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Abstract

We study a construction algorithm for certain polynomial lattice rules mod-
ulo arbitrary polynomials. The underlying polynomial lattices are special types of
digital nets as introduced by Niederreiter. Dick, Kuo, Pillichshammer and Sloan
recently introduced construction algorithms for polynomial lattice rules modulo irre-
ducible polynomials which yield a small worst-case error for integration of functions
in certain weighted Hilbert spaces. Here, we generalize these results to the case
where the polynomial lattice rules are constructed modulo arbitrary polynomials.

AMS Subject Classification: 65D30, 65C05, 11K06.

1 Introduction

We study the problem of approximating the s-dimensional integral Is(F ) :=
∫
[0,1]s

F (x) dx

of a function F by a quasi-Monte Carlo (QMC) rule QN,s(F ) := 1
N

∑N−1
n=0 F (xn) using N

points {x0, . . . , xN−1} from the unit-cube [0, 1)s.
In this paper, we assume that the integrand F lies in a certain weighted reproducing

kernel Hilbert space. This space of functions, first introduced in [7], is based on Walsh
functions which are defined as follows (for more information on Walsh functions, see, e.g.,
[1]).

Definition 1 Let p ≥ 2 be an integer. For a non-negative integer k with base p represen-
tation k = κ0 + κ1p + · · · + κap

a with κi ∈ {0, . . . , p − 1}, we define the Walsh function

pwalk : [0, 1) → C by

pwalk(x) := e2πi(x1κ0+···+xa+1κa)/p,

for x ∈ [0, 1) with base p representation x = x1

p
+ x2

p2 + · · · (unique in the sense that

infinitely many of the xi must be different from p− 1).
For dimension s ≥ 2 and vectors k = (k1, . . . , ks) ∈ Ns

0 and x = (x1, . . . , xs) ∈ [0, 1)s

we define pwalk : [0, 1)s → C by

pwalk(x) :=
s∏

j=1

pwalkj
(xj).

If the choice of p is clear from the context we simply write walk or walk.
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Let α > 1, s ≥ 1, and p ≥ 2 be fixed. We consider functions in a weighted Hilbert space
Hwal,s,γ , where γ = (γj)

∞
j=1 is a sequence of real positive weights. The idea of assigning

weights to the coordinates in order to model different influence on the integration error
was introduced by Sloan and Woźniakowski [22]. The Hilbert space Hwal,s,γ is the tensor
product of spaces Hwal,γ1 , . . . , Hwal,γs of univariate functions (see, e.g., [5, 7] for more
details on the spaces Hwal,γj

of univariate functions). Every function F in the tensor
product space Hwal,s,γ can be written as

F (x) =
∑

k∈Ns
0

F̂wal(k)walk(x), where F̂wal(k) :=

∫

[0,1]s
F (x)walk(x) dx.

For a natural number with p-adic expansion k = κ0 + κ1p + · · · + κap
a, with κa 6= 0, let

ψp(k) := a. We define

r(α, γ, k) :=

{
1 if k = 0,

γp−αψp(k) otherwise,

and, for k = (k1, . . . , ks), we define r(α, γ,k) :=
∏s

i=1 r(α, γi, ki).
Then the inner product in Hwal,s,γ is defined as

〈F,G〉wal,s,γ =
∑

k∈Ns
0

r(α, γ,k)−1F̂wal(k)Ĝwal(k)

and the norm is given by ‖F‖wal,s,γ := 〈F, F 〉1/2
wal,s,γ .

It can easily be verified that Hwal,s,γ is a reproducing kernel Hilbert space (see [7]).
For approximating the integral of a function F ∈ Hwal,s,γ by a QMC rule, it is known

(see again [7]) that a suitable choice of the point set {x0, . . . , xN−1} used in the integration
rule are so-called (t,m, s)-nets. A detailed theory on this topic was developed in [14, 16].
For a recent survey article see [18].

