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Abstract

In learning theory the goal is to reconstruct a function defined on some (typically
high-dimensional) domain Ω, when only noisy values of this function at a sparse,
discrete subset ω ⊂ Ω are available.

In this work we use Koksma-Hlawka type estimates to obtain deterministic bounds
on the so-called generalization error. The resulting estimates show, that the gen-
eralization error tends to zero, when the noise in the measurements tends to zero,
and the number of sampling points tends to infinity sufficiently fast. None of the
obtained rates does depend on the dimension of the sampling space.
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1 Introduction

In the problem of learning a function f , the aim is to generalize knowledge
available on a discrete set ω = {x1, . . . ,xN } ⊂ Ω onto the whole domain
Ω. Several attempts have been made to determine bounds for the resulting
generalization error, the aim of this work is to develop a framework that
allows to bound this error under simple and verifiable assumptions.
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The problem of interest can be stated as

Given discrete values f δ(xi), xi ∈ ω, i = 1, . . . , N ,

find an approximation f δω to f on the whole domain Ω.
(1)

For the given point measurements f δ(xi) we assume

f δ(xi) = f(xi) + δi, xi ∈ ω = {x1, . . . ,xN } ,

where δi represents noise. To keep our approach as general as possible, we
will not make any assumptions on the nature of the perturbations δi (such as
independence or boundedness), besides the requirement that

1

N

N∑
i=1

(
f δ(xi)− f(xi)

)2
≤ δ2 <∞.

This is a natural assumption and fulfilled in typical applications (see below).

To obtain our results, smoothness assumptions on the function f are necessary;
these will be stated via norms in Sobolev spaces (cf. [?]). In the following, the
Sobolev space Hs(Ω) is defined as

Hs(Ω) =
{
h ∈ L2(Ω) | ‖h‖Hs(Ω) <∞

}
,

where the corresponding norm is given by

‖h‖Hs(Ω) =

 ∑
0≤|u|≤s

∫
Ω

(
∂|u|

∂xu

h(x)

)2

dx

1/2

, (2)

i. e., the sum of the L2(Ω)-norm of all weak derivatives of h up to order s. It
should be mentioned that this definition can be extended to non-integers s as
well, for details we refer to [?, Chapter 7].

The assumptions we will need to derive bounds on the generalization error
are extremely simple, and thus also interpretable and can be verified in prac-
tice; nevertheless, fundamental results from the theory of quasi-Monte Carlo
integration are necessary to obtain these estimates. To abbreviate notation we
introduce the `2(ω)-norm on the discrete set ω = {x1, . . . ,xN} as

‖h‖2
`2(ω) :=

1

N

N∑
i=1

h(xi)
2.

The necessary assumptions on the data ω = {x1, . . . ,xN }, f δ(xi), and the
constructed approximation f δω are then given as follows.

Assumption 1 (with parameter s) The noisy measurements f δ(xi), taken
at points ω = {x1, . . . ,xN} are a discrete approximation to f ∈ L2(Ω) and
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have `2(ω) noise level

∥∥∥f − f δ∥∥∥2

`2(ω)
=

1

N

N∑
i=1

(
f(xi)− f δ(xi)

)2
≤ δ2 . (3a)

The approximation f δω ∈ L2(Ω) constructed from f δ(xi) satisfies

∥∥∥f − f δω∥∥∥2

`2(ω)
=

1

N

N∑
i=1

(
f(xi)− f δω(xi)

)2
≤ C1δ

2 . (3b)

The distance of the approximation f δω to the function f , measured in the
Sobolev space Hs(Ω) is bounded, i. e.,∥∥∥f − f δω∥∥∥Hs(Ω)

≤ C2 . (3c)

The constants C1 and C2 are both independent of ω.

Under these simple assumptions we are able to derive our main results, The-
orems 8 and 12 below: when the noise level δ tends to zero, and N increases
sufficiently fast, then also the error measured on the whole space L2(Ω) tends
to 0. In the following we give a short discussion of these assumptions.

Remark 2 Observe that condition (3a) is fulfilled in very general cases, for
instance pointwise bounded errors as in [?,?] are allowed. But in contrast to
their work, here also the important case of pointwise Gaussian measurement
errors is permitted, more general, any independent, identically distributed
(i.i.d.) perturbation with bounded variance satisfies (3a).

The constant C1 in condition (3b) will always be strictly greater than 1, since
it is in general not possible to satisfy (3b) and (3c) simultaneously, when
C1 = 1.

Finally we would like to mention that the smoothness assumption (3c) required
on f δω can be verified easily, it boils down to the requirement that:

• The true solution f carries some smoothness.

• The constructed approximation f δω is smooth as well (but not necessarily
with the same index s).

• The procedure to generate f δω from measurements in ω keeps f δω smooth.
(For the procedures we consider in Section 4, condition (3c) is satisfied with
C2 ≤ 2‖f‖Hs(Ω).)

Observe that no assumptions are made on how the function f δω are obtained;
two possibilities to generate functions f δω with the desired properties are de-
scribed in Section 4, but also other methods will work as well, when the
regularization parameters are chosen appropriately. In earlier works different
assumptions were necessary, many of them difficult to check.
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For example, the estimates in [?] require bounds on the Vapnik-Chervonenkis-
dimension of certain sets, the results in [?] needed the concept of covering
numbers and pseudo-dimensions; also in [?] the concept of covering numbers
is used (cf. e. g., [?, Theorem B]). A conceptually very different approach was
taken in [?] were the focus was on reproducing kernel Hilbert spaces; using
such spaces one can represent linear operators as infinite matrices, to bound
the generalization error, estimates on infimal and supremal singular values of
such infinite matrices with random entries were necessary.

