica.
A comparison of the two quantities Copt(b) and C1(b) for b = 2, . . . , 50 can
be found in Figure 1. To compare the result also with the constants c and c
from (3) we plot

√
Copt(b)/ log b and

√
C1(b)/ log b, respectively. Notice that

the constants Copt(b) are very close to the analogous constants in [12], even
though a bit larger.

In Theorem 1 we require b permutations to obtain the optimal order of L2

discrepancy. The following result shows that the optimal order can be obtain
with only one permutation.
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Theorem 2. If b ∈ N, b ≥ 2, α ∈ {1, . . . , b − 1} with gcd(α, b) = 1 and
l ∈ {0, . . . , b − 1} are chosen such that Φπl

b = 0, then with Σ = (πl, . . . , πl) we
have L2(HΣ

b,n) = O(
√

n).

For α = 1 there exist infinitely many b ≥ 2 and corresponding l such that
Φπl

b = Φidl

b = 0; see [10, Corollary 1] for a necessary and sufficient condition.
Many further examples of (b, α, l) for which Φπl

b = 0 can be found numerically,
for example using Mathematica. Until now we were not able to give a charac-
terization of those (b, α, l) which yield Φπl

b = 0. Finding such a characterization
remains open for the moment.

3. Auxiliary results

In this section we provide the main tools for the proof of Proposition 1. For
the sake of completeness, we give short hints for the proofs of lemmas concerned
with shifts and already proved in [10].

For σ = id, the identity in Sb, we have

ϕid
b,h(x) =

{
(b− h)x if x ∈ [0, h/b],
h(1− x) if x ∈ [h/b, 1], (6)

from which one obtains (see [9, Lemma 3] for details) that for x ∈
[

k
b , k+1

b

]
,

0 ≤ k < b, we have

ϕid
b (x) =

b(b− 2k − 1)
2

(
x− k

b

)
+

k(b− k)
2

. (7)

Considering shifts of general permutations, we will need extensions of formulas
(6) and (7). First, recall from [1, Propriété 3.4] that

(ϕσ
b,h)′(k/b + 0) = (ϕid

b,h)′(σ(k)/b + 0). (8)

(Here and later on by f ′(x + 0) we mean the right-derivative of the function f
at x.) Then, using that the functions ϕσ

b,h are continuous and piecewise linear,
it is easy to see that

ϕσ
b,h (l/b) = (1/b)

l−1∑
k=0

(ϕσ
b,h)′ (k/b + 0) , (9)

from which we deduce ϕσ
b (l/b) = (1/b)

∑l−1
k=0(ϕ

σ
b )′ (k/b + 0) , and, using (8) and

(6),

ϕσ
b

(
l

b

)
= l

b− 1
2

−
l−1∑
i=0

σ(i). (10)
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These two last properties were proved directly in [1, Propriété 3.5 (i)]. Since ϕσ
b is

linear on intervals [l/b, (l+1)/b] we obtain from (10) that for all x ∈ [l/b, (l+1)/b]
we have

ϕσ
b (x) = b

b− 2σ(l)− 1
2

(
x− l

b

)
+ l

b− 1
2

−
l−1∑
i=0

σ(i). (11)

In [12, Lemma 5] it has been shown that

Φσ
b =

1
b2

(
b−1∑
i=0

σ(i)i− b

(
b− 1

2

)2
)

. (12)

In the following we assume that π ∈ Sb is linear, i.e., π(k) = αk (mod b)
for some α ∈ {1, . . . , b − 1} with gcd(α, b) = 1. In this case we have that π−1

is linear as well, that π−1(l + π(k)) = π−1(l) + k (mod b) and that (πl)−1 =
(π−1)b−π−1(l) ( mod b).

Lemma 1. For any 0 ≤ k, l < b we have

(ϕπl

b )′
(

k

b
+ 0
)

= (ϕπ
b )′
(

k + π−1(l)
b

+ 0
)

.

P r o o f. With (8) and with ϕσ
b =

∑b−1
h=0 ϕσ

b,h we obtain

(ϕπl

b )′
(

k

b
+ 0
)

= (ϕid
b )′
(

πl(k)
b

+ 0
)

= (ϕid
b )′
(

π(k) + l

b
+ 0
)

= (ϕπ
b )′
(

π−1(π(k) + l)
b

+ 0
)

= (ϕπ
b )′
(

k + π−1(l)
b

+ 0
)

.

�

The following lemma gives a relation between the functions ϕσ
b and ϕσl

b .