A special construction of (t,m, s)-nets in base p was proposed by Niederreiter in [15]
(see also [16, Chapter 4.4]). Let p be a prime and let Fp be the finite field consisting
of p elements. Further, let Fp((x

−1)) be the field of formal Laurent series over Fp with
elements of the form

L =
∞∑

l=w

tlx
−l,

where w is an arbitrary integer and all tl ∈ Fp. Note that the field of rational functions
is a subfield of Fp((x

−1)). We further denote by Fp[x] the set of all polynomials over Fp.
For a given integer m ≥ 1 and dimension s ≥ 2, choose f ∈ Fp[x] with deg(f) = m, and
let g1, . . . , gs ∈ Fp[x]. We define the map φm : Fp((x

−1)) → [0, 1) by

φm

( ∞∑

l=w

tlx
−l

)
=

m∑

l=max(1,w)

tlp
−l.

Let n ∈ {0, 1, . . . , pm − 1} with p-adic expansion n = n0 + n1p + · · · + nm−1p
m−1. With

such an n we associate the polynomial

n(x) =
m−1∑

k=0

nkx
k ∈ Fp[x].
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Then the point set P (g, f) is defined as the collection of the pm points

xn =

(
φm

(
n(x)g1(x)

f(x)

)
, . . . , φm

(
n(x)gs(x)

f(x)

))
∈ [0, 1)s,

for 0 ≤ n ≤ pm−1. Due to the construction principle, P (g, f) is often called a polynomial
lattice and a QMC rule using the point set P (g, f) is often called a polynomial lattice
rule (modulo f). The vector g is called the generating vector of P (g, f) or the generating
vector of the polynomial lattice (rule), depending on the context. Note that the generating
vectors g in the construction principle for polynomial lattice points can be restricted to
the set

g ∈ Gs
p,m := {h ∈ Fp[x] : deg(h) < m}s,

which is what we will assume in the following.
Using a more general terminology, the construction principle for polynomial lattice

rules outlined here yields polynomial lattice rules of rank 1. For the precise definition of
the rank of polynomial lattice rules, see, for example, [11, 13]. We refer the interested
reader to a number of further papers in which polynomial lattice rules in different settings
are studied [3, 4, 9, 10, 11, 12, 13, 17, 19].

If we use a point set P with N points for QMC-integration of functions from Hwal,s,γ ,
we define the worst-case error by

eN,s(P ) := sup
F∈Hwal,s,γ

‖F‖wal,s,γ≤1

|Is(F )−QN,s(F )| .

In this paper we study the worst-case integration error of polynomial lattice rules. In [5],
Dick, Pillichshammer, Kuo and Sloan studied the construction of polynomial lattice rules
for those cases where f is an irreducible polynomial over Fp. Here, we wish to generalize
their results to the case where f is not necessarily an irreducible but an arbitrary polyno-
mial over Fp. In particular, we are going to give an existence result for polynomial lattice
rules modulo arbitrary polynomials with small worst-case integration error. Furthermore,
we outline a component-by-component (CBC) construction of polynomial lattices such
that their worst-case error is small. The idea of a CBC construction of point sets with
low worst-case integration error is mainly due to Sloan and his collaborators, see, for
example [8, 20, 21].

In [5], the authors also studied the integration of functions in certain Sobolev spaces
(see [5, 7]) and gave construction algorithms for randomized polynomial lattice rules
modulo irreducible polynomials with low mean square worst-case integration error with
respect to these function spaces. We remark that our general results for the Hilbert space
Hwal,s,γ can easily be transferred to the case of Sobolev spaces as well.

2 Preliminaries

We summarize some notation and results that will be needed throughout the paper. Here
and in the following section we always assume p is a prime. For arbitrary k = (k1, . . . , ks)
and g = (g1, . . . , gs) in Fp[x]s, we define the vector product

k · g :=
s∑

i=1

kigi.
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and we write g ≡ 0 mod f if f divides g in Fp[x]. Furthermore, we define for f ∈ Fp[x],
deg(f) = m,

G∗
p,m(f) := {h ∈ Fp[x] : deg(h) < m, gcd(h, f) = 1}.

For f, g ∈ Fp[x] we write from now on simply (f, g) instead of gcd(f, g) for the greatest
common divisor of f and g.