In contrast, the assumptions in our setup have simple interpretations and
are not restricted to a particular learning scheme (like e. g., regularization
networks). Any learning method that satisfies Assumptions 1 is allowed. It
should also be mentioned, that in the case of neural networks the assumptions
reduce to equivalent smoothness requirements on the activation function Φ
in (10) (cf. Section 4).

The outline of this paper is as follows: Section 2 is devoted to the derivation of
a Koksma-Hlawka type estimate for bounding the generalization error. These
results are applied in Section 3 to obtain our main result, Theorem 8: a di-
mension independent bound on the generalization error. In the second part
of this section, results from the theory of Sobolev spaces are used, to deduce
the same convergence rate under a weaker growth condition on the number N
of samples. In Section 4 we present two possibilities to generate functions f δω
with the properties described in Assumptions 1. Finally, in Section 5 we give
an outlook on possibilities for future work and further improvements.

2 A Koksma-Hlawka type estimate for bounding the Generaliza-
tion Error

In this section we derive a Koksma-Hlawka type bound on the generaliza-
tion error. Based on Assumptions 1, this estimate can be used to obtain a
probabilistic bound on the L2(Ω)-norm of the error in Section 3.

In the sequel, for simplicity we shall restrict ourselves to the case Ω = [0, 1]d,
the d-dimensional unit cube. (Since we consider the case of weighted Sobolev-
spaces, the analysis can easily be extended to more general domains.) It is
clear that a good approximation to f in L2(Ω) can only obtained, if the sam-
pled points cover the whole cube, nevertheless, to allow more general cases
we introduce a probability density function ρ(x) on the d-dimensional unit
cube [0, 1]d, and assume that the points xi are drawn from this distribution.
Consequently the resulting estimates for the error will be given in terms of
weighted L2,ρ(Ω)-norms.

Observe that the error in the L2,ρ(Ω)-norm can be split into one part that
measures the approximation quality on the discrete set ω = {x1, . . . ,xN},
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and another part that directly measures the generalization error:

∥∥∥f − f δω∥∥∥2

L2,ρ(Ω)

≤
∥∥∥f − f δω∥∥∥2

`2(ω)
+
∣∣∣∣∥∥∥f − f δω∥∥∥2

L2,ρ(Ω)
−
∥∥∥f − f δω∥∥∥2

`2(ω)

∣∣∣∣ (4)

=
∥∥∥f − f δω∥∥∥2

`2(ω)
+

∣∣∣∣∣
∫

[0,1]d
(f(x)− f δω(x))2ρ(x) dx− 1

N

N∑
i=1

(f(xi)− f δω(xi))
2

∣∣∣∣∣ .
According to Assumptions 1 we may assume that the first term in (4) is

bounded by ‖f − f δω‖
2

`2(ω) ≤ Cδ2. This is for instance the case when f δω is
generated via the greedy algorithm discussed in Section 4; the goal of this
section is to obtain bounds for the second term. This part can be interpreted as
the error obtained by a quasi-Monte Carlo integration rule, where the function
to be integrated is given by (f − f δω)2 (for an introduction in quasi-Monte Carlo
rules see, for example, [?]). To estimate this term we will use a Koksma-Hlawka
type estimate, which separates the bound into properties of the point set ω
and smoothness properties of the function (f − f δω)2.

We introduce some notation: let D denote the index set D = {1, . . . , d}. For
u ⊆ D let |u| denote the cardinality of u and for a vector x ∈ Id := [0, 1]d let
xu denote the vector from I |u| containing all components of x whose indices
are in u. Further let dxu =

∏
j∈u dxj and let (xu, 1) be the vector x from Id

with all components whose indices are not in u replaced by 1.

The integration error depends on smoothness assumptions of the function to
be integrated. For this sake, let the 2,d-variation of a function h be defined as

‖h‖2,d :=

∑
u⊆D

∫
[0,1]|u|

∣∣∣∣∣∂|u|∂tu
h(tu, 1)

∣∣∣∣∣
2

dtu

1/2

, (5)

and the corresponding function space be denoted by

F2,d := {h ∈ L2([0, 1]d) : ‖h‖2,d <∞}.

The integration error can now be bounded by the variation of the function
to be integrated, and the discrepancy of the points used for this integration,
via the following Koksma-Hlawka type inequality. To abbreviate notation we
write dρ(x) instead of ρ(x) dx from now on.

Proposition 3 Let h ∈ F2,d and let x1, . . . ,xN be N points in [0, 1)d. Then
we have ∣∣∣∣∣

∫
[0,1]d

h(x) dρ(x)− 1

N

N∑
n=1

h(xn)

∣∣∣∣∣ ≤ ‖h‖2,dD2,ρ,N(x1, . . . ,xN),
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where

D2,ρ,N(x1, . . . ,xN) :=

∑
u⊆D

∫
[0,1]|u|

discρ(tu, 1)2 dtu

1/2

and

discρ(x) :=
∫

[0,1]d
χ[0,x)(t) dρ(t)−

1

N

N∑
i=1

χ[0,x)(xi).

