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A VARIANT OF THE HALES-JEWETT THEOREM

MATHIAS BEIGLBÖCK

Abstract

It was shown by V. Bergelson that any set B ⊆ N with positive upper multiplicative density
contains nicely intertwined arithmetic and geometric progressions: For each k ∈ N there exist
a, b, d ∈ N such that

˘
b(a + id)j : i, j ∈ {1, 2, . . . , k}

¯
⊆ B. In particular one cell of each finite par-

tition of N contains such configurations. We prove a Hales-Jewett type extension of this partition
theorem.

1. Introduction

Van der Waerden’s Theorem ([15]) states that for any finite coloring of N one can
find arbitrarily long monochromatic arithmetic progressions. In 1963 A. Hales and
R. Jewett ([10]) gave a powerful abstract extension of van der Waerden’s Theorem.

We introduce some notations to state their result. An alphabet Σ is a finite
nonempty set. A located word α is a function from a finite set dom α ⊆ N to Σ.
The set of all located words will be denoted by L(Σ). Note that for located words
α, β satisfying dom α∩dom β = ∅, α∪β is also located word. (Here it is convenient
to view functions as sets of ordered pairs.) By Pf (N) we denote the set of all finite
nonempty subsets of N.

Theorem 1 (Hales-Jewett) Let L(Σ) be finitely coloured. There exist α ∈ L(Σ)
and γ ∈ Pf (N) such that dom α ∩ γ = ∅ and {α ∪ γ × {s} : s ∈ Σ} is monochrome.

The term α ∪ γ × {s} may be viewed as an analogue of the expression a + c · s.
In particular we use α ∪ γ × {s} for what should rigorously be α ∪ (γ × {s}).
Configurations of the form {α ∪ γ × {s} : s ∈ Σ} are often called combinatorial
lines.

We will explain shortly how van der Waerden’s Theorem can be derived from the
Hales-Jewett Theorem. Let Σ = {0, 1, . . . , k} and assume that N is finitely coloured.
Consider the map f : L(Σ)→ N, α 7→ 1 +

∑
t∈dom α α(t) and colour each α ∈ L(Σ)

with the colour of f(α). Pick α and γ according to Theorem 1. Let a = f(α) and
d = |γ|. Then for all i ∈ {0, 1, . . . , k}, a+id = f(α∪γ×{i}) and thus the arithmetic
progression {a, a+ d, . . . , a+ kd} is monochrome.

Hales-Jewett type extensions of various other Ramsey theoretic results have been
obtained. We mention two very deep theorems in this style: H. Furstenberg and
Y. Katznelson ([8]) gave a density version of the Hales-Jewett Theorem, which
generalizes Szemerédi’s Theorem ([14]). V. Bergelson and A. Leibman ([6]) proved
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a polynomial Hales-Jewett theorem which extends the polynomial van der Waerden
Theorem.

As shown in [2], Theorem 3.15, for every set B ⊆ N with positive upper multi-
plicative density (actually positive upper multiplictive Banach density is enough)
and each k ∈ N there exist a, b, d ∈ N such that

{
b(a+ id)j : i, j ∈ {0, 1, . . . , k}

}
⊆

B. A direct consequence is the following partition theorem:

Theorem 2 For any finite coloring of N and k ∈ N there exist a, b, d ∈ N such that{
b(a+ id)j : i, j ∈ {1, 2, . . . , k}

}
is monochrome.

(See [1]) for an algebraic proof of this result.)
The main theorem of this paper is an extension of the Hales-Jewett Theorem

which is strong enough to yield Theorem 2 but also implies some other corollaries.
(Call a family F of subsets of N partition regular if for any finite coloring of N there
exists some F ∈ F which is monochrome.)

Theorem 3 Let F be a partition regular family of finite subsets of N which contains
no singletons and let Σ be a finite alphabet. For any finite colouring of L(Σ) there
exist α ∈ L(Σ), γ ∈ Pf (N) and F ∈ F such that dom α, γ and F are pairwise
disjoint and {

α ∪ (γ ∪ {t})× {s} : s ∈ Σ, t ∈ F
}

is monochrome.