Further, as above, we often associate a nonnegative integer k = κ0 + κ1p + · · · + κlp
l

with the polynomial k(x) = κ0 + κ1x + · · ·+ κlx
l ∈ Fp[x] and vice versa. In this sense we

have ψp(k) = deg(k).
The following lemma was shown in [5].

Lemma 1 Let f ∈ Fp[x], deg(f) = m, and let g ∈ Gs
p,m. Then the squared worst-case

error for integration in Hwal,s,γ using the polynomial lattice P (g, f) satisfies the equation

e2
pm,s(P (g, f)) =

∑

k∈D
r(α, γ,k),

where D := {k ∈ Fp[x]s \ {0} : k · g ≡ 0 mod f} is the so-called dual net (or dual polyno-
mial lattice) of P (g, f).

The question remains how the sum over all k ∈ D can be computed or at least bounded
effectively, such that we can search for polynomial lattices with low worst-case integration
error. The following lemma gives an answer to this problem, provided that the generating
vector g satisfies some additional conditions.

Lemma 2 Let P (g, f) be a polynomial lattice modulo f ∈ Fp[x], deg(f) = m, with
generating vector g ∈ (G∗

p,m(f))s. Then

∑

k∈D
r(α, γ,k) ≤ 1

pαm

s∏
i=1

(1 + 2cp,αγi) +
∑

k∈D∗
r(α, γ, k),

where cp,α := p−1
1−p1−α and D∗ :=

{
k ∈ Gs

p,m \ {0} : k · g ≡ 0 mod f
}
.

Proof. The result follows by the first part of the proof of Lemma 2 in [2], Lemma 4.40
in [16], and by noting that the generating matrices of P (g, f) are regular provided that
g ∈ (G∗

p,m(f))s. 2

Lemma 2 implies that if one wants to obtain upper bounds on the worst-case integration
error of P (g, f) with deg(f) = m and g ∈ (G∗

p,m(f))s, it is sufficient to consider the term∑
k∈D∗ r(α, γ, k).
For short, we denote the sum

∑
k∈D∗ r(α, γ,k) by Sα,γ(g, f) in the following. Using

the same arguments as in [6, Section 4] one can show that

Sα,γ(g, f) = −1 +
1

|P (g, f)|
∑

x∈P (g,f)

s∏
i=1

χp,m,γi
(xi)

where x = (x1, . . . , xs) and for any x = ξ1/p + ξ2/p
2 + · · · and γ > 0 we have

χp,m,γ(x) =





1 + γ

p(α−1)(i0−1)

(
cp,α(p(i0−1)(α−1) − 1)− 1

)
if ξ1 = · · · = ξi0−1 = 0 and

ξi0 6= 0 with 1 ≤ i0 ≤ m,
1 + γ

p(α−1)m cp,α(pm(α−1) − 1) otherwise,

where cp,α is as in Lemma 2. Hence Sα,γ(g, f) can be computed in O(spm) operations.
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3 Existence Results and Construction Algorithms for

Polynomial Lattices Modulo Arbitrary Polynomi-

als

The following lemma gives, for a polynomial f ∈ Fp[x] with deg(f) = m, a bound on the
average of Sα,γ(g, f) over all vectors g ∈ (G∗

p,m(f))s. From this result we are going to
deduce that polynomial lattice rules with “low” worst-case error must exist.

Lemma 3 Let m ≥ 1, s ≥ 2, and f ∈ Fp[x] with deg(f) = m. Then

1∣∣G∗
p,m(f)

∣∣s
∑

g∈(G∗p,m(f))s

Sα,γ(g, f) ≤ 2

pm

(
s∏

i=1

(1 + γicp,α)− 1

)
,

where cp,α is defined as in Lemma 2.

