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Abstract

We study a construction algorithm for certain polynomial lattice rules mod-
ulo arbitrary polynomials. The underlying polynomial lattices are special types of
digital nets as introduced by Niederreiter. Dick, Kuo, Pillichshammer and Sloan
recently introduced construction algorithms for polynomial lattice rules modulo irre-
ducible polynomials which yield a small worst-case error for integration of functions
in certain weighted Hilbert spaces. Here, we generalize these results to the case
where the polynomial lattice rules are constructed modulo arbitrary polynomials.
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1 Introduction

We study the problem of approximating the s-dimensional integral I(F') := f[o e F(x)dx

of a function F by a quasi-Monte Carlo (QMC) rule Qn(F) := + Zf::ol F(x,) using N
points {xg,...,xy_1} from the unit-cube [0, 1)".

In this paper, we assume that the integrand F' lies in a certain weighted reproducing
kernel Hilbert space. This space of functions, first introduced in [7], is based on Walsh
functions which are defined as follows (for more information on Walsh functions, see, e.g.,

[1]).

Definition 1 Let p > 2 be an integer. For a non-negative integer k with base p represen-
tation k = ko + K1p + -+ + Kop® with k; € {0,...,p — 1}, we define the Walsh function
pwal, 1 [0,1) — C by

. 2mi(xiko+ - FTar1Ka
pwalp(z) ==e (@1r0 +1ka)/P

for x € [0,1) with base p representation x = ‘% + ]% + -+ (unique in the sense that
infinitely many of the x; must be different from p —1).
For dimension s > 2 and vectors k = (ki,....ks) € N} and x = (x1,...,x5) € [0,1)*

we define ,walg : [0,1)° — C by

pwalg(x) = H pwaly, (2;).

J=1

If the choice of p is clear from the context we simply write wal, or walg.

*The authors are supported by the Austrian Science Foundation (FWF) project S9609, that is part
of the Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory”



Let @« > 1, s > 1, and p > 2 be fixed. We consider functions in a weighted Hilbert space
Hyals, Where v = (7;)32, is a sequence of real positive weights. The idea of assigning
weights to the coordinates in order to model different influence on the integration error
was introduced by Sloan and Wozniakowski [22]. The Hilbert space Hya s~ is the tensor
product of spaces Hyal s - - -, Hyaly, Of univariate functions (see, e.g., [5, 7] for more
details on the spaces Hyay,, of univariate functions). Every function F' in the tensor
product space Hy. s~ can be written as

F(z) =Y Fulk)waly(z), whenaﬁyﬁ(k):::/;”prx)wau(x)dx.
keNg ;

For a natural number with p-adic expansion k = kg + k1p + - - - + Kop®, with k., # 0, let
Yy (k) := a. We define

| it k=0,
yp~ () otherwise,

r(a,v, k) == {

and, for k = (k1,..., ks), we define r(a, v, k) == [[;_, (o, v, ki)
Then the inner product in Hy, s~ is defined as

<F7 G)wal,s,’y = Z T((ZY, v, k)_leal(k)Gwal(k)
keNg
and the norm is given by [[F||, ., == (F, F)i,/js,y

It can easily be verified that Hyal s~ is a reproducing kernel Hilbert space (see [7]).

For approximating the integral of a function I’ € Hyai s~ by a QMC rule, it is known
(see again [7]) that a suitable choice of the point set {xy, ..., xy_1} used in the integration
rule are so-called (¢, m, s)-nets. A detailed theory on this topic was developed in [14, 16].
For a recent survey article see [18].

A special construction of (¢, m, s)-nets in base p was proposed by Niederreiter in [15]
(see also [16, Chapter 4.4]). Let p be a prime and let F, be the finite field consisting
of p elements. Further, let F,((z71)) be the field of formal Laurent series over F, with
elements of the form .