Lemma 2. For any 0 ≤ l < b and x ∈ [0, 1] we have

ϕπl

b (x) = ϕπ
b

(
x +

π−1(l)
b

)
− ϕπ

b

(
π−1(l)

b

)
. (13)

P r o o f. Both sides of (13) coincide in x = 0, are continuous and linear on
intervals of the form [k/b, (k + 1)/b] and also their right derivatives at k/b,
0 ≤ k < b coincide by Lemma 1. Hence (13) is a proper equation. �

6
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Remark 1. For an arbitrary permutation σ, it can be shown by recursion that
Lemma 2 becomes: For any x ∈ [k

b , k+1
b ], 0 ≤ k < b,

ϕσl

b (x) = ϕσ
b

(
x− k +

σ−1(l + σ(k))
b

)
−Bk,

where Bk =
∑k

h=0 ϕσ
b

(
σ−1(l+σ(h))

b

)
−
∑k−1

h=0 ϕσ
b

(
σ−1(l+σ(h))+1

b

)
. Apart from the

interest of linear digit scramblings πl in applications, the complexity of that
formula is a reason for choosing, at first, linear permutations.

The following lemma provides a formula for the discrepancy function of gen-
eralized Hammersley point sets.

Lemma 3. For integers 1 ≤ λ, N ≤ bn we have

E

(
λ

bn
;
N

bn
;HΣ

b,n

)
=

n∑
j=1

ϕ
σj−1
b,εj

(
N

bj

)
,

where the εj = εj(λ, n,N) can be given explicitly.

A proof of this result together with formulas for εj = εj(λ, n,N) can be found
in [9, Lemma 1].

Remark 2. Let 0 ≤ x, y ≤ 1 be arbitrary. Since all points from HΣ
b,n have

coordinates of the form αb−n for some α ∈ {0, 1, . . . , bn − 1}, we have

E(x; y;HΣ
b,n) = E(x(n); y(n);HΣ

b,n) + bn(x(n)y(n)− xy), (14)

where for 0 ≤ x ≤ 1 we define x(n) := min{αb−n ≥ x : α ∈ {0, . . . , bn}}.

In the following we will give a series of lemmas with further, more involved
properties of the functions ϕσ

b,h and ϕ
σ,(r)
b functions. Before going on, as stated in

Section 2, we briefly outline the unfolding of the proof of Proposition 1. In Section
4, after the proof of our last lemma (Lemma 8), the proof of Proposition 1 starts
with the consideration of the two-dimensional integral involving (14). This term
can be easily split into three sums. The first one, Σ1, is the most important
one, with a priori n2 terms, and needs the whole series of lemmas (excepted
Lemma 7 which is required for Σ2) culminating in Lemma 8 which can be viewed
as a discrete version of Proposition 1. The third sum Σ3 is trivial, but Σ2 has
a lot of technical complications which require a careful analysis to be overcome.
Nevertheless, the exact computation of Σ2 is necessary in view of Theorem 1,
since it contains a priori n terms. Finally, putting the three sums together yields
the result of Proposition 1.
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Lemma 4. For 1 ≤ N ≤ bn, 1 ≤ j1 < . . . < jk ≤ n and r1, . . . , rk ∈ N we have

bn∑
λ=1

k∏
i=1

(
ϕ

σji−1

b,εji

(
N

bji

))ri

= bn−k
k∏

i=1

ϕ
σji−1,(ri)

b

(
N

bji

)
.

A proof of this result can be found in [9, Lemma 2].

Lemma 5. For 0 ≤ h, k < n, h 6= k and 0 ≤ l,m < b we have

bn∑
N=1

ϕπl

b

(
N

bh

)
ϕπm

b

(
N

bk

)
= bn

(
bΦπ

b − ϕπ
b

(
π−1(l)

b

))(
bΦπ

b − ϕπ
b

(
π−1(m)

b

))
.

P r o o f. We use the abbreviation l′ = π−1(l) and m′ = π−1(m). Using Lemma 2
we have

bn∑
N=1

ϕπl

b

(
N

bh

)
ϕπm

b

(
N

bk

)

=
bn∑

N=1

ϕπ
b

(
N

bh
+

l′

b

)
ϕπ

b

(
N

bk
+

m′

b

)
+ bnϕπ

b

(
l′

b

)
ϕπ

b

(
m′

b

)

−ϕπ
b

(
m′

b

) bn∑
N=1

ϕπ
b

(
N

bh
+

l′

b

)
− ϕπ

b

(
l′

b

) bn∑
N=1

ϕπ
b

(
N

bk
+

m′

b

)
. (15)

From the periodicity of ϕπ
b we obtain

bn∑
N=1

ϕπ
b

(
N

bh
+

l′

b

)
= bn−h

bh−1∑
N=0

ϕπ
b

(
N

bh
+

l′

b

)
= bn−h

bh−1−1∑
N=0

b−1∑
t=0

ϕπ
b

(
N

bh
+

t

b

)

= bn−h
bh−1−1∑

N=0

b

∫ 1

0

ϕπ
b (x) dx = bn+1Φπ

b , (16)

since for fixed 0 ≤ N < bh−1 we have
∑b−1

t=0 ϕπ
b

(
N
bh + t

b

)
= b

∫ 1

0
ϕπ

b (x) dx as
shown in [12, Proof of Lemma 4, p. 405].