Proof. The proof is based on ideas from [16, Proof of Theorem 4.43]. Without loss of
generality, we may assume that f is monic. First observe that

∣∣G∗
p,m(f)

∣∣ = φp(f), where
φp(f) is the analogue of Euler’s totient function for the field Fp[x] (cf. [16, p. 77]). We
have

Ms(f) :=
1∣∣G∗

p,m(f)
∣∣s

∑

g∈(G∗p,m(f))s

Sα,γ(g, f)

=
1

(φp(f))s

∑

g∈(G∗p,m(f))s

∑

h∈Gs
p,m\{0}

g·h≡0 mod f

s∏
i=1

r(α, γi, hi)

=
1

(φp(f))s

∑

h∈Gs
p,m\{0}

s∏
i=1

r(α, γi, hi)
∑

g∈(G∗p,m(f))s

h·g≡0 mod f

1.

If h = 0, then
∏s

i=1 r(α, γi, hi) = 1 and

∑

g∈(G∗p,m(f))s

h·g≡0 mod f

1 =
∣∣G∗

p,m

∣∣s = (φp(f))s.

Therefore,

Ms(f) =




1

(φp(f))s

∑

h∈Gs
p,m

s∏
i=1

r(α, γi, hi)
∑

g∈(G∗p,m(f))s

h·g≡0 mod f

1


− 1.

For all h ∈ Gs
p,m,

∑

g∈(G∗p,m(f))s

h·g≡0 mod f

1 =
∑

g∈(G∗p,m(f))s

p−m
∑

v∈Gp,m

Xp

(
v

f
hg

)
,
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where Xp is defined as in [16, p. 78]. We obtain

∑

h∈Gs
p,m

s∏
i=1

r(α, γi, hi)
∑

g∈(G∗p,m(f))s

h·g≡0 mod f

1

=
∑

h∈Gs
p,m

s∏
i=1

r(α, γi, hi)
1

pm

∑

g∈(G∗p,m(f))s

∑
v∈Gp,m

Xp

(
v

f
hg

)

=
1

pm

∑
v∈Gp,m

∑

h∈Gs
p,m

∑

g∈(G∗p,m(f))s

Xp

(
v

f
hg

) s∏
i=1

r(α, γi, hi)

=
1

pm

∑
v∈Gp,m

s∏
i=1

Y (i)(v, f),

with

Y (i)(v, f) =
∑

h∈Gp,m

∑

g∈G∗p,m(f)

Xp

(
v

f
hg

)
r(α, γi, h).

Now
Y (i)(0, f) = φp(f)

∑

h∈Gp,m

r(α, γi, h);

thus

∑

h∈Gs
p,m

s∏
i=1

r(α, γi, hi)
∑

g∈(G∗p,m(f))s

h·g≡0 mod f

1

=
1

pm
(φp(f))s

s∏
i=1


 ∑

h∈Gp,m

r(α, γi, h)


 +

1

pm

∑
v∈Gp,m

v 6=0

s∏
i=1

Y (i)(v, f).

Let µp be the Möbius function on the multiplicative semigroup Sp of monic polynomials
over Fp. Note that µp is multiplicative. For fixed v ∈ Fp[x] with 0 ≤ deg(v) < m we
obtain

Y (i)(v, f) =
∑

h∈Gp,m

r(α, γi, h)
∑

g∈Gp,m

Xp

(
v

f
hg

) ∑

l|(g,f)

µp(l)

=
∑

h∈Gp,m

r(α, γi, h)
∑

l|f
µp(l)

∑
g∈Gp,m

l|g

Xp

(
v

f
hg

)

=
∑

h∈Gp,m

r(α, γi, h)
∑

l|f
µp(l)

∑
a∈Gp,deg(f/l)

Xp

(
v

f
hal

)

=
∑

h∈Gp,m

r(α, γi, h)
∑

l|f
µp

(
f

l

) ∑
a∈Gp,deg(l)

Xp

(
v

f
ha

)
,
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where, in the last step, we changed l into f/l. Applying [16, (4.51)] to the innermost sum,
we obtain

Y (i)(v, f) =
∑

h∈Gp,m

r(α, γi, h)
∑

l|f
l|vh

µp

(
f

l

)
pdeg(l)

=
∑

l|f
µp

(
f

l

)
pdeg(l)

∑

h∈Gp,m

l|vh

r(α, γi, h).