L= Z tlilfil,
l=w

where w is an arbitrary integer and all ¢, € IF,. Note that the field of rational functions
is a subfield of F,((z~!)). We further denote by F,[z] the set of all polynomials over F,.
For a given integer m > 1 and dimension s > 2, choose f € F,[z| with deg(f) = m, and
let g1,...,9s € Fplx]. We define the map ¢, : F,((z~1)) — [0,1) by

m

b (gw) -3 W
l=w

l=max(1,w)

Let n € {0,1,...,p™ — 1} with p-adic expansion n = ng + nip + -+ + ny_1p™ . With
such an n we associate the polynomial



Then the point set P(g, f) is defined as the collection of the p™ points

= (on (057 oo (M) ) €010

for 0 < n < p™—1. Due to the construction principle, P(g, f) is often called a polynomial
lattice and a QMC rule using the point set P(g, f) is often called a polynomial lattice
rule (modulo f). The vector g is called the generating vector of P(g, f) or the generating
vector of the polynomial lattice (rule), depending on the context. Note that the generating
vectors g in the construction principle for polynomial lattice points can be restricted to
the set

g €G,,, ={heF,z]:deg(h) <m}®

which is what we will assume in the following.

Using a more general terminology, the construction principle for polynomial lattice
rules outlined here yields polynomial lattice rules of rank 1. For the precise definition of
the rank of polynomial lattice rules, see, for example, [11, 13]. We refer the interested
reader to a number of further papers in which polynomial lattice rules in different settings
are studied [3, 4, 9, 10, 11, 12, 13, 17, 19].

If we use a point set P with N points for QMC-integration of functions from Hya s,
we define the worst-case error by

ens(P):= sup |L(F)—Qns(F).

FEHwal,s,—y
£ <1

wal, s,y =

In this paper we study the worst-case integration error of polynomial lattice rules. In [5],
Dick, Pillichshammer, Kuo and Sloan studied the construction of polynomial lattice rules
for those cases where f is an irreducible polynomial over IF,. Here, we wish to generalize
their results to the case where f is not necessarily an irreducible but an arbitrary polyno-
mial over [F,,. In particular, we are going to give an existence result for polynomial lattice
rules modulo arbitrary polynomials with small worst-case integration error. Furthermore,
we outline a component-by-component (CBC) construction of polynomial lattices such
that their worst-case error is small. The idea of a CBC construction of point sets with
low worst-case integration error is mainly due to Sloan and his collaborators, see, for
example [8, 20, 21].

In [5], the authors also studied the integration of functions in certain Sobolev spaces
(see [5, 7]) and gave construction algorithms for randomized polynomial lattice rules
modulo irreducible polynomials with low mean square worst-case integration error with
respect to these function spaces. We remark that our general results for the Hilbert space
Hia1,~ can easily be transferred to the case of Sobolev spaces as well.

2 Preliminaries
We summarize some notation and results that will be needed throughout the paper. Here

and in the following section we always assume p is a prime. For arbitrary k = (ky,...,ks)
and g = (g1,...,9s) in Fp[x]°, we define the vector product

=1
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and we write ¢ = 0 mod f if f divides ¢ in F,[z|. Furthermore, we define for f € [F,[z],
deg(f) =m,
G;m(f) = {h € Fp[z] : deg(h) < m,gecd(h, f) = 1}.

For f,g € F,[z] we write from now on simply (f, ¢) instead of ged(f, g) for the greatest
common divisor of f and g.

Further, as above, we often associate a nonnegative integer k = ko + k1p + - - - + K;p'
with the polynomial k(z) = ko + k17 + - - - + k2! € Fp[z] and vice versa. In this sense we
have v, (k) = deg(k).

The following lemma was shown in [5].

Lemma 1 Let f € Fy[z], deg(f) = m, and let g € G, ,,. Then the squared worst-case
error for integration in Hya s~ using the polynomial lattzce P(g, f) satisfies the equation

e?)m,s(P(ga f)) = ZT(O&,’)/, k)7

keD

where D :={k € F,[z]* \ {0} : k- g = 0mod [} is the so-called dual net (or dual polyno-
mial lattice) of P(g, f).