Without loss of generality we may assume that h < k. Then we have

bn∑
N=1

ϕπ
b

(
N

bh
+

l′

b

)
ϕπ

b

(
N

bk
+

m′

b

)

8
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= bn−k
bk−1∑
N=0

ϕπ
b

(
N

bh
+

l′

b

)
ϕπ

b

(
N

bk
+

m′

b

)

= bn−k
bk−1−1∑

N=0

ϕπ
b

(
N

bh
+

l′

b

) b−1∑
t=0

ϕπ
b

(
N

bk
+

t

b

)

= bn−kb

∫ 1

0

ϕπ
b (x) dx

bk−1−1∑
N=0

ϕπ
b

(
N

bh
+

l′

b

)

=
∫ 1

0

ϕπ
b (x) dx

bn−1∑
N=0

ϕπ
b

(
N

bh
+

l′

b

)

= bn

(∫ 1

0

ϕπ
b (x) dx

)2

= bn(bΦπ
b )2. (17)

Now the result follows from inserting (16) and (17) into (15). �

Lemma 6. For 1 ≤ k ≤ n we have
bn∑

N=1

ϕ
πl,(2)
b

(
N

bk

)
= bn

(
bΦπ,(2)

b +
b(b2 − 1)

36b2k
+ ϕ

π,(2)
b

(
π−1(l)

b

)
− 2Fπ

b (l)
)

,

where Fπ
b (l) := (1/b)

∑b−1
h,j=0 ϕπ

b,h

(
π−1(l)/b

)
ϕπ

b,h (j/b) .

P r o o f. Again we write l′ = π−1(l). We have

ϕ
πl,(2)
b

(
N

bk

)
=

b−1∑
h=0

(
ϕπl

b,h

(
N

bk

))2

=
b−1∑
h=0

(
ϕπ

b,h

(
N

bk
+

l′

b

)
− ϕπ

b,h

(
l′

b

))2

= ϕ
π,(2)
b

(
N

bk
+

l′

b

)
+ ϕ

π,(2)
b

(
l′

b

)
− 2

b−1∑
h=0

ϕπ
b,h

(
N

bk
+

l′

b

)
ϕπ

b,h

(
l′

b

)
.

By using the periodicity of ϕ
π,(2)
b we obtain

bn∑
N=1

ϕ
π,(2)
b

(
N

bk
+

l′

b

)
=

bn∑
N=1

ϕ
π,(2)
b

(
N

bk

)
= bn

(
bΦπ,(2)

b +
b(b2 − 1)

36b2j

)
,

where the last equality is [12, Lemma 4, Equation (8)].
Furthermore we have
bn∑

N=1

b−1∑
h=0

ϕπ
b,h

(
N

bk
+

l′

b

)
ϕπ

b,h

(
l′

b

)
=

b−1∑
h=0

ϕπ
b,h

(
l′

b

) bn∑
N=1

ϕπ
b,h

(
N

bk
+

l′

b

)
.

9
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Using the periodicity of ϕπ
b,h, we obtain for the innermost sum

bn∑
N=1

ϕπ
b,h

(
N

bk
+

l′

b

)
= bn−k

bk−1∑
N=0

ϕπ
b,h

(
N

bk

)

= bn−k
b−1∑
j=0

(j+1)bk−1∑
N=jbk−1+1

ϕπ
b,h

(
N

bk

)
.

For j/b ≤ x ≤ (j + 1)/b we have

ϕπ
b,h(x) = b

(
x− j

b

)[
ϕπ

b,h

(
j + 1

b

)
− ϕπ

b,h

(
j

b

)]
+ ϕπ

b,h

(
j

b

)
.

Therefore we have
bn∑

N=1

ϕπ
b,h

(
N

bk
+

l′

b

)

= bn−k
b−1∑
j=0

b

[
ϕπ

b,h

(
j + 1

b

)
− ϕπ

b,h

(
j

b

)] (j+1)bk−1∑
N=jbk−1+1

(
N

bk
− j

b

)

+bn−1
b−1∑
j=0

ϕπ
b,h

(
j

b

)

= bn−k
b−1∑
j=0

[
ϕπ

b,h

(
j + 1

b

)
− ϕπ

b,h

(
j

b

)]
b + bk

2b
+ bn−1

b−1∑
j=0

ϕπ
b,h

(
j

b

)

= bn−1
b−1∑
j=0

ϕπ
b,h

(
j

b

)
.

Hence we have
b−1∑
h=0

bn∑
N=1

ϕπ
b,h

(
N

bk
+

l′

b

)
ϕπ

b,h

(
l′

b

)
= bn−1

b−1∑
h=0

ϕπ
b,h

(
l′

b

) b−1∑
j=0

ϕπ
b,h

(
j

b

)
= bnFπ

b (l).