Now l divides vh if and only if l/(l, v) divides h; thus

Y (i)(v, f) =
∑

l|f
µp

(
f

l

)
pdeg(l)E(i)

(
l

(l, v)
, f

)
,

where, for an a ∈ Sp dividing f , we put

E(i)(a, f) =
∑

h∈Gp,m

a|h

r(α, γi, h).

If a = f , then E(i)(a, f) = r(α, γi, 0) = 1. Now let a 6= f ; then

E(i)(a, f) = 1 +
∑

b∈Gp,deg(f/a)

b6=0

r(α, γi, ab).

We have

∑

b∈Gp,deg(f/a)

b6=0

r(α, γi, ab) = γi

∑

b∈Gp,deg(f/a)

b6=0

p−α deg(ab)

= γip
−α deg(a)

∑

b∈Gp,deg(f/a)

b6=0

p−α deg(b)

= γip
−α deg(a)(p− 1)

deg(f/a)−1∑

k=0

(
p(1−α)

)k

= γip
−α deg(a)(p− 1)

p(1−α) deg(f/a) − 1

p1−α − 1
.

Note that, if a = f , then deg (f/a) = deg(1) = 0, so in this case

p(1−α) deg(f/a) − 1

p1−α − 1
= 0.

Thus, for all a ∈ Sp dividing f , we have

E(i)(a, f) = 1 + γip
−α deg(a)(p− 1)

p(1−α) deg(f/a) − 1

p1−α − 1
.
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Applying this formula with a = l
(l,v)

, we obtain

Y (i)(v, f) =
∑

l|f
µp

(
f

l

)
pdeg(l)

(
1 + γip

−α deg(l/(l,v))(p− 1)
p(1−α)(m−deg(l/(l,v))) − 1

p1−α − 1

)

=
∑

l|f
µp

(
f

l

)
pdeg(l)

(
1 + γi

p− 1

p1−α − 1
p−α deg(l/(l,v))p(1−α)(m−deg(l/(l,v)))

−γi
p− 1

p1−α − 1
p−α deg(l/(l,v))

)

=
∑

l|f
µp

(
f

l

)
pdeg(l)

(
1 + γi

p− 1

p1−α − 1
p(1−α)m−deg(l/(l,v))

−γi
p− 1

p1−α − 1
p−α deg(l/(l,v))

)

=
∑

l|f
µp

(
f

l

)
pdeg(l) +

∑

l|f
µp

(
f

l

)
pdeg(l)γi

p− 1

p1−α − 1
p(1−α)mp− deg(l/(l,v))

−
∑

l|f
µp

(
f

l

)
pdeg(l)γi

p− 1

p1−α − 1
p−α deg(l/(l,v))

= φp(f) + γi
p− 1

p1−α − 1
p(1−α)m

∑

l|f
µp

(
f

l

)
pdeg((l,v))

−γi
p− 1

p1−α − 1

∑

l|f
µp

(
f

l

)
p(1−α) deg(l)pα deg((l,v)).

For short we write

H(v, f) :=
∑

l|f
µp

(
f

l

)
p(1−α) deg(l)pα deg((l,v))

and

H(1)(v, f) :=
∑

l|f
µp

(
f

l

)
pdeg((l,v)).

From these we can write

Y (i)(v, f) = φp(f)− γip
(1−α)mcp,αH(1)(v, f) + γicp,αH(v, f),

where cp,α := p−1
1−p1−α .

For v ∈ Fp[x] with 0 ≤ deg(v) < m, we have H(1)(v, f) = 0 as in [16, pp. 82f.], and so
we obtain

Y (i)(v, f) = φp(f) + γicp,αH(v, f).
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Thus,

Ms(f) =
1

(φp(f))s


 1

pm
(φp(f))s

s∏
i=1


 ∑

h∈Gp,m

r(α, γi, h)







+
1

pm

∑
v∈Gp,m

v 6=0

s∏
i=1

(φp(f) + γicp,αH(v, f))− 1

=
1

pm

s∏
i=1

E(i)(1, f) +
1

N

∑
v∈Gp,m

v 6=0

s∏
i=1

(1 + γicp,αJp(v, f))−
(

1− 1

pm

)
− 1

pm
,

where Jp(v, f) := H(v, f)/φp(f). Let us now analyze H(v, f). First note that H(v, f) is
multiplicative in f .