Here χ[0,x) denotes the characteristic function of the interval [0,x). We shall
call D2,ρ,N the L2,ρ-discrepancy of the points x1, . . . ,xN .

PROOF. Let h ∈ F2,d and let x1, . . . ,xN be N points in [0, 1)d. Then it
follows from [?, Eq. (12)] that

∫
[0,1]d

h(x) dρ(x)− 1

N

N∑
n=1

h(xn) =
∑
u⊆D

(−1)|u|
∫

[0,1]|u|

∂|u|

∂tu
h(tu, 1)discρ(tu, 1) dtu.

As in [?] an application of the Cauchy-Schwarz inequality yields the result. 2

We obtain the following probabilistic results for the L2,ρ-discrepancy of ran-
dom points in the unit cube.

Proposition 4 Assume that x1, . . . ,xN are N independent random variables
with density ρ on [0, 1]d. Denote by E (resp. P) the expectation (resp. the
probability) with respect to the density ρ on [0, 1]d.

(1) Then the mean square L2,ρ-discrepancy is given by

E[D2
2,ρ,N(x1, . . . ,xN)] =

Λρ,d

N
,

where

Λρ,d :=
∑
u⊆D

 ∫
[0,1]|u|

∫
[0,1]d

χ[0,(tu,1))(x) dρ(x) dtu

−
∫

[0,1]|u|

(∫
[0,1]d

χ[0,(tu,1))(x) dρ(x)

)2

dtu

.

(2) For any c > 1 we have

P
[
D2,ρ,N(x1, . . . ,xN) < c

√
Λρ,d/N

]
≥ 1− 1

c2
.
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Remark 5 If the density ρ is of product form, i.e., for x = (x1, . . . , xd),
ρ(x) =

∏d
k=1 ρk(xk) with probability densities ρk on [0, 1], then we obtain

Λρ,d =
d∏

k=1

(1 + αk)−
d∏

k=1

(1 + βk),

where

αk = 1−
∫ 1

0
tρk(t) dt and βk =

∫ 1

0

(∫ t

0
ρk(x) dx

)2

dt.

In particular, if ρ ≡ 1, i.e., the points are uniformly distributed on the unit

cube, then Λρ,d =
(

3
2

)d
−
(

4
3

)d
.

PROOF. From the linearity of expectation we obtain

E[D2
2,ρ,N(x1, . . . ,xN)] =

∑
u⊆D

E[∆(u)],

where ∆(u) is defined as

∆(u) :=
∫

[0,1]|u|
discρ(tu, 1)2 dtu.

Using the binomial formula, the square of the function discρ(tu, 1) can be
written as

discρ(tu, 1)2 =

(∫
[0,1]d

χ[0,(tu,1))(x) dρ(x)− 1

N

N∑
i=1

χ[0,(tu,1))(xi)

)2

=

(∫
[0,1]d

χ[0,(tu,1))(x) dρ(x)

)2

− 2

N

N∑
i=1

∫
[0,1]d

χ[0,(tu,1))(x) dρ(x)χ[0,(tu,1))(xi)

+
1

N2

N∑
i,j=1

χ[0,(tu,1))(xi)χ[0,(tu,1))(xj).

Therefore for the expectation of ∆(u) we obtain

E[∆(u)] =

=
∫

[0,1]|u|

(∫
[0,1]d

χ[0,(tu,1))(x) dρ(x)

)2

dtu

− 2

N

N∑
i=1

∫
[0,1]d

∫
[0,1]|u|

∫
[0,1]d

χ[0,(tu,1))(x) dρ(x)χ[0,(tu,1))(xi) dtu dρ(xi)

+
1

N2

N∑
i,j=1

E[χ[0,(tu,1))(xi)χ[0,(tu,1))(xj)]

7



=−
∫

[0,1]|u|

(∫
[0,1]d

χ[0,(tu,1))(x) dρ(x)

)2

dtu

+
1

N2

N∑
i=1

∫
[0,1]d

∫
[0,1]|u|

χ[0,(tu,1))(xi) dtu dρ(xi)

+
1

N2

N∑
i,j=1
i 6=j

∫
[0,1]d

∫
[0,1]d

∫
[0,1]|u|

χ[0,(tu,1))(xi)χ[0,(tu,1))(xj) dtu dρ(xi) dρ(xj)

=−
∫

[0,1]|u|

(∫
[0,1]d

χ[0,(tu,1))(x) dρ(x)

)2

dtu

+
1

N

∫
[0,1]d

∫
[0,1]|u|

χ[0,(tu,1))(x) dtu dρ(x)

+
N2 −N
N2

∫
[0,1]|u|

(∫
[0,1]d

χ[0,(tu,1))(x) dρ(x)

)2

dtu

=
1

N

 ∫
[0,1]d

∫
[0,1]|u|

χ[0,(tu,1))(x) dtu dρ(x)

−
∫

[0,1]|u|

(∫
[0,1]d

χ[0,(tu,1))(x) dρ(x)

)2

dtu

.
The first result follows. The second result follows from the first one together
with the Markov inequality (see e. g., [?]). 2

Now we have all tools that we need for bounding the generalization error. This
will be done in the subsequent section.