The question remains how the sum over all k € D can be computed or at least bounded
effectively, such that we can search for polynomial lattices with low worst-case integration
error. The following lemma gives an answer to this problem, provided that the generating
vector g satisfies some additional conditions.

Lemma 2 Let P(g, f) be a polynomial lattice modulo f € F,[z], deg(f) = m, with
generating vector g € (G ,,(f))*. Then

S

ZT a,v,k) < . H(l + 2¢p07i) + Z r(a, v, k),

keD i=1 keD*

e andD*::{kEG;m\{O}:k-gEOmodf}.

where cp o = T

Proof. The result follows by the first part of the proof of Lemma 2 in [2], Lemma 4.40
n [16], and by noting that the generating matrices of P(g, f) are regular provided that

€ (Ghm(f)) O

Lemma 2 implies that if one wants to obtain upper bounds on the worst-case integration
error of P(g, f) with deg(f) =m and g € (G}, (f))*, it is sufficient to consider the term

> ke T, k).
For short, we denote the sum >, p. 7(a,~, k) by Sa~(g, f) in the following. Using
the same arguments as in [6, Section 4] one can show that

Soz,'y(g>f) =—-1+ g,f Z I_IXpm’yZ xz

xeP(g.f) i=1

where & = (x1,...,z5) and for any x = & /p+ &/p* + - -+ and v > 0 we have

1 + p(a—l;Y(iO—1) (Cp,a(p(io_l)(a_l) - 1) - 1) if 61 == fio—l =0 and
Xpmy (T) = &, 7 0 with 1 <ig < m,
1+ p<a+>mcp,a(pm(a71) -1) otherwise,

where ¢, , is as in Lemma 2. Hence S, (g, f) can be computed in O(sp™) operations.
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3 Existence Results and Construction Algorithms for
Polynomial Lattices Modulo Arbitrary Polynomi-

als
The following lemma gives, for a polynomial f € IF,[z] with deg(f) = m, a bound on the

average of S,~(g, f) over all vectors g € (G;,,(f))°. From this result we are going to
deduce that polynomial lattice rules with “low” worst-case error must exist.

Lemma 3 Let m > 1, s > 2, and f € F,[x] with deg(f) = m. Then

|G*% Z Sary(gaf) < im (H(l + ’Yicp,a) - 1) )

’ ge(G} 1 ())* i=1

where ¢y o s defined as in Lemma 2.

Proof. The proof is based on ideas from [16, Proof of Theorem 4.43]. Without loss of
generality, we may assume that f is monic. First observe that }G’;m( f )| = ¢,(f), where
¢p(f) is the analogue of Euler’s totient function for the field F,[x] (cf. [16, p. 77]). We
have

1
M(f) = ——— San(g, f)
o 0T g™

1
AL Z 2 HT e

9€(Gy m(f))° heGy ,\{0} =1
g-h= 0 mod f

1
= G 2 et 3 o

heG; ,\{0} i=1 9€(Gy . (f))°
h-g=0 mod f

If h =0, then [[_, r(ca, i, h;) =1 and

Y. 1=Gul =)

9€(Gy m())°
h-g=0 mod f
Therefore,
M,(f) = <¢( [Irtemny > 1]-1
P he S m =1 g€(Gy i ())*

h-g=0 mod f

For all h € G¢

p,m

)SEEEED SN SR AT
9€(Gy m(f))° ge(G;‘,,m(f))S vEGp,m
h-g=0 mod f



where X, is defined as in [16, p. 78]. We obtain

> [Irteh >, !

heGs ,, i=1 g€(Gy m())?
h-g= Omodf
SIDOR | CCERET- SRR DR (T )
heGy,,, i P ge(Gym(h)® vECpm