Similarly as the Hales-Jewett Theorem implies van der Waerden’s Theorem, The-
orem 3 can be applied to derive Theorem 2. Assume that N is finitely coloured. Fix
k ∈ N, let F =

{
{a, a + d, . . . , a + kd} : a, d ∈ N

}
be the set of all (k + 1)-

term arithmetic progressions, put Σ = {0, 1, . . . , k} and define f : L(Σ) → N
by f(α) =

∏
t∈dom α t

α(t). Colour each α ∈ L(Σ) with the colour of f(α) and
choose α, γ and F = {a, a + d, . . . , a + kd} according to Theorem 3. Then for all
i, j ∈ {0, 1, . . . , k},

f
(
α ∪ (γ ∪ {a+ id})× {j}

)
=
∏
t∈dom α t

α(t) ·
∏
t∈γ t

j · (a+ id)j =

=
∏
t∈dom α t

α(t)︸ ︷︷ ︸
=b

·
(
a ·
∏
t∈γ t︸ ︷︷ ︸

=a

+i · d ·
∏
t∈γ t︸ ︷︷ ︸

=d

)j
= b(a+ id)j

has the same colour.
Note that we may replace F by an arbitrary partition regular family of finite

subsets of N which contains no singletons. In this way we see that there exist
a, r ∈ N and F ∈ F such that

{
b(rt)j : t ∈ F, j ∈ {0, 1, . . . , k}

}
is monochrome.

(This stronger version also follows from the algebraic proof of Theorem 2, see [1],
Corollary 4.3.)

Another application of Theorem 3 is that it allows to lower the assumption on
the set which is coloured in Theorem 2.

Corollary 1 Let k, r ∈ N. There exists K ∈ N such that for all A,D ∈ N the
following holds: Whenever

SK(A,D) =
{

(A+ i1D)(A+ i2D) . . . (A+ imD) : m, i1, i2, . . . , im ∈ {0, 1, . . . ,K}
}
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is partitioned into sets B1, B2, . . . , Br one can find b, a, d ∈ N and s ∈ {1, 2, . . . , r}
such that

{
b(a+ id)j : i, j ∈ {1, 2, . . . , k}

}
⊆ Bs.

Proof. Let Σ = {0, 1, . . . , k} and F =
{
{a, a+ d, . . . , a+ kd} : a, d ∈ N

}
. Using

a standard compactness argument (cf. [11], section 5.5) we see that for fixed r ∈ N
there exists some N ∈ N such that for any colouring of L(Σ) into r colours one can
choose α, γ and F = {a, a+d, . . . , a+kd} according to Theorem 3 and additionally
require dom α, γ, F ⊆ {1, 2, . . . , N}. Let f : L(Σ) → N, f(α) =

∏
t∈dom α(A +

tD)α(t) and put K = kN. Thus f(α) ∈ SK(A,D) for all α ∈ L(Σ), dom α ⊆
{1, 2, . . . , N}. For each s ∈ {1, 2, . . . , r} let Cs be the set of all α ∈ L(Σ), dom α ⊆
{1, 2, . . . , N} such that f(α) ∈ Bs. Choose s ∈ {1, 2, . . . , r} and α, γ, F = {a, a +
d, . . . , a+kd} such that dom α, γ, F are pairwise disjoint subsets of {1, 2, . . . , N} and
α∪(γ∪{a+id})×{j} ⊆ Cs for all choices of i, j ∈ {0, 1, . . . , k}. Applying f it follows
that

{
b(a + id)j : i, j ∈ {0, 1, . . . , k}

}
⊆ Bs, where b =

∏
t∈dom α(A + tD)α(t), a =

(A+ aD)
∏
t∈γ(A+ tD), and d = dD

∏
t∈γ(A+ tD).

Many structures considered in Ramsey theory have the nice property to be
‘unbreakable’ in the sense that if a sufficiently large structure of a certain type
is partitioned into a specified in advance number of cells, at least one cell will
again contain a large strucure of the same type. For example it follows from van
der Waerden’s Theorem that for all r, k ∈ N there exists some K ∈ N, such
that whenever a K-term arithmetic progression is partitioned into r cells at least
one cell contains a k-term arithmetic progression. Unfortunately the intertwined
additive-multiplicative structures in Theorem 2 do not posses this property as
shown in [1, Theorem 4.9] that for all K ∈ N there exist A,D ∈ N and a partition
B1 ∪ B2 =

{
(A+ iD)j : i, j ∈ {0, 1, . . . ,K}

}
such that no Bi contains a configu-

ration of the form
{
b(a+ id)j : i ∈ {0, 1, 2}, j ∈ {0, 1}

}
. Corollary 1 gives a vague

hint that the situation could be different for sets

Sk(a, b, d) =
{
b(a+ i1d)(a+ i2d) . . . (a+ imd) : m, i1, i2, . . . , im ∈ {0, 1, . . . , k}

}
,

where a, b, d ∈ N.