3 Bounding the Generalization Error

Using the results of the previous section we can now derive a bound on the
generalization error. First of all we will connect the 2,d-variation with Sobolev-
norms as defined in (2). The reason for using these Sobolev norms instead of
the 2,d-norm directly, is that for the former, interpolation inequalities ([?,?,?])
are available. These inequalities will be necessary to obtain the results of
Theorem 8 under the weaker assumptions of Theorem 12.

Proposition 6 Let h ∈ Hs(Ω) with Ω = [0, 1]d and s ≥ d. Then there exists
C ∈ R with

‖h2‖2,d ≤ C‖h‖2
Hs(Ω). (6)

PROOF. The proof follows from definitions (2) and (5) using the Sobolev
embedding theorem (see e. g. [?]). Recall that this theorem states, that the
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W j,q(Ωk)-norm of h can be bounded by its W j+m,p(Ω)-norm, whenever p ≤
q ≤ kp/(d−mp) and d > mp. (Here by Ωk we denote a k-dimensional subset of
Ω.) Since we are only interested in the index s necessary to bound the variation,
we do not have to distinguish with respect to which variable derivatives are
built, only the number of derivatives is important. Therefore we will use the
abbreviation ∂|u|

xu
h =: h|u|. Using Leibniz’ identity (the product rule for higher

order derivatives) we obtain

‖h2‖2
2,d = (h(1)2)2 +

d∑
k=1

∫
Ωk

ck
((
h2
)
k

)2

= h(1)4 +
d∑

k=1

∫
Ωk

ck

(
k∑
i=0

(
k

i

)
hk−ihi

)2

= h(1)4 +
d∑

k=1

∫
Ωk

k∑
i,j=0

ck,i,jhk−ihi hk−jhj ,

with appropriate constants ck and ck,i,j. To ensure that the integral is bounded,
it is necessary that hk−ihi is in L2 (Ωk) for all appearing combinations of i
and k.

Suppose that h ∈ Hs(Ω) ≡ W s,2 (Ω) with s ≥ d. Via the embedding theorem
this implies (if d > 1), h ∈ W s−1/2,2(Ωd−1), and therefore of course also h ∈
W s−1,2(Ωd−1); inductively this gives h ∈ W k,2(Ωk).

Using the assumption h ∈ W k,2(Ωk) we will now deduce that for every i,
hk−ihi ∈ L2 (Ωk). Clearly the first multiplicand is in W i,2(Ωk), while the second
lies in W k−i,2(Ωk). Suppose that (k − i) > i, then from hk−i ∈ W i,2(Ωk) we
obtain hk−i ∈ L2k/(k−2i)(Ωk) ⊂ L2(Ωk), while at the same time hi ∈ L∞(Ωk);
together this implies hk−ihi ∈ L2(Ωk). Analogous reasoning applies when i >
(k−i). For the case (k−i) = i = k/2 we use the fact that hk/2 ∈ W k/2,2(Ωk) ⊂
W k/4,4(Ωk) ⊂ L4(Ωk); since now hk/2 ∈ L4(Ωk) we have h2

k/2 ∈ L2(Ωk).

The integral above can now be estimated using the Cauchy-Schwarz inequality
and applying the obtained results to the appearing terms. For instance for
terms with (k − i) > i we would use the estimate

(∫
Ωk

(hk−ihi)
2
)1/2 e. g.

≤ ‖hk−i‖L2(Ωk)‖hi‖L∞(Ωk) ≤ c‖h‖2
Wk,2(Ωk) ≤ c̃‖h‖2

W s,2(Ω).

Finally we consider the appearing term h(1)4. For this one we use the fact that
h ∈ Hs(Ω) is continuous on Ω̄ whenever s > d/2. Since we assumed s ≥ d
there is some c for which we may estimate h(1)4 ≤ ‖h‖4

C(Ω̄) ≤ c‖h‖4
W s,2(Ω).

Altogether this proves the desired estimate. 2

Remark 7 Note that the 2,d-variation above contains the term
∫

Ω(h0hd)
2.

Even if h0 ∈ L∞(Ω) we must require hd ∈ L2(Ω) or equivalently h ∈ Hd(Ω) =
W d,2(Ω) to obtain a bound on the integral. Therefore the bound (6) is optimal

9



with respect to the indices used, and can not be obtained for any s < d or
p < 2.

Although the smoothness required in Proposition 6 may seem large, recall
that we already need f ∈ Hs(Ω) with s > d

2
to have continuous f , which is

of course vital if we want to consider point measurements. Thus the smooth-
ness requirement in Proposition 6 is only slightly stronger than the necessary
smoothness assumptions for having a well-defined sampling problem.

Combining Proposition 6 with the results of the previous section we obtain
the main theorem: starting with measurements on a discrete sparse set ω we
obtain—under simple smoothness assumptions—convergence of f δω to f on
the whole domain Ω. In particular we have a deterministic bound, as well as
a bound on the expected value of the error, measured in the L2,ρ(Ω)-norm.

Theorem 8 Let Ω = [0, 1]d and let Assumptions 1 with s ≥ d be satisfied.
Then for δ → 0 the error satisfies∥∥∥f − f δω∥∥∥2

L2,ρ(Ω)
≤ C̃D2,ρ,N(x1, . . . ,xN)

∥∥∥f − f δω∥∥∥2

Hs(Ω)
+ Cδ2,

where C and C̃ are absolute positive constants. Suppose furthermore that
x1, . . . ,xN are N independent random variables with density ρ on [0, 1]d, and
that N ≥ δ−4. Then for δ → 0 the expected value of the error satisfies

E
[∥∥∥f − f δω∥∥∥2

L2,ρ(Ω)

]
= O

(
δ2
)
.