The result follows. �

Lemma 7. For 0 ≤ h ≤ n and 0 ≤ l < b we have

bn∑
N=1

Nϕπ
b

(
N

bh
+

π−1(l)
b

)
= b2n bΦπ

b

2
+ bn+hfπ

b (l) + bngπ
b (l),

10
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where gπ
b (l) = b

2Φπ
b − b2+1

24 + l(b−1)
4 − 1

2

∑l−1
i=0 π(i) and

fπ
b (l) = − b

2
Φπ

b +
(b− 1)2(1− 5b)

24b
+

1
2b2

b−1∑
i=0

i2π(i) +
(b− 1)l(l − 2)

2b

−
(

l − 1
2

)
1
b

l−1∑
i=0

π(i) +
1
b

l−1∑
i=0

iπ(i).

P r o o f. Again we write l′ = π−1(l). Splitting up the range of summation yields

bn∑
N=1

Nϕπ
b

(
N

bh
+

l′

b

)
=

bn−h+1−1∑
k=0

(k+1)bh−1∑
N=kbh−1+1

Nϕπ
b

(
N

bh
+

l′

b

)
.

For 0 ≤ k < bn−h+1 let k = qb + r with integers 0 ≤ r < b and 0 ≤ q < bn−h.
Then for kbh−1 + 1 ≤ N ≤ (k + 1)bh−1 we have r/b ≤ N/bh − q ≤ (r + 1)/b.
Hence,

• if 0 ≤ r < b− l, then

N/bh − q + l′/b ∈
[
r + l′

b
,
r + l′ + 1

b

)
⊆ [0, 1);

• if b− l′ ≤ r < b, then

N/bh − q + l′/b− 1 ∈
[
r + l′ − b

b
,
r + l′ − b + 1

b

)
⊆ [0, 1).

Using the periodicity of ϕπ
b and Equation (11) we therefore obtain

bn∑
N=1

Nϕπ
b

(
N

bh
+

l′

b

)
=

b−1∑
r=0

bn−h−1∑
q=0

qbh+(r+1)bh−1∑
N=qbh+rbh−1+1

Nϕπ
b

(
N

bh
− q +

l′

b

)

=
b−l′−1∑

r=0

bn−h−1∑
q=0

qbh+(r+1)bh−1∑
N=qbh+rbh−1+1

Nϕπ
b

(
N

bh
− q +

l′

b

)

+
b−1∑

r=b−l′

bn−h−1∑
q=0

qbh+(r+1)bh−1∑
N=qbh+rbh−1+1

Nϕπ
b

(
N

bh
− q +

l′

b
− 1
)

=
b−l′−1∑

r=0

bn−h−1∑
q=0

qbh+(r+1)bh−1∑
N=qbh+rbh−1+1

N

(
b(b− 2π(r + l′)− 1)

2

(
N

bh
− q − r

b

)

11
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+
(r + l′)(b− 1)

2
−

r+l′−1∑
i=0

π(i)


+

b−1∑
r=b−l′

bn−h−1∑
q=0

qbh+(r+1)bh−1∑
N=qbh+rbh−1+1

N

(
b(b− 2π(r + l′ − b)− 1)

2

(
N

bh
− q − r

b

)

+
(r + l′ − b)(b− 1)

2
−

r+l′−b−1∑
i=0

π(i)


= Σ1 + Σ2 + Σ3 + Σ4,

where:

Σ1 :=
b−l′−1∑

r=0

(b− 2π(r + l′)− 1)bn(bh + b)(2b− 3bh+1 + 3bn+1 + bh(4 + 6r))
24b2+h

Σ2 :=
b−l′−1∑

r=0

 (r + l′)(b− 1)
2

−
r+l′−1∑

i=0

π(i)

 bn(b− bh+1 + bn+1 + bh(1 + 2r))
2b2

Σ3 :=
b−1∑

r=b−l′

(b− 2π(r + l′ − b)− 1)bn(bh + b)(2b− 3bh+1 + 3bn+1 + bh(4 + 6r))
24b2+h

Σ4 :=
b−1∑

r=b−l′

 (r + l′ − b)(b− 1)
2

−
r+l′−b−1∑

i=0

π(i)


× bn(b− bh+1 + bn+1 + bh(1 + 2r))

2b2

Now tedious calculations using (12) lead to the desired result. �

4. The proofs of the main results

First we show a discrete version of Proposition 1.

Lemma 8. For Σ = (σ0, . . . , σn−1) ∈ {πl : 0 ≤ l < b}n let λl := #{0 ≤ i < n :
σi = πl}. Then we have

1
b2n

bn∑
λ,N=1

E

(
λ

bn
;
N

bn
;HΣ

b,n

)
=

b−1∑
l=0

λl

b

(
bΦπ

b − ϕπ
b

(
π−1(l)

b

))
(18)

12
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and

1
b2n

bn∑
λ,N=1

(
E

(
λ

bn
;
N

bn
;HΣ

b,n

))2

(19)

=

(
b−1∑
l=0

λl

b

(
bΦπ

b − ϕπ
b

(
π−1(l)

b

)))2

+ nΦπ,(2)
b +

1
36

(
1− 1

b2n

)

+
b−1∑
l=0

λl

b

[
ϕ

π,(2)
b

(
π−1(l)

b

)
− 2Fπ

b (l)− 1
b

(
bΦπ

b − ϕπ
b

(
π−1(l)

b

))2
]

.