Question 1. Fix k, r ∈ N. Does there exist some K ∈ N such that for all
A,B,D ∈ N and any partition

⋃r
s=1Bs = SK(A,B,D) one can find a, b, d, k ∈ N

and s ∈ {1, 2, . . . , r} such that Sk(a, b, d) ⊆ Bs?

Note added in revision: Imre Leader (private communication) has found an ex-
ample answering Question 1 in the negative.

2. Preliminaries

We give a short outline of the ideas behind our proofs. Lemma 1 states that any
large enough, that is, piecewise syndetic set contains structures as in Theorem 3.
The argument behind this is abstract but simple in nature. Then one shows that
for any colouring of Σ(L) there is a piecewise syndetic set A of combinatorial lines
having the same colour. Thus Lemma 1 can be applied to A to yield Theorem 3.

It was shown by Furstenberg and Glasner ([7]) that any piecewise syndetic set
of integers contains a piecewise syndetic set of arithmetic progressions. Their proof
is based on the theory of compact semigroups applied to the Stone-Čech compact-
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ification βZ (in the form of the enveloping semigroup of an appropriate dynamical
system) and so far no purely elementary proof of this strong version of van der
Waerden’s Theorem is known. In [4] similar statements are proved for various no-
tions of largeness in an abstract semigroup S. This extension is possible since -
to some extend - the algebraic theory of βS resembles that of βZ. In our case we
have to work with the partial semigroup of located words L(Σ) respectively with its
Stone-Čech compactification. We reassure the reader that under the right technical
precautions this setting is closely related to the one encountered when facing βZ
(which of course is an esoteric enough object). Below we review the most important
facts needed for the proof of Theorem 3 in Section 3.

A partial semigroup (S, ·) (as introduced in [3]) is a set S together with a binary
operation · that maps a subset of S × S into S and satisfies the associative law
x · (y · z) = (x · y) · z in the sense that if either side is defined, so is the other and
they are equal. (The notion of a partial semigroup was introduced in [3].)

Given a partial semigroup (S, ·) and x ∈ S let φ(x) = {y ∈ S : x · y is defined}.
(S, ·) is called adequate if

⋂
x∈F φ(x) 6= ∅ for all finite nonempty F ⊆ S.

We shall deal mostly with the adequate semigroup (L(Σ),]) of located words
over an alphabet Σ where we let α]β = α∪β for α, β ∈ L(Σ) if dom α∩dom β = ∅
and leave α ] β undefined otherwise.

Given a discrete space S we take the Stone-Čech compactification βS of S to be
the set of all ultrafilters on S, the points of S being identified with the principal
ultrafilters. Given a set A ⊆ S let A = {p ∈ βS : A ∈ p}. The family {A : A ⊆ S}
forms a clopen basis of βS. A semigroup structure on S can be extended to βS.
The resulting algebraic properties of βS turn out to be extremly useful in Ramsey
theory, see [11] for an extensive treatment of this topic and related material.

In the case of partial semigroups a slightly different approach is used. For an
adequate partial semigroup (S, ·) let δS =

⋂
x∈S φ(x) ⊆ βS. For x ∈ S and A ⊆ S

we let x−1A = {y ∈ φ(x) : x · y ∈ A}. (Note that this corresponds to the usual
definition if (S, ·) is a group.) For p, q ∈ δS put

p · q = {A ⊆ S : {x ∈ S : x−1A ∈ q} ∈ p}.

Then (δS, ·) is a compact right topological semigroup, i.e. δS is compact with the
topology inherited from βS and for each q ∈ δS the map p 7→ p · q is continuous
([3], Proposition 2.6).