PROOF. For any point set ω = {x1, . . . ,xN} ⊂ Ω we obtain from (4), and
Propositions 3 and 6 the estimate∥∥∥f − f δω∥∥∥2

L2,ρ(Ω)
≤ C̃D2,ρ,N(x1, . . . ,xN)

∥∥∥f − f δω∥∥∥2

Hs(Ω)
+ Cδ2.

Since ‖f − f δω‖Hs(Ω) remains bounded independent of the choice of ω, and since

E[D2,ρ,N(x1, . . . ,xN)] ≤ E
[
D2

2,ρ,N(x1, . . . ,xN)
]1/2

due to Jensen’s inequality,
the desired result follows from Proposition 4. 2

In principle it would be possible to derive this result using the 2,d-norm only.
Nevertheless to obtain the refined estimate of Theorem 12, so-called inter-
polation inequalities are necessary, which are not available for the 2,d-norm.
Using additional smoothness assumptions the same convergence rate can be
obtained under a weaker growth-condition on N as well. The reason for this
is that convergence in L2,ρ(Ω) and boundedness in higher spaces Hr(Ω) im-
ply also convergence in intermediate spaces. Therefore in this case the term
‖f − f δω‖Hs(Ω) in Theorem 8 will not only remained bounded as stated above,
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but even tend to zero. How fast this convergence will be is determined by
interpolation inequalities, in the following stated for weighted spaces.

Lemma 9 (Interpolation inequality) Let h ∈ Hr(Ω) with r ≥ s ≥ 0.
Furthermore let the density ρ(x) be non-zero for all x ∈ Ω. Then there exists
some C ∈ R such that the Hs(Ω)-norm of h is bounded by

‖h‖Hs(Ω) ≤ C‖h‖
r−s
r

L2,ρ(Ω)‖h‖
s
r

Hr(Ω).

PROOF. Since ρ(x) is non-zero for all x ∈ Ω and since Ω is compact there
exists C1 ∈ R with

‖h‖L2(Ω) ≤ C1‖h‖L2,ρ(Ω).

We can now apply the interpolation inequality (see e. g., [?,?,?]) to give a
bound for ‖h‖Hs(Ω) as

‖h‖Hs(Ω) ≤ C2‖h‖
r−s
r

L2(Ω)‖h‖
s
r

Hr(Ω)

with some C2 depending on r, s and properties of the domain Ω ⊂ Rn. The
result now follows by setting C := C2C

(r−s)/r
1 . 2

Using this interpolation inequality we may rewrite Theorem 8 as follows.

Corollary 10 Let Ω = [0, 1]d and Assumptions 1 be fulfilled with parameter r
where r ≥ s ≥ d. Furthermore let the density ρ(x) be non-zero for all x ∈ Ω.
Then the error satisfies the estimate

∥∥∥f − f δω∥∥∥2

L2,ρ(Ω)
≤ C̃D2,ρ,N(x1, . . . ,xN)

∥∥∥f − f δω∥∥∥2 r−s
r

L2,ρ(Ω)
+ Cδ2 (7)

Observe that the error-term now appears on both sides of the inequality, but
with different exponents. In the following we will apply a bootstrapping argu-
ment to get rid of the L2,ρ(Ω)-norm appearing on the right hand side of (7).
To shorten the result we use some abbreviations in the following lemma, the
final result in original notation is given in Theorem 12.

Lemma 11 Let A, D, C and α ∈ R be positive and α < 2. Then the estimate

A2 ≤ DAα + C (8)

implies the bound

A2 ≤ D
2

2−α +
2

2− α
C . (9)
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PROOF. The proof follows using the (weighted) inequality of arithmetic and
geometric means. Recall that this inequality states that for all σ, τ ≥ 0 and
0 < r < 1 we have the bound

σrτ 1−r ≤ rσ + (1− r)τ.

Since the left hand side of (8) involves the square of A, we use this estimate for
the setting σ := A2. To estimate the term DAα we have to define τ accordingly.
As turns out with the choice τ := D2/(2−α) we may write

DAα = D
2

2−α(1−α
2 )A2α

2 ≤
(

1− α

2

)
D

2
2−α +

α

2
A2.

(Since we assumed α < 2, r := 1 − α/2 satisfies 0 < r < 1). Combining this
estimate with (8) we have

A2 ≤
(

1− α

2

)
D

2
2−α +

α

2
A2 + C,

and since α < 2 also

A2 ≤ D
2

2−α +
2

2− α
C,

which is the desired result. 2

Using the bootstrapping argument of Lemma 11 we are now able to show that
the same convergence rate as in Theorem 8 can be obtained under a weaker
growth condition on N also. Instead of N ≥ δ−4 we now only have to require
N ≥ δ−4 s

r ≥ δ−2.

Theorem 12 Let Ω = [0, 1]d, let Assumptions 1 with r, r ≥ s ≥ d be fulfilled
and let N ≥ δ−4 s

r for s ≤ r < 2s, and N ≥ δ−2 for r ≥ 2s. Furthermore let
the density ρ(x) be non-zero for all x ∈ Ω. Then for δ → 0 the expected value
of the error satisfies the convergence rate

E
[∥∥∥f − f δω∥∥∥2

L2,ρ(Ω)

]
= O

(
δ2
)
.