P r o o f. We just give the (much more involved) proof of (19). Equation (18) can
be shown in the same way.

When λl 6= 0, let h
(l)
i for 1 ≤ i ≤ λl (1 ≤ h

(l)
i ≤ n) be the integers such that

σ
h
(l)
i −1

= πl, i.e. σ
h
(l)
1 −1

= . . . = σ
h
(l)
λl
−1

= πl. Using Lemma 3 and Lemma 4 we

have

1
b2n

bn∑
λ,N=1

(
E

(
λ

bn
;
N

bn
;HΣ

b,n

))2

=
1

b2n

bn∑
λ,N=1

n∑
i,j=1

ϕ
σi−1
b,εi

(
N

bi

)
ϕ

σj−1
b,εj

(
N

bj

)

=
1

b2n

n∑
i=1

bn∑
N=1

bn∑
λ=1

(
ϕ

σi−1
b,εi

(
N

bi

))2

+
1

b2n

n∑
i,j=1
i6=j

bn∑
N=1

bn∑
λ=1

ϕ
σi−1
b,εi

(
N

bi

)
ϕ

σj−1
b,εj

(
N

bj

)

=
1

b2n

n∑
i=1

bn∑
N=1

bn−1ϕ
σi−1,(2)
b

(
N

bi

)

+
1

b2n

n∑
i,j=1
i6=j

bn∑
N=1

bn−2ϕ
σi−1
b

(
N

bi

)
ϕ

σj−1
b

(
N

bj

)

=
1

b2n

b−1∑
l=0

λl∑
i=1

bn∑
N=1

bn−1ϕ
πl,(2)
b

(
N

bh
(l)
i

)

+
1

b2n

b−1∑
l,m=0
l 6=m

λl∑
i=1

λm∑
j=1

bn∑
N=1

bn−2ϕπl

b

(
N

bh
(l)
i

)
ϕπm

b

(
N

bh
(m)
j

)

13
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+
1

b2n

b−1∑
l=0

λl∑
i,j=1
i6=j

bn∑
N=1

bn−2ϕπl

b

(
N

bh
(l)
i

)
ϕπl

b

(
N

bh
(l)
j

)
=: A + B + C.

Using Lemma 5 we get (again we write l′ = π−1(l) and m′ = π−1(m))

B =
1
b2

b−1∑
l,m=0
l 6=m

λlλm

(
bΦπ

b − ϕπ
b

(
l′

b

))(
bΦπ

b − ϕπ
b

(
m′

b

))
and

C =
1
b2

b−1∑
l=0

λl(λl − 1)
(

bΦσ
b − ϕπ

b

(
l′

b

))2

.

For A we use Lemma 6 and the fact that
∑b−1

l=0 λl = n to obtain

A =
1

b2n

b−1∑
l=0

λl∑
i=1

bn∑
N=1

bn−1ϕ
πl,(2)
b

(
N

bh
(l)
i

)

=
1
b

b−1∑
l=0

λl∑
i=1

(
bΦπ,(2)

b +
b(b2 − 1)

36b2h
(l)
i

+ ϕ
π,(2)
b

(
l′

b

)
− 2Fπ

b (l)
)

= nΦπ,(2)
b +

1
36

(
1− 1

b2n

)
+

b−1∑
l=0

λl

b

(
ϕ

π,(2)
b

(
l′

b

)
− 2Fπ

b (l)
)

.

Overall we obtain

1
b2n

bn∑
λ,N=1

(
E

(
λ

bn
;
N

bn
;HΣ

b,n

))2

=

(
b−1∑
l=0

λl

b

(
bΦπ

b − ϕπ
b

(
l′

b

)))2

−
b−1∑
l=0

λl

b2

(
bΦπ

b − ϕπ
b

(
l′

b

))2

+nΦπ,(2)
b +

1
36

(
1− 1

b2n

)
+

b−1∑
l=0

λl

b

(
ϕ

π,(2)
b

(
l′

b

)
− 2Fπ

b (l)
)

=

(
b−1∑
l=0

λl

b

(
bΦπ

b − ϕπ
b

(
l′

b

)))2

+ nΦπ,(2)
b +

1
36

(
1− 1

b2n

)

+
b−1∑
l=0

λl

b

[
ϕ

π,(2)
b

(
l′

b

)
− 2Fπ

b (l)− 1
b

(
bΦπ

b − ϕπ
b

(
l′

b

))2
]

.

14
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�

Now we give the proof of Proposition 1.