X r ¥ 5 (ha) ITrten,

vEGp,m heG; ,, ge(G

:%ZHMM

VEGp,m i=1
with
Z Z < >T(a77i7h)'
hermQEG
Now .
YOO, £) = ¢p(f) Y rla,y,h);
hEGp,'m
thus
[Irrn) > 1
heGj ,, i=1 9e(Gy 1 (£))°
h-g=0 mod f
1 ST
= — (&) II [ D2 rleqh +— > HY (v, f).
p i=1 \ h€Gp,m vEGpm i=1

v#0

Let 1, be the Mdbius function on the multiplicative semigroup .S, of monic polynomials
over IF,. Note that p, is multiplicative. For fixed v € F,[z] with 0 < deg(v) < m we
obtain

YOus) = 3 et ¥ % (She) i)

heGp,m 9€Gp,m U(g.f)
v
= Y e ) X (Sho)
hEGp’m l|f ger,m
llg
v
= Z T<Oéafyi7h) Z:up(l) Z XP (?hal)
heGp.m s a€Gp, deg(f/1)
f v
= Z T<aa’7i7h)21up (7 Z Xp ?h(l )
hEGp.m Uus a€Gip deg(l)



where, in the last step, we changed [ into f/l. Applying [16, (4.51)] to the innermost sum,
we obtain

YO, 1) = > rla,yh Zup( ) deg(D)

hEGp.m If
llvh
- S (1) S et
s he€Gp,m
llvh

Now [ divides vh if and only if [/(I,v) divides h; thus
n=3um (1)r0r (7).
. (1, v)

where, for an a € S, dividing f, we put

ED(a, f) = Z r(a, v, h).

heGp,m
alh
If a = f, then ED(a, f) = r(a,7;,0) = 1. Now let a # f; then
E(i)(aa f) =1 + Z T(a>’7iaab)-

beGy aeg(f/a)
b£0

We have

Z T(a, Vi, ab) = v Z p—oc deg(ab)

b€Gp deg(f/a) beGy acg(f/a)
b£0 b0

_ 'Vip_a deg(a) Z p—a deg(b)
b€, deg(f/a)
b£0

deg(f/a)—1 N
= yp -1 > (")
k=0
pll=e)deg(f/a) _

= p I (p—1)

plfa —1
Note that, if a = f, then deg (f/a) = deg(1) = 0, so in this case

pli—e)deg(f/a) _ 1
plfa -1

= 0.

Thus, for all @ € S, dividing f, we have

pl-a)des(f/a) _ 1
plfcv -1 '

ED(a, f) =14 yp =@ (p—1)



Applying this formula with a = T U) we obtain

pll=a)(m—deg(l/(Lv))) _ 1)

f € —ade, v
Z:Up (7 piEW (1 4 s/ ))(p -1) pl-o — 1

G

FY\ des) P=1  adea/(v)), (1-a)(m—des(l/(v)))
ZMp 7)P 1+%‘mp ez ’
iy

P 1 pades(l/(Lo)
pl—oc _ ]_

f p— 1 —a)m— v
_ Z“P (7 pdeg(l) 1+ %Zmp(l ym—deg(l/(l,v))
Ir
P L ades(t/(o)
lpl—oz -1

-1
= Z“P( )pdeg(l)+z ( ) deg(l),y plpT_lp(l—a)mp—deg(l/(l,v))

ns ur

/ deg(l)., P — 1 —adeg(l/(1,v))
> (7 PR P

us

p_l —a)m e v
- ¢(f)+%p1a_ pom S, () st

ur

Y —— 1 — Zup( ) (1— a)deg(l)padeg((l,v))'

Uus

For short we write

f —a)deg(l),.adeg((l,v
)_Z,up<7 p(l ) g()p g((lv))

Uur

and
Zﬂp( ) deg((Lv)).
07

From these we can write

YO (v, f) = ¢o(f) = 30" HY (v, ) 4+ vicpa H (v, ),

— _p=l
where Cpa = l—pﬁ

For v € F,[z] with 0 < deg(v) < m, we have HV (v, f) = 0 as in [16, pp. 82f.], and so
we obtain

Y(i)(va f) = ¢p(f) + ’Vicp,OéH@}v f)



»

1 1
S = T T r\e — D B ) i7h
M,(f) G (@) 1 he%ﬂr(m )
o Z H &p(f) + YiCpaH (v, f))
vevi%mz 1
- llEonn 5 ¥ Tosaanen - (1-5) -
vEGp,m 1=1 p p
v#£0

where J,(v, f) := H(v, f)/¢,(f). Let us now analyze H(v, f). First note that H(v, f) is
multiplicative in f.