PROOF. After replacing the parameters in Lemma 11 by their counterparts
in estimate (7) we find that the only non-deterministic entry on the right-
hand side of (9) is the discrepancy. We set α = 2(r − s)/r, where we only
use smoothness up to r ≤ 2s to have 0 ≤ α ≤ 1. With this α we may apply
Jensen’s inequality and have

E[D2,ρ,N(x1, . . . ,xN)
2

2−α ] ≤ E[D2,ρ,N(x1, . . . ,xN)2]
1

2−α

12



Inserting the bound for the discrepancy obtained in Proposition 4 we end up
with the estimate

E
[∥∥∥f − f δω∥∥∥2

L2,ρ(Ω)

]
≤ C̃

2
2−αN−

1
2−α +

2

2− α
Cδ2

For the proposed choices of N we obtain the desired result. 2

Remark 13 (Discussion) Observe that the convergence rate in the theorem
above is dimension independent. How many points xi are necessary to obtain
a certain quality depends on the noise level δ only; moreover, how fast this
value increases in case we obtain measurements with lower noise level does
not depend on the space dimensionality; in the worst case we must impose the
growth condition N ∼ δ−4, under additional smoothness assumptions we only
need N ∼ δ−2.

On the other hand, the smoothness requirements in the theorems above do de-
pend on the dimension, but as was mentioned above, we already need a certain
index of differentiability to ensure that all functions involved are continuous.
While of course every classically differentiable function is also continuous, this
does not hold for the weakly differentiable functions considered in the defini-
tion of Sobolev spaces (see [?, Chap. V] for some counter examples). Therefore
stated in terms of Sobolev-norms also the smoothness condition for having a
well-defined sampling problem must depend on the dimension.

4 Two Approaches to satisfy Assumptions 1

In this section we demonstrate two possibilities to satisfy Assumptions 1.
The particular framework we consider is function approximation with feed
forward neural networks with one hidden layer. Although we will now mainly
concentrate on one algorithm, observe that the results in Section 3 do in
no way depend on the method used to generate the approximations. The
results are valid for any method that generates approximations in accordance
to Assumptions 1. At the end of this section we briefly demonstrate that also
Tikhonov regularization satisfies the required assumptions.

Greedy Approximation

The approximation schemes that we consider for the greedy algorithm have a
simple structure, but can still attain high convergence rates; the networks we
focus on are given by functions fk with

fk(x) =
k∑
i=1

ciΦ(x, ti) . (10)

13



The generating function Φ is called activation function and could for instance
be given by a Gaussian, centered at the point ti. The main difference be-
tween (10) and linear schemes (like e. g., splines) is that the parameters ti are
chosen a-posteriori in dependence of the function f to be approximated. This
results in the dimension independent convergence rate

‖f − fk‖2
H = O

(
1

k

)
, (11)

where H is some appropriate Hilbert-space (see e. g., [?,?,?,?]). Given point
measurements f δ(xi) at points ω = {x1, . . . ,xN }, the corresponding space
is `2(ω). To associate a function fk ∈ L2(Ω) with a vector in `2(ω) (again
denoted by fk) we simply utilize (10) to obtain

fk =


fk,1

...

fk,N

 :=


fk(x1)

...

fk(xN)

 =
k∑
i=1

ci


Φ(x1, ti)

...

Φ(xN , ti)

 =:
k∑
i=1

ci


Φ1(ti)

...

ΦN(ti)


(implicitly we used the assumption that Φ is continuous, which is of course
natural, when we want to consider point measurements in (1)). Using (11), an
approximation f δk to f from point values f δ(xi) with ‖f − f δk‖`2(ω) ≤ δ could

in principle be obtained by approximating the vector f δ ∈ `2(ω) directly with
arbitrary high precision, since we have the estimate

∥∥∥f − f δk∥∥∥`2(ω)
≤
∥∥∥f − f δ∥∥∥

`2(ω)
+
∥∥∥f δ − f δk∥∥∥`2(ω)

≤ δ +O
(

1√
k

)
. (12)

But as turns out it is not a good idea to approximate f δ with high accu-
racy, because with increasing size of the network the generalization properties
become worse again: although the error in the `2(ω)-norm decreases, it will
not decrease in the L2(Ω)-norm; the reason for this is that the corresponding
approximations will in general not remain smooth, but start to oscillate.

As we have seen in Theorem 8 above, we obtain convergence to f on the
whole domain, when the generated approximation f δω is an approximation of
f on `2(ω) and at the same time remains bounded in a Sobolev space of
sufficiently high order. Thus a key to obtain good generalization performance
is to maintain boundedness of the norm of f δω in certain Sobolev spaces. This
is in contrast to the scheme in (12), which in general will generate a sequence
with ‖f δk‖Hs(Ω) →∞ for arbitrary s > 0.

Several methods have been proposed for generating smooth approximations;
classical attempts to construct such iterates are the Tikhonov-type meth-
ods weight decay and output smoothing (investigated in e. g. [?,?]), and the
method of early stopping (which has been shown not to be a regularization
method in [?]).
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Here we want to focus on so-called greedy algorithms, in particular we will
use a weak relaxed greedy algorithm (see [?] for a recent survey on nonlinear
approximation theory): In such an algorithm not all parameters ti are deter-
mined at the same time, but they are obtained one after the other, each one
in a locally optimal way. To present the algorithm in more detail we have to
introduce some notations first.