P r o o f. Again we use the abbreviation l′ = π−1(l). Using (14) we obtain(
L2(HΣ

b,n)
)2

=
∫ 1

0

∫ 1

0

(
E(x(n); y(n);HΣ

b,n) + bn(x(n)y(n)− xy)
)2

dxdy

=
1

b2n

bn∑
λ,N=1

(
E

(
λ

bn
;
N

bn
;HΣ

b,n

))2

+2bn
bn∑

λ,N=1

∫ λ
bn

λ−1
bn

∫ N
bn

N−1
bn

E

(
λ

bn
;
N

bn
;HΣ

b,n

)(
λ

bn

N

bn
− xy

)
dxdy

+b2n
bn∑

λ,N=1

∫ λ
bn

λ−1
bn

∫ N
bn

N−1
bn

(
λ

bn

N

bn
− xy

)2

dxdy

=: Σ1 + Σ2 + Σ3.

The term Σ1 has been evaluated in Lemma 8 and straightforward calculus shows
that Σ3 = (1 + 18bn + 25b2n)/(72b2n). So it remains to deal with Σ2.

Evaluating the integral appearing in Σ2 we obtain

Σ2 =
1

b3n

bn∑
λ,N=1

(λ + N)E
(

λ

bn
;
N

bn
;HΣ

b,n

)
− 1

2b3n

bn∑
λ,N=1

E

(
λ

bn
;
N

bn
;HΣ

b,n

)
=: Σ4 − Σ5.

The term Σ5 can be obtained from Lemma 8, Equation (18). For Σ4 we have

Σ4 =
1

b3n

bn∑
λ,N=1

λE

(
λ

bn
;
N

bn
;HΣ

b,n

)
+

1
b3n

bn∑
λ,N=1

NE

(
λ

bn
;
N

bn
;HΣ

b,n

)
=:

1
b3n

(Σ4,1 + Σ4,2).

As to Σ4,2, with Lemma 3, Lemma 4, Equation (13) and Lemma 7 we obtain

Σ4,2 = bn−1
b−1∑
l=0

λl∑
i=1

bn∑
N=1

N

(
ϕπ

b

(
N

bh
(l)
i

+
l′

b

)
− ϕπ

b

(
l′

b

))

= b2n−1
b−1∑
l=0

λl∑
i=1

(
bn+1 Φπ

b

2
+ bh

(l)
i fπ

b (l) + gπ
b (l)− bn + 1

2
ϕπ

b

(
l′

b

))

15
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= b3n Φπ
b

2
n + b2n−1

b−1∑
l=0

λl∑
i=1

(
bh

(l)
i fπ

b (l) + gπ
b (l)− bn + 1

2
ϕπ

b

(
l′

b

))
,

where again the integers h
(l)
i satisfy σ

h
(l)
1 −1

= . . . = σ
h
(l)
λl
−1

= πl if λl 6= 0.

We turn to Σ4,1. Let g : [0, 1]2 → [0, 1]2 be defined by g(x, y) = (y, x) and for
Σ = (σ0, . . . , σn−1) define Γ = (γ0, . . . , γn−1) := (σ−1

n−1, . . . , σ
−1
0 ). Then it is easy

to see (for details see [9, Proof of Theorem 4]) that HΣ
b,n = g

(
HΓ

b,n

)
. Therefore

we obtain

Σ4,1 =
bn∑

λ,N=1

λE

(
λ

bn
;
N

bn
;HΣ

b,n

)
=

bn∑
λ,N=1

λE

(
N

bn
;

λ

bn
;HΓ

b,n

)
,

which will allow us to use the result for Σ4,2. To this end, we must check the
correspondences between Σ and Γ: For Σ ∈ {πl : 0 ≤ l < b}n we also have
Γ ∈ {πl : 0 ≤ l < b}n. If l = 0 we get (π0)−1 = (π−1)0 and for 0 < l < b, we
get (πl)−1 = (π−1)b−π−1(l) as remarked just before Lemma 1. Hence for l > 0
and λl 6= 0 we have σ−1

h
(l)
1 −1

= . . . = σ−1

h
(l)
λl
−1

= (πl)−1 = (π−1)b−π−1(l), so that

γ
n+1−h

(l)
1 −1

= . . . = γ
n+1−h

(l)
λl
−1

= (π−1)b−π−1(l). Further γ
u

(b−r)
1 −1

= . . . =

γ
u

(b−r)
λπ(b−r)

−1
= (π−1)r, where u

(b−r)
i := n − h

π(b−r)
i + 1. Since π−1 is also linear

we may use the formula for Σ4,2 and obtain

Σ4,1 = b3n Φπ−1

b

2
n + b2n−1

×
b−1∑
r=0

λπ(b−r)∑
i=1

(
bu

(b−r)
i fπ−1

b (r) + gπ−1

b (r)− bn + 1
2

ϕπ−1

b

(
π(r)

b

))
= b3n Φπ

b

2
n + b2n−1

×
b−1∑
r=0

λπ(b−r)∑
i=1

(
bn−h

(π(b−r))
i +1fπ−1

b (r) + gπ−1

b (r)− bn + 1
2

ϕπ−1

b

(
π(r)

b

))
= b3n Φπ

b

2
n + b2n−1

×
b−1∑
l=0

λl∑
i=1

(
bn−h

(l)
i +1fπ−1

b (b− l′) + gπ−1

b (b− l′)− bn + 1
2

ϕπ−1

b

(
b− l

b

))