In the following, let b be a monic, irreducible polynomial over F,. We define e,(v) as
the largest integer z such that b* divides v. From the definition of the Mobius function,
it follows that

H (1}, bk) _ p(l—a) deg(bk)padeg((bk,v)) . p(l—a)deg(bkil)padeg((bkfl,v))'
Hence, if e,(v) > k, it follows that H (v,b") = 0. Otherwise, we have
H (v, b") = pees(v) deg(v) p(1-a) deg(b*) (1- p(a—l)deg(b)) _

In the following, we assume f = b’fl .- b*, where the polynomials b; are monic, irreducible
and pairwise distinct. From our observations, we obtain

otherwise.

(Y | -
H(v, f) = {H] 1H(“ b; ) if ey, (v) < ey, (f)Vi=1,....t,

We now define

Hi(f) = ¢,(f)" Y H(v,f)
vEGp,m
v#£0

= (N D H iaey, (v) deg(b;), (1 @ des(#)) (1= plo Do)y’

vEGp,m
v#0, €b; (v)<k; Vj

t k;
)—i sz(l—a) deg(bj > (1 B p(a—l)deg(bj))i Z H iaey; (v) deg(b;)
j=1

UEGP m
v#0, eb; (v)<k; V]

. i i(l1—a) deg(b&j> i
)—z Hp J (1 _ p(a—l)deg(bj)) E*(f)
=1



Now,

k1l ke i o deg(b;-j>
S = XY > II»
11=0 l;=1 =1

a J
@p=1
deg(a)<m—Y"}_, deg(b})

k-1 ;
_ Z...anw‘deg(”) Z 1.
11=0 =1 j=1

(a.f)=1
deg(a)<m—3!_ deg( )

We have
; 1:¢p(bll' blt> H¢p<k l)
(a,f)=1
deg(a)<m—Z§:1 deg(bz.j)
Hence
kil i zadeg( >
S.(f) = ZZHp ¢p( )
11=0 =1 j=1
kil ! iadeg( by ) de bj_lj 1
- ZZHP «(s > o(¢ >(1—m)
11=0 =1 j=1
_ Z Zﬁpza 1) deg( >
=0 =1 j5=1

(io— 1)deg<b]> .

= Hp (ia—1)deg(b;) — 1 °

We arrive at

¢ s (tae—1) deg (bf7>
i i(1—c) deg| b’ e N —1
Hi(f) = Cbp(f)l HP g( ’ ) (1 —p( Udeg(b])) pp(ia—l)deg(bj) -1
=1

j
= ﬁpdeg(bff)(l_i) (1_2@> 1—ipi(1—a)deg<bjj>
=1

(ia—1) deg (bfj>
X (1= plo-Ddes)y P —1
p plia—1)deg(b;) _ |

t 1 1—12 X 1
_ - o (a—1)deg(bj)\*
- | | <1 pdeg(bj)) (1 p ’ ) p(iafl) deg(b;) — 1

§ ﬁpdeg(bfj>(1i)pz’(1a) aes()7) <p(m1)deg<bfj) - 1) .
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Therefore,

t 1—2
i 1
(a—1)deg(bj) _
S 1:[ ( deg (b; )) (p ! 1) p(iafl)deg(bj) -1 <L

This means

m 1 u
o Ly H1+%cpa o, N =0=1/p") = — > b Hu(f)
vEGp,m =1 p uC{1,...,s},u#0
v#£0
< L 3 ju
< VuCpa
uC{1,...,s},u#0

(H(l + Yicpa) — 1) :

=1

%=

On the other hand,

This yields the result. o

Theorem 1 Let p be prime and f € F,[x] with deg(f) =m > 1 and o > 1. Then there
exists a vector g € (G ,,(f))® such that

i=1

o1/x [ . 7
Sa,‘y(ga f) < pm/)\ H(l +7% Cpﬂ)\) -1

for any 1/a < XA < 1.