We will denote with Gb the set of possible summands (“nodes”) in (10), i. e.,

Gb = { g ∈ L2(Ω) | g = cΦ(·, t), t ∈ P, |c| ≤ b } ,

where P represents the compact set of attainable parameters. For simplicity
we will assume ‖Φ(·, t)‖L2(Ω) ≤ 1. Furthermore we assume that all g ∈ Gb are
continuous, which is vital if we want to consider point-evaluations later.

The greedy algorithm constructs convex approximations and thus generates
indices ci that fulfill the condition

∑k
i=1 |ci| ≤ b; consequently the approxima-

tions fk always lie in the convex hull of Gb, given by

co(Gb) =

{
f ∈ L2(Ω) | f =

k∑
i=1

ci Φ(·, ti),
k∑
i=1

|ci| ≤ b, ti ∈ P, k ∈ N
}
.

Convergence of fk to f can of course only be obtained when f is in the closure
of this set, which can be written as

co(Gb) =
{
f ∈ L2(Ω) | f =

∫
P

Φ(·, t) dµ(t), ‖µ‖M ≤ b
}
,

where µ is a Radon-measure and ‖ · ‖M denotes the corresponding norm. Un-
der the rather natural smoothness assumption f ∈ co(Gb) we can give the
greedy algorithm as shown on the following page.

Note that in the current setting Algorithm 1 requires knowledge of the parame-
ter b; an implementation, which does not require such (in practice unavailable)
information has been derived in [?].

The following proposition shows that Algorithm 1 is feasible and generates
approximations with a quality in the order of the noise level δ (see [?]).

Proposition 14 Let f ∈ co(Gb) and f δ be such that ‖f − f δ‖`2(ω) ≤ δ. Then
Algorithm 1 is feasible up to the index

k∗ =

⌈
η2M0

4δ2(1 + η)

⌉
. (14)

The residual for this index is bounded by

∥∥∥f δ − f δk∗∥∥∥`2(ω)
≤ 2

1 + η

η
δ. (15)
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Algorithm 1. Approximation of noisy data with given smoothness parameter b.

Let f ∈ co(Gb) and f δ(xi), i = 1, . . . , N as in Assumption 1, then an approx-
imation to f can be computed as follows.

Set f δ0 = 0.

Choose M = (1 + η)M0 with M0 as in (13) and η > 0.
Compute k∗ via (14).
for k := 1 to k∗ do

Find gδk ∈ Gb such that∥∥∥∥∥f δ − k − 1

k
f δk−1 −

1

k
gδk

∥∥∥∥∥
2

`2(ω)

≤ M

k

is fulfilled and define f δk as

f δk =
k − 1

k
f δk−1 +

1

k
gδk .

end for
Here the parameter M0 is defined as

M0 = sup
g∈Gb
‖g‖2

`2(ω) −
∥∥∥f δ∥∥∥2

`2(ω)
+ 2δ

∥∥∥f δ∥∥∥
`2(ω)

. (13)

PROOF. The statement follows from results in [?], although some caution

is necessary to apply these results. In [?], M0 was defined as b2 − ‖f δ‖2
+

2δ‖f δ‖. Here we use the assumption that f ∈ co(Gb) ⊂ L2(Ω), but consider
approximation on `2(ω). While supg∈Gb ‖g‖L2(Ω) = b, the supremum measured
in the `2(ω)-norm can be larger. Therefore we explicitly define M0 as in (13).
To check that M0 is finite, we compute

‖g‖2
`2(ω) ≤ b2 sup

t∈P
‖Φ(·, t)‖2

`2(ω) .

Since Φ was assumed to be bounded, we also obtain that M0 is bounded; the
result is now immediately obtained by [?, Theorem 7]. 2

The stability of the greedy algorithm stems from the fact that the ci remain
bounded in the l1-norm throughout the algorithm. Since all f δk have the form

f δk =
∑k
i=1 c

k
i Φ(·, ti), the restriction

∑k
i=1

∣∣∣cki ∣∣∣ ≤ b restricts the class of func-
tions that can be approximated. The chosen bound serves as a regularization
parameter with a similar effect as the penalty in Tikhonov-regularization.

Note that the error bound (15) is always larger than 2δ, in contrast to the
approach in (12), where the noisy data were approximated with higher accu-
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racy. But although we loose accuracy with respect to the `2(ω)-norm of the
error, this solution is preferable since the approximating sequence f δk remains
bounded in Sobolev spaces of higher order, in particular it fulfills Assump-
tions 1 as the next theorem shows.

Theorem 15 Let the activation function satisfy Φ(·, t) ∈ Hs(Ω) for all t ∈ P ,
P compact. Then the approximations f δk∗ generated by Algorithm 1 fulfill

• ‖f − f δk∗‖`2(ω)
≤ Cδ

• ‖f − f δk∗‖Hs(Ω)
≤ C̃ ,

with constants C and C̃ independent of the choice of the points ω. In particular
they fulfill the Assumptions 1 with parameter s.

PROOF. The first estimate follows immediately from Proposition 14 via the
triangle inequality∥∥∥f − f δk∗∥∥∥`2(ω)

≤
∥∥∥f − f δ∥∥∥

`2(ω)
+
∥∥∥f δ − f δk∗∥∥∥`2(ω)

≤ δ + 2
1 + η

η
δ =: Cδ .