16
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where we have used that Φπ−1

b = Φπ
b as shown in [12, Lemma 5]. Hence we have

Σ4 = Φπ
b n− bn + 1

2bn+1

b−1∑
l=0

λl

(
ϕπ

b

(
l′

b

)
+ ϕπ−1

b

(
b− l

b

))

+
1

bn+1

b−1∑
l=0

λl∑
i=1

(
bh

(l)
i fπ

b (l) + bn−h
(l)
i +1fπ−1

b (b− l′)
)

+
1

bn+1

b−1∑
l=0

λl

(
gπ

b (l) + gπ−1

b (b− l′)
)

.

Now we obtain

(
L2(HΣ

b,n)
)2

=

(
b−1∑
l=0

λl

b

(
bΦπ

b − ϕπ
b

(
l′

b

)))2

+ nΦπ,(2)
b +

1
36

(
1− 1

b2n

)

+
b−1∑
l=0

λl

b

[
ϕ

π,(2)
b

(
l′

b

)
− 2Fπ

b (l)− 1
b

(
bΦπ

b − ϕπ
b

(
l′

b

))2
]

+Φπ
b n− bn + 1

2bn+1

b−1∑
l=0

λl

(
ϕπ

b

(
l′

b

)
+ ϕπ−1

b

(
b− l

b

))

+
1

bn+1

b−1∑
l=0

λl∑
i=1

(
bh

(l)
i fπ

b (l) + bn−h
(l)
i +1fπ−1

b (b− l′)
)

+
1

bn+1

b−1∑
l=0

λl

(
gπ

b (l) + gπ−1

b (b− l′)
)

− 1
2bn

b−1∑
l=0

λl

b

(
bΦπ

b − ϕπ
b

(
l′

b

))
+

1 + 18bn + 25b2n

72b2n

=

(
b−1∑
l=0

λl

b

(
bΦπ

b − ϕπ
b

(
l′

b

)))2

+ nΦπ,(2)
b + nΦπ

b

+
b−1∑
l=0

λl

b

[
ϕ

π,(2)
b

(
l′

b

)
− 2Fπ

b (l)− 1
b

(
bΦπ

b − ϕπ
b

(
l′

b

))2
]

− 1
2b

b−1∑
l=0

λl

(
ϕπ

b

(
l′

b

)
+ ϕπ−1

b

(
b− l

b

))
+ O(1). (20)
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From Lemma 2 it follows that

Φπ
b −

1
b
ϕπ

b (l′/b) = Φπl

b (21)

and from [12, Lemma 5] we know that Φπ
b = Φπ−1

b and hence

nΦπ
b −

1
2b

b−1∑
l=0

λl

(
ϕπ

b

(
l′

b

)
+ ϕπ−1

b

(
b− l

b

))

=
b−1∑
l=0

λl

(
Φπ

b −
1
2b

ϕπ
b

(
l′

b

)
− 1

2b
ϕπ−1

b

(
b− l

b

))

=
1
2

b−1∑
l=0

λlΦπl

b +
1
2

b−1∑
l=0

λl

(
Φπ−1

b − 1
b
ϕπ−1

b

(
b− l

b

))

=
1
2

b−1∑
l=0

λlΦπl

b +
1
2

b−1∑
l=0

λlΦ
(π−1)π−1(b−l ( mod b))

b

=
1
2

b−1∑
l=0

λlΦπl

b +
1
2

b−1∑
l=0

λlΦ
(πl)

−1

b =
b−1∑
l=0

λlΦπl

b .

The desired result follows from inserting this and (21) into (20). �

We give the proof of Theorem 1.

P r o o f. If λl = bn/bc+ θl with θl ∈ {0, 1}, then from (20) we obtain(
L2(HΣ

b,n)
)2

= nΦπ,(2)
b +

n

b2

b−1∑
l=0

[
ϕ

π,(2)
b

(
l′

b

)
− 2Fπ

b (l)− 1
b

(
bΦπ

b − ϕπ
b

(
l′

b

))2
]

+ O(1)

= n(Φπ,(2)
b − (Φπ

b )2) +
n

b2
A + O(1), where

A :=
b−1∑
l=0

[
ϕ

π,(2)
b

(
l′

b

)
− 2Fπ

b (l) + 2Φπ
b ϕπ

b

(
l′

b

)
− 1

b

(
ϕπ

b

(
l′

b

))2
]

.