Proof. This result follows from Lemma 3 together with the fact that for all A € (1/a, 1]
we have

Soc,"}’(g’ f) S (Sa)\ﬁ)‘ (ga f))l/Av

where v = (’yj‘) j>1, which in turn follows from Jensen’s inequality which states that for a

sequence (a;) of non-negative real numbers we have (3 a)* < S ap, for any 0 < A < 1.
O

Theorem 1, together with Lemma 1 and Lemma 2, implies the existence of generating
vectors g yielding polynomial lattices with squared worst-case integration error of order
p~ ¥t for any € > 0. Furthermore we remark that the bound on the worst-case error
can be made independent of the dimension if .., 7 < oo. This is known as strong
tractability, see [22]. For a more detailed (strong) tractability discussion of this problem
just follow the proof of [5, Corollary 4.5]. Now we introduce an algorithm that provides
a way of finding such vectors explicitly. The algorithm is based on a component-by-
component construction.

11



Algorithm 1 Given a prime number p, a dimension s, an integer m > 1 and weights
¥ = (3)iz1-

1. Choose a polynomial f € IF,[x] with deg(p) = m.
2. Set g7 = 1.

8. Ford=2,3,...,s, and gi,..., g5, found in the previous steps, find g; € Gy .(f)
by minimizing the quantity So~((g5, ..., 95_1,94), [) as a function of gq.

Theorem 2 Let p be prime and f € F,[z] with deg(f) = m > 1. Suppose (g5, ...,9%) €
(G (f))? is constructed by Algorithm 1. Then for alld =1,2,...,s we have

s

1/>\

Saﬁ((gfw"vgd 26]?06)\

forall X € (1/a,1].

Proof. Without loss of generality, we may assume that the polynomial f is monic. We
prove the result by induction on d =1,...,s.

Since g = 1 and since there is no polynomial k € G}, \ {0} such that £ =0 (mod f),
it follows that S, (g7, f) = 0. Hence the bound holds trivially for d = 1.

Assume we have already shown that

d
1 A
Ei%ﬁ( 7 2Cpa)\ /
for d > 1 and any 1/a < A < 1.
We have
Sa~((g7s 9a+1), [) = Z (o, v, (k, kat1))
(k.kgi1)ECETIN{0}
kg*+kgi194941=0 (mod f)
= SCY,’)’(g*? f) + 6<gd+1)7
where

0(gd+1) = Z T<a’7v (k7kd+1))'

(kkgp)ecdtt
kqq17#0
kg*+kg419434+1=0 (mod f)

As g, is chosen such that S, ((g*, ga+1), f) is minimized and since S, (g, f) is inde-
pendent of g441 it follows that for all g411 € G, (f) and all A > 0 we have

e(g;lirl))\ < 9(9d+1)/\

12



and therefore together with Jensen’s inequality we obtain for all 1/a < A <1,
1/A

0(gs) ﬁ S )

gd+1€G;,m(f)

IN

1/

IN

(bptf) Z Z r(ad, v, (k, ki)

9d+1€G} 1 (f) (kokqy1)EGH T
kq417#0
kg*+kd+19d+150 (mod f)

We now consider

Moo= Y ) r(aA 7, (ks ks1)

pr(f) 9d+1€G} 1 (f) (kskgy1)EGETE
k4170
kg*+kgy19941=0 (mod f)
1 d+1
A
= o) Z Hr aX,vi, k) E 1.
8 (kokar1)€Gyl =1 94+1€Gp,m(f)
kq4170 kg*+kgi19941=0 (mod f)
Since
2: E : E ( (kg ‘f‘k’d+1g))
9d+1€Gp,m(f) 9EGH m( UEQ
kg*+kgy19941=0 (mod f)
we have
- G 22 ek (k)
vEGY, keGd
A v
(Oé)\, 7d+17 k)Xp ?kg - ¢p(f)
kEGp m geG* (f)
Let