Observe that, although M0 in (13) does depend on ω, the constant C does not.
The second estimate results from the compactness of the set of parameters P
(cf. also [?, Sec. 5])

∥∥∥f − f δk∗∥∥∥Hs(Ω)
≤ ‖f‖Hs(Ω) +

∥∥∥f δk∗∥∥∥Hs(Ω)
≤ ‖f‖Hs(Ω) +

1

k

k∑
i=1

∥∥∥gδi ∥∥∥Hs(Ω)

≤ 2b sup
t∈P
‖Φ(·, t)‖Hs(Ω) =: C̃ <∞ 2

Thus, setting f δω = f δk∗ we obtain via Theorem 8 and 12 that f δk∗ will converge
to f on the whole space L2(Ω) for δ → 0, although Algorithm 1 only uses
noisy function values on a discrete, sparse subset ω ⊂ Ω.

Tikhonov Regularization

In the following we briefly show that also approximations generated via Ti-
khonov-regularization satisfy Assumptions 1. Here the corresponding approx-
imation is defined as the minimizer of the functional∥∥∥f δ − f δα∥∥∥2

`2(ω)
+ α

∥∥∥f δα∥∥∥2

Hs(Ω)
→ min

fδα∈C⊂Hs(Ω)
(16)

where C is a closed, convex subset of Hs(Ω) (cf. also to the regularization
networks treated in [?]). To obtain convergence of this method for noise level

17



δ tending to 0 it is important to choose α properly. A common parameter
choice rule is the discrepancy principle ([?]).

Remark 16 (Discrepancy Principle) For given τ ≥ 1 and noise level δ as
in (3a), choose the largest regularization parameter α for which the minimizer
f δα of (16) satisfies∥∥∥f δ − f δα∥∥∥`2(ω)

= τδ .

We can show that also f δα obtained from Tikhonov regularization together
with the discrepancy principle satisfies Assumptions 1.

Theorem 17 Let f ∈ C ⊂ Hs(Ω), where C is a closed, convex subset of
Hs(Ω) and f δα the minimizer of (16). Furthermore suppose that α is chosen
according to the discrepancy principle. Then with f δω := f δα, Assumptions 1
(with parameter s) are satisfied.

PROOF. Since f δα is a minimizer of (16) we have in particular∥∥∥f δ − f δα∥∥∥2

`2(ω)
+α

∥∥∥f δα∥∥∥2

Hs(Ω)
≤
∥∥∥f δ − f∥∥∥2

`2(ω)
+α‖f‖2

Hs(Ω) ≤ δ2 +α‖f‖2
Hs(Ω).

Furthermore α was chosen according to the discrepancy principle, this implies

∥∥∥f δα∥∥∥2

Hs(Ω)
≤ 1− τ 2

α
δ2 + ‖f‖2

Hs(Ω) ≤ ‖f‖
2
Hs(Ω)

The constants C1 = 1 + τ and C2 = 2‖f‖Hs(Ω) are independent of ω, therefore

f δω = f δα satisfies Assumptions 1. 2

Thus, setting f δω = f δα we obtain again via Theorem 8 and 12 that f δk∗ will
converge to f on the whole space L2(Ω) for δ → 0.

5 Outlook

The results presented in this work are valid for sampling on bounded domains.
If the domains of interest are unbounded, one can consider transformations
that map the unbounded domain onto a bounded one, while at the same time
introducing an additional density, which decays towards the boundary. The
approach via interpolation inequalities that was presented in Lemma 9 to
obtain the improved Theorem 12 used the assumption that ρ(x) ≥ ε > 0 and
must therefore be replaced by techniques that are also valid for densities that
decay to 0. In e. g. [?] and [?] interpolation inequalities for weighted norms
have been presented for some particular cases of probability distributions.
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Considering unbounded domains it should also be mentioned, that although
in the definition of the discrepancy we used a boundary value of the domain
as anchor (namely the point (1, 1, . . . , 1)). This does not pose a problem for
unbounded domains, since any anchor, i. e., fixed point within the domain may
be chosen for defining the discrepancy (see [?]).

In this work we focused on the function approximation problem (1), neverthe-
less, we would like to mention that also the case of (linear) inverse problems
can be treated in an analogous way. Consider the equation

Ax = f, f ∈ R(A) ⊂ L2(Ω) , (17)

with some compact operator A, i. e., the range of A, R(A) is a dense subset of
L2(Ω). In the classical functional analytic theory of this problem (see e. g., [?]),
always full measurements are considered, typically it is assumed that a noisy
approximation f δ is available, where ‖f − f δ‖L2(Ω) ≤ δ.

When now discrete measurements are considered, one would again have to
verify Assumptions 1. Since a compact operator A is smoothing, f will typi-
cally satisfy the smoothness requirements; for standard regularization schemes
also f δω will fulfill (3c). Therefore the results seem to be applicable also for this
important class of problems; extension to linear as well as nonlinear inverse
problems is a goal of future work.

It should be mentioned that the problem of sparse data in (17) has of course
been investigated (see e. g., [?,?,?,?]), but for special cases only. For instance [?]
considered the case of Fredholm integral equations; [?] utilized locally poly-
nomial estimators to generate an approximation f δh first, and used Tikhonov-
regularization afterwards to solve the inverse problem (17) with right hand
side f δh afterwards.
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