It remains to prove that A = 0. Writing everything with ϕπ
b,h

(
l
b

)
, we get

A =
b−1∑

l,h=0

(
ϕπ

b,h

(
l

b

))2

− 2
b

b−1∑
h,j,l=0

ϕπ
b,h

(
l

b

)
ϕπ

b,h

(
j

b

)
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+
2
b2

 b−1∑
l,h=0

ϕπ
b,h

(
l

b

)2

− 1
b

b−1∑
l=0

(
b−1∑
h=0

ϕπ
b,h

(
l

b

))2

.

Using (9) the above expression can be written as

A =
1
b2

b−1∑
l,h=0

l−1∑
k1=0

(ϕπ
b,h)′

(
k1

b
+ 0
) l−1∑

k2=0

(ϕπ
b,h)′

(
k2

b
+ 0
)

− 2
b3

b−1∑
h,j,l=0

l−1∑
k1=0

(ϕπ
b,h)′

(
k1

b
+ 0
) j−1∑

k2=0

(ϕπ
b,h)′

(
k2

b
+ 0
)

+
2
b4

b−1∑
h1,l,h2,j=0

l−1∑
k1=0

(ϕπ
b,h1

)′
(

k1

b
+ 0
) j−1∑

k2=0

(ϕπ
b,h2

)′
(

k2

b
+ 0
)

− 1
b3

b−1∑
l=0

(
b−1∑
h=0

l−1∑
k=0

(ϕπ
b,h)′

(
k

b
+ 0
))2

.

In [12, Section 5] it is shown that
b−1∑
h=0

(ϕπ
b,h)′

(
k1

b
+ 0
)

(ϕπ
b,h)′

(
k2

b
+ 0
)

=
b(b− 1)(2b− 1)

6

+
b

2
(π(k1)(π(k1) + 1) + π(k2)(π(k2) + 1))− b2 max(π(k1), π(k2))

and
∑b−1

h=0(ϕ
π
b,h)′ (k/b + 0) = b(b− 1)/2− bπ(k).

With these formulas and using the fact that π(b−k) = b−π(k), k 6= 0, one gets
after tedious computations that A0 = b4A consists of sums Si whose summands
are all polynomial in b, k, l, π(k), π(l) and max(k, l),max(π(k), π(l)). These poly-
nomials will be denoted by pi. Furthermore, we can single out polynomials in b
from the sums. The sums are then dependent on π while the polynomials depend
only on b but not on π. I.e., we can make an ansatz for A0, for which we then
subsequently want to determine the pi:

A0 = A0(π) =
5∑

i=0

pi(b)Si(π),

where the pi are polynomials in b and

S0 ≡ 1, Si(π) :=
b−1∑
k=0

kiπ(k)i, for i = 1, 2,
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S3(π) :=
b−1∑

k,l=0

max(k, l) max(π(k), π(l)),

S4(π) :=
b−1∑

k,l=0

kl max(π(k), π(l)),

S5(π) := S1(π)2.

Any linear dependencies between the Si (which we were not able to show di-
rectly) will appear as additional dimensions to the solution space of the ansatz.

Now, to determine the pi, we first solve the following linear equation system
for fixed b, where b is large enough such that there exist at least as many π as
Si:

(Si(π))π,i(xi)i = (A0(π))π.

The left hand side matrix is in Zϕ(b)×b, where ϕ(b) is the Euler phi function.
Since by the ansatz the system is solvable, we obtain as particular solution the

values of pi at the fixed b, i.e., the vector (pi(b))i. If the left hand side matrix is
of full rank we have a unique solution, otherwise we additionally have a nullspace
Nb (which we consider in a canonical form).

Repeating this for sufficiently many b we can derive the pi by interpolation.
Note that the degrees of the pi are bounded by the maximum degree of terms
inside the sums plus the depth with which they are nested. (In this application
the bound is 8.)

Similarly we also derive a basis of the nullspace and get

A0(π) =
∑

i

(
pi(b) +

∑
j

λjqi,j(b)
)
Si(π),

for some polynomials qi,j and arbitrarily chosen λj ∈ Q, where

0 =
∑

i

qi,j(b)Si(π),

and with j ranging over the maximum of dimensions of the Nb. So at least one
Si is linearly dependent. We repeat the process with this Si excluded and A0

multiplied with lcmj(qi,j). In the iteration the dimension of the nullspaces is
now reduced by one, so the algorithm terminates after finitely many steps.

By an implementation in Mathematica we observe that, in fact, in this
application

S4 = −bS3 + S2 + bS1 +
b3(b− 1)2

2
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4S5 = 4b2S3 − 5bS2 + b2(5b− 8)S1 −
4b2
(
40b4 − 72b3 + 31b2 + 1

)
72

.

The matrices (Si(π))π;i=0,1,2,3 are of full rank for b = 20, . . . , 35 and any choices
of π. Furthermore all right hand side vectors A0(π) evaluate to zero. So finally
we obtain that all pi are identically zero, and thus A0 = 0 and the same holds
for A. �
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