Z Z r(aA, ’Yd+1a k) Xp (%k9> .

keGp,m geGy

Then we have

Y<07 f) = (bP(f) Z T(Oé)‘v 7d>\+17 k)

kEGp m

and from the proof of Lemma 3 we know that

Y(Ua f) = ¢P(f) _'_ /Yc)l\+1cp7a>\H<U7 f)?

where

f —Q € (0% €, v
H=Su (7 p(1=aN) deg(t) jarde((10))

s

13



Thus

M = — Z r(a)\,fy’\,k)pim Z X, (%kg*)

kEGg’m 'UGGp,m

¢1f)pim S Had AN R)Y(0, )
P keGd ,,

(
1 1
b X3 rea ki, (e ) Y0

vEGp,m\{0} keGY ,,,

1 1
= - T(OZ)‘a’7A7k)p_m Z Xp <%kg*)+p_m Z T(Oé)\,’)’)\,k)

keGd vEGp,m keGita

,m

+im Z Z r(ah, v, k)X, (%kg*)

P eGym\(0} kec,,

+¢ tf) ’Vd+1cp a Z (A '7 5 Z H(v, )X, (%kg*)

_|_

keGd . vecp,m\{o}
Since
L A Uk
— Y Y Nk, fk:g
p vEGp,m\{0} keGd, .,
1 ) 1
= r(oz)\,’)//\,ki)—m Z X, <—k¢g*) - — Z r(aX, v, k)
kEGg,m p UGGPJW f p kEG;d) m
we have ) .
M=— rad k) — — raX, v k) + K2(f)
keGiH P" wéc,,
where
1 v
K0 = o S eeer 3 @R Y HE X, (;kg ) :
keGd ver,m\{o}
Now we consider
1 v,
p vEGH.m\{0}

As ‘Xp <%kg*) =1 for all v € Gp,, we have |T'(f)| < |Hi(f)| <1 (see the proof of

Lemma 3) and therefore we have

A
Ya+1Cp,a
KU(f) < “HL222 N p(ad v k)

m
p keGd ,,
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and

1 1
M < — 3 rledyNk) = Y r(ad k)
p keGdt! p keGe
A
+7d+1fnp,a/\ Z T(QA,7A7k)
p keGd

p,m

1
= o 2 TEAYNRN | D reAndin k) = T+ G
keGd

keGp,m

We have
Z r(a)\,vﬁﬂ, k) <1+ 7§+1cp,ak
keGp,m

and

d
Z oz/\'y, H 1+%Cpax
=1

keGg ,,

1f;f_1 —. Hence

where ¢, o) =

d
1
S - H 1+ 72 Cp,ax 7d+120p a\-

pm i=1
From the induction hypothesis together with another application of Jensen’s inequality
we obtain

d

1/A
* * 1
Saxr((9" 9341), ) < (p—m H (1 +7i’\2cp7w)> + MYA

i=1
1 d 1 d 1/x
= om H (1 + 7@')\26107‘”‘ + H + % Cp, a/\) 7d+120p a\
p i=1 p i=1
d+1

1)\
m/)\H 1+722Cpa>‘ / ’

References

[1] Chrestenson, H.E.: A class of generalized Walsh functions. Pacific J. Math. 5, 17-31,
1955.

[2] Dick, J., Kritzer, P., and Kuo, F.Y.: Approximation of Functions Using Digital Nets.
Preprint, 2006.

[3] Dick, J., Kritzer, P., Leobacher, G. and Pillichshammer, F.: Constructions of general
polynomial lattice rules based on the weighted star discrepancy. Finite Fields Appl.,
to appear, 2007.

15



[4]

[5]

[10]

[11]

[12]

Dick, J., Kritzer, P., Pillichshammer, F. and Schmid, W. Ch.: On the existence of
higher order polynomial lattices with large figure of merit. Submitted, 2006.

Dick, J., Kuo, F.Y., Pillichshammer, F., and Sloan, I.H.: Construction algorithms
for polynomial lattice rules for multivariate integration. Math. Comp. 74, 1895-1921,
2005.