We will need some facts on the algebraic properties of compact right topological
semigroups: Every compact right topological semigroup (T, ·) posses an idempotent,
i.e. there is some e ∈ T such that e·e = e. The set of all idempotents of T is partially
ordered if we let e ≤ f ⇐⇒ e · f = f · e = e. Idempotents which are minimal
with respect to this ordering are called minimal idempotents. For any idempotent
f ∈ T there exists some minimal idempotent e ∈ T such that e ≤ f . A different
characterisation of the minimal idempotents in T can be given via the ideals of
T . (A nonempty set I ⊆ T is called an ideal if I · T ∪ T · I ⊆ I.) Every compact
right topological semigroup T has a smallest ideal K(T ). An idempotent e ∈ T
is a minimal idempotent if and only if e ∈ K(T ). (See [11] for a comprehensive
introduction to the theory of compact right topological semigroups.)
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3. Proof of the main Theorem

Let (S, ·) be a partial semigroup, and let F be a family of subsets of S. F is
called invariant if for all s ∈ S and F ∈ F the following conditions hold:

(1) If s · F = {s · f : f ∈ F} is defined, then s · F ∈ F .
(2) If F · s = {f · s : f ∈ F} is defined, then F · s ∈ F .

F is adequately partition regular if for any finite set G ⊆ S and any finite partition
of
⋂
x∈G φ(x) there exists some F ∈ F which is entirely contained in one cell of the

partition.
If (S, ·) is a partial semigroup, A ⊆ S is called piecewise syndetic if there exists

some p ∈ K(δS) such that A ∈ p. Piecewise syndetic subsets of semigroups ad-
mit a simple combinatorial characterisation (see [11, Theorem 4.40]). For instance
A ⊆ (Z,+) is piecewise syndetic if and only if

⋃r
n=1A−n contains arbitrarily long

intervals. However the combinatorial and the algebraic definition of piecewise syn-
detic lead to different concepts in the case of partial semigroups. (See [12, 13] for
a detailed analysis of this phenomenon.) For our intended application in the proof
of Theorem 3 the algebraic version is appropriate.

It is a fairly easy combinatorial exercise to show that van der Waerden’s Theorem
corresponds to the fact that piecewise syndetic sets in Z contain arbitrarily long
arithmetic progressions. The following lemma translates this idea to our setting.

Lemma 1 Let S be an adequate partial semigroup, let F be an adequately partition
regular invariant family of finite subsets of S and assume that A ⊆ S is piecewise
syndetic. Then there exists F ∈ F such that F ⊆ A.

Proof. Let P = {p ∈ δS : For all A ∈ p exists F ∈ F such that F ⊆ A}. It is
sufficient to show that P is an ideal of δS, since this implies P ⊇ K(δS).

Let G be a finite subset of S. Since for any finite partition of
⋂
x∈G φ(x) there

exists some F ∈ F which is entirely contained in one cell of the partition we have
that PG = {p ∈

⋂
x∈G φ(x) : For all A ∈ p exists F ∈ F such that F ⊆ A} 6= ∅ by

[11], Theorem 3.11.
Each PG is closed, so by compactness of δS, P =

⋂
G⊆S,|G|<∞ PG 6= ∅.

To see that P is a left ideal, let p ∈ P and q ∈ δS. Assume that A ∈ q · p, i.e.
{s : s−1A ∈ p} ∈ q. Thus we may pick s ∈ S such that s−1A ∈ p. Since p ∈ P there
exists F ∈ F such that F ⊆ s−1A. This is equivalent to sF ⊆ A and sF ∈ F by
the invariance of F . Since A was arbitrary we see that q · p ∈ P.

To show that P is a right ideal, pick p ∈ P, q ∈ δS and A ∈ p · q. Thus {s ∈ S :
s−1A ∈ q} ∈ p, so by the choice of p we may pick F ∈ F such that F ⊆ {s ∈ S :
s−1A ∈ q}. Since F is finite

⋂
s∈F s

−1A ∈ q, so pick t ∈
⋂
s∈F s

−1A. Then F · t ⊆ A
and, once again by the invariance of F , F · t ∈ F . Thus p · q ∈ P .

Let v be a ‘variable’ not in Σ. L(Σ∪ {v}) is the set of all located words over the
alphabet Σ ∪ {v}. By L(Σ; v) = L(Σ ∪ v) \ L(Σ) we denote the set of all located
words over the alphabet Σ ∪ {v} in which v occurs. The elements of L(Σ; {v}) are
often called variable words while one refers to elements of L(Σ) as constant words.
L(Σ; v) is an ideal of L(Σ∪{v}) and consequently δL(Σ; v) is an ideal of δL(Σ∪{v}).
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For s ∈ Σ and α ∈ L(Σ∪{v}), let θs(α) be the result of replacing each occurence
of v in α by s. More formally, dom θs(α) = dom α and for t ∈ dom θs(α)

θs(α)(t) =
{

s if α(t) = v
α(t) if α(t) ∈ Σ.