In the following, let b be a monic, irreducible polynomial over Fp. We define eb(v) as
the largest integer z such that bz divides v. From the definition of the Möbius function,
it follows that

H
(
v, bk

)
= p(1−α) deg(bk)pα deg((bk,v)) − p(1−α) deg(bk−1)pα deg((bk−1,v)).

Hence, if eb(v) ≥ k, it follows that H
(
v, bk

)
= 0. Otherwise, we have

H
(
v, bk

)
= pαeb(v) deg(b)p(1−α) deg(bk) (

1− p(α−1) deg(b)
)
.

In the following, we assume f = bk1
1 · · · bkt

t , where the polynomials bj are monic, irreducible
and pairwise distinct. From our observations, we obtain

H(v, f) =

{∏t
j=1 H

(
v, b

ebj
(f)

j

)
if ebj

(v) < ebj
(f) ∀j = 1, . . . , t,

0 otherwise.

We now define

Hi(f) := φp(f)−i
∑

v∈Gp,m

v 6=0

H(v, f)i

= φp(f)−i
∑

v∈Gp,m

v 6=0, ebj
(v)<kj∀j

t∏
j=1

piαebj
(v) deg(bj)p

i(1−α) deg

(
b
kj
j

)
(
1− p(α−1) deg(bj)

)i

= φp(f)−i

t∏
j=1

p
i(1−α) deg

(
b
kj
j

)
(
1− p(α−1) deg(bj)

)i ∑
v∈Gp,m

v 6=0, ebj
(v)<kj∀j

t∏
j=1

piαebj
(v) deg(bj)

=: φp(f)−i

t∏
j=1

p
i(1−α) deg

(
b
kj
j

)
(
1− p(α−1) deg(bj)

)i
Σ∗(f).
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Now,

Σ∗(f) =

k1−1∑

l1=0

· · ·
kt−1∑

lt=1

∑
a

(a,f)=1

deg(a)<m−∑t
j=1 deg(b

lj
j )

t∏
j=1

p
iα deg

(
b
lj
j

)

=

k1−1∑

l1=0

· · ·
kt−1∑

lt=1

t∏
j=1

p
iα deg

(
b
lj
j

) ∑
a

(a,f)=1

deg(a)<m−∑t
j=1 deg

(
b
lj
j

)

1.

We have
∑

a
(a,f)=1

deg(a)<m−∑t
j=1 deg

(
b
lj
j

)

1 = φp

(
f

bl1
1 · · · blt

t

)
=

t∏
j=1

φp

(
b
kj−lj
j

)
.

Hence

Σ∗(f) =

k1−1∑

l1=0

· · ·
kt−1∑

lt=1

t∏
j=1

p
iα deg

(
b
lj
j

)

φp

(
b
kj−lj
j

)

=

k1−1∑

l1=0

· · ·
kt−1∑

lt=1

t∏
j=1

p
iα deg

(
b
lj
j

)

p
deg

(
b
kj−lj
j

) (
1− 1

pdeg(bj)

)

= φp(f)

k1−1∑

l1=0

· · ·
kt−1∑

lt=1

t∏
j=1

p
(iα−1) deg

(
b
lj
j

)

= φp(f)
t∏

j=1

p
(iα−1) deg

(
b
kj
j

)

− 1

p(iα−1) deg(bj) − 1
.

We arrive at

Hi(f) = φp(f)1−i

t∏
j=1

p
i(1−α) deg

(
b
kj
j

)
(
1− p(α−1) deg(bj)

)i p
(iα−1) deg

(
b
kj
j

)

− 1

p(iα−1) deg(bj) − 1

=
t∏

j=1

p
deg

(
b
kj
j

)
(1−i)

(
1− 1

pdeg(bj)

)1−i

p
i(1−α) deg

(
b
kj
j

)

× (
1− p(α−1) deg(bj)

)i p
(iα−1) deg

(
b
kj
j

)

− 1

p(iα−1) deg(bj) − 1

=
t∏

j=1

(
1− 1

pdeg(bj)

)1−i (
1− p(α−1) deg(bj)

)i 1

p(iα−1) deg(bj) − 1

×
t∏

j=1

p
deg

(
b
kj
j

)
(1−i)

p
i(1−α) deg

(
b
kj
j

) (
p

(iα−1) deg

(
b
kj
j

)

− 1

)
.