Dick, J., Leobacher, G., and Pillichshammer, F.: Construction algorithms for digital
nets with small weighted star discrepancy. SIAM J. Numer. Anal. 43, 149-195.

Dick, J. and Pillichshammer, F.: Multivariate integration in weighted Hilbert spaces
based on Walsh functions and weighted Sobolev spaces. J. Complexity 21, 149-195,
2005.

Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of con-
vergence for multivariate integration in weighted Korobov and Sobolev spaces. J.
Complexity 19, 301-320, 2003.

Larcher, G.: Digital point sets: Analysis and applications, in: P. Hellekalek and G.
Larcher (Eds.), Random and Quasi-Random Point Sets, Lecture Notes in Statistics
vol. 138, Springer, New York, 1998, pp. 167-222.

Larcher, G., Lauss, A., Niederreiter, H. and Schmid, W. Ch.: Optimal polynomi-
als for (¢,m, s)-nets and numerical integration of multivariate Walsh series, STAM
Journal on Numerical Analysis 33, 2239-2253, 1996.

L’Ecuyer, P.: Polynomial integration lattices, in: H. Niederreiter (Ed.), Monte Carlo
and Quasi-Monte Carlo Methods 2002, Springer, Berlin, 2004, pp. 73-98.

L’Ecuyer, P. and Lemieux, C.: Recent advances in randomized quasi-Monte Carlo
methods, in: M. Dror, P. L’Ecuyer and F. Szidarovszky (Eds.), Modeling Uncer-
tainty: An Examination of Stochastic Theory, Methods, and Applications, Kluwer
Academic Publishers, Boston, 2002, pp. 419-474.

Lemieux, C. and L’Ecuyer, P.: Randomized polynomial lattice rules for multivariate
integration and simulation, STAM Journal on Scientific Computing 24, 1768-1789,
2003.

Niederreiter, H.: Point Sets and Sequences with Small Discrepancy. Monatsh. Math.
104, 273-337, 1987.

Niederreiter, H.: Low-discrepancy point sets obtained by digital constructions over
finite fields, Czechoslovak Math. J. 42, 143-166, 1992.

Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods,
CBMS-NSF Series in Applied Mathematics, 63, STAM, Philadelphia, 1992.

Niederreiter, H.: The existence of good extensible polynomial lattice rules, Monatsh.
Math. 139, 295-307, 2003.

Niederreiter, H.: Constructions of (¢,m, s)-nets and (¢, s)-sequences, Finite Fields
Appl. 11, 578-600, 2005.

16



[19] Nuyens, D. and Cools, R.: Fast component-by-component constructions, a reprise for
different kernels, in: H. Niederreiter, D. Talay (eds.), Monte Carlo and Quasi-Monte
Carlo Methods 2004, Springer, Berlin, 2004, pp. 373-378.

[20] Sloan, I.H., Kuo, F.Y., and Joe, S.: Constructing randomly shifted lattice rules in
weighted Sobolev spaces. SIAM J. Numer. Anal. 40, 1650-1655, 2002.

[21] Sloan, I.H., Kuo, F.Y., and Joe, S.: On the step-by-step construction of quasi-Monte
Carlo integration rules that achieve strong tractability error bounds in weighted
Sobolev spaces. Math. Comp. 71, 1609-1640, 2002.

[22] Sloan, I.H. and Wozniakowski, H.: When are quasi-Monte Carlo algorithms efficient
for high dimensional integrals?, J. Complexity 14, 1-33, 1998.

Authors’ Addresses:

Peter Kritzer, Fachbereich Mathematik, Universitdat Salzburg, Hellbrunnerstr. 34, A-5020
Salzburg, Austria. Email: peter.kritzer@sbg.ac.at

Friedrich Pillichshammer, Institut fiir Finanzmathematik, Universitdt Linz, Altenberger-
str. 69, A-4040 Linz, Austria. Email: friedrich.pillichshammer@jku.at

17