The mapping θs : L(Σ ∪ {v}) → L(Σ) gives rise to the continuous extension θ̃s :
βL(Σ∪{v})→ βL(Σ). Whenever α]β is defined for α, β ∈ L(Σ), so is θs(α)]θs(β)
and it equals θs(α ] β). So θs : L(Σ ∪ {v}) → L(Σ) is a homomorphism of partial
semigroups. Moreover θs is surjective. By [3], Proposition 2, this implies that the
restriction of θ̃s to δL(Σ∪{v}) is a continuous homomorphism δL(Σ∪{v})→ δL(Σ).
Since θs � L(Σ) is the identity the same holds true for θ̃s � δL(Σ).

We are now able to give the proof of our main Theorem:

Proof of Theorem 3. Pick a minimal idempotent e ∈ δL(Σ). Let M = {p ∈
δL(Σ ∪ {v}) : θ̃s(p) = e for all s ∈ Σ}. Since, for each s ∈ Σ, θ̃s is the identity
on δL(Σ) we have θ̃s(e) = e. Thus M is nonempty. M is the intersection of ho-
momorphic preimages of the closed semigroup {e}, thus it is a closed semigroup as
well. Fix a minimal idempotent q ∈ M . We want to show that q is also minimal
in δL(Σ ∪ {v}). Pick a minimal idempotent f ∈ δL(Σ ∪ {v}) such that f ≤ q, i.e.
f ] q = q ] f = f . Let s ∈ Σ. We have θ̃s(f) = θ̃s(f ] q) = θ̃s(f)] θ̃s(q) = θ̃s(f)] e
and, analoguously, θ̃s(f) = e] θ̃s(f), thus θ̃s(f) ≤ e. Since e was chosen to be min-
imal in L(Σ) it follows that θ̃s(f) = e. s ∈ Σ was arbitrary, thus we have f ∈ M .
Since q is minimal in M it follows that q = f , so q is in fact a minimal idempotent
in δL(Σ ∪ {v}).

By the ultrafilter property of e, choose a monochrome set B ⊆ L(Σ) such that
B ∈ e. Thus B is a neighbourhood of e, so pick, by continuity of θ̃s, s ∈ Σ, a
neighbourhood A of q such that θ̃s[A] ⊆ B for all s ∈ Σ. Then A ∈ q ∈ δL(Σ∪{v}),
so A is piecewise syndetic in L(Σ ∪ {v}) and θs[A] ⊆ B for all s ∈ Σ.
F is a partition regular family which contains no singletons. This implies that for

any m ∈ N and any finite colouring of {n ∈ N : n > m} there exists a monochrome
set F ∈ F . (Extend the colouring of {n ∈ N : n > m} to a colouring of N by giving
all elements of {1, 2, . . . ,m} new and mutually different colours. Any F ∈ F which
is monochrome with respect to this colouring is contained in {n ∈ N : n > m} since
F has more then one element.)

Consequently, F ′ = {{{(t, v)} : t ∈ F} : F ∈ F} is an adequately partition
regular family of subsets of L(Σ ∪ {v}) and thus

F ′′ = {{β ] {(t, v)} : t ∈ F} : β ∈ L(Σ; v), F ∈ F , dom β ∩ F = ∅}

is an invariant adequately partition regular family. So we may apply Lemma 1 and
pick G ∈ F ′′ such that G ⊆ A. Each variable word β ∈ L(Σ; v) can be written in
the form α∪ γ × {v} for uniquely determined α ∈ L(Σ), γ ∈ Pf (N), dom α∩ γ = ∅.
Hence G is of the form {α ] (γ ∪ {t}) × {v} : t ∈ F}, where α ∈ L(Σ), γ ∈ Pf (N)
and F ∈ F . It follows that for each s ∈ Σ and each t ∈ F,

θs(α ] (γ ∪ {t})× {v}) = α ∪ (γ ∪ {t})× {s} ∈ B.

6



It would be preferable to show Theorem 3 in a purely elementary way. While it is
not difficult to substitute Lemma 1 by a combinatorial argument, the author does
not know how to do this in the case of the other part of the proof.
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