10



Therefore,

|Hi(f)| ≤
t∏

j=1

(
1− 1

pdeg(bj)

)1−i (
p(α−1) deg(bj) − 1

)i 1

p(iα−1) deg(bj) − 1
≤ 1.

This means

1

pm

∑
v∈Gp,m

v 6=0

s∏
i=1

(1 + γicp,αJp(v, f))− (1− 1/pm) =
1

pm

∑

u⊆{1,...,s},u6=∅
γuc

|u|
p,αH|u|(f)

≤ 1

pm

∑

u⊆{1,...,s},u6=∅
γuc

|u|
p,α

=
1

pm

(
s∏

i=1

(1 + γicp,α)− 1

)
.

On the other hand,

1

pm

s∏
i=1

E(i)(1, f)− 1

pm
≤ 1

pm

(
s∏

i=1

(1 + γicp,α)− 1

)
.

This yields the result. 2

Theorem 1 Let p be prime and f ∈ Fp[x] with deg(f) = m ≥ 1 and α > 1. Then there
exists a vector g ∈ (G∗

p,m(f))s such that

Sα,γ(g, f) ≤ 21/λ

pm/λ

(
s∏

i=1

(1 + γλ
i cp,αλ)− 1

)1/λ

for any 1/α < λ ≤ 1.

Proof. This result follows from Lemma 3 together with the fact that for all λ ∈ (1/α, 1]
we have

Sα,γ(g, f) ≤ (Sαλ,γλ(g, f))1/λ,

where γλ = (γλ
j )j≥1, which in turn follows from Jensen’s inequality which states that for a

sequence (ak) of non-negative real numbers we have (
∑

ak)
λ ≤ ∑

aλ
k , for any 0 < λ ≤ 1.

2

Theorem 1, together with Lemma 1 and Lemma 2, implies the existence of generating
vectors g yielding polynomial lattices with squared worst-case integration error of order
p−αm+ε for any ε > 0. Furthermore we remark that the bound on the worst-case error
can be made independent of the dimension if

∑
i≥1 γλ

i < ∞. This is known as strong
tractability, see [22]. For a more detailed (strong) tractability discussion of this problem
just follow the proof of [5, Corollary 4.5]. Now we introduce an algorithm that provides
a way of finding such vectors explicitly. The algorithm is based on a component-by-
component construction.

11



Algorithm 1 Given a prime number p, a dimension s, an integer m ≥ 1 and weights
γ = (γj)j≥1.

1. Choose a polynomial f ∈ Fp[x] with deg(p) = m.

2. Set g∗1 = 1.

3. For d = 2, 3, . . . , s, and g∗1, . . . , g
∗
d−1 found in the previous steps, find g∗d ∈ G∗

p,m(f)
by minimizing the quantity Sα,γ((g∗1, . . . , g

∗
d−1, gd), f) as a function of gd.

Theorem 2 Let p be prime and f ∈ Fp[x] with deg(f) = m ≥ 1. Suppose (g∗1, . . . , g
∗
s) ∈

(G∗
p,m(f))s is constructed by Algorithm 1. Then for all d = 1, 2, . . . , s we have

Sα,γ((g∗1, . . . , g
∗
d), f) ≤ 1

pm/λ

d∏
i=1

(
1 + γλ

i 2cp,αλ

)1/λ

for all λ ∈ (1/α, 1].

Proof. Without loss of generality, we may assume that the polynomial f is monic. We
prove the result by induction on d = 1, . . . , s.

Since g∗1 = 1 and since there is no polynomial k ∈ Gp,m \{0} such that k ≡ 0 (mod f),
it follows that Sα,γ(g∗1, f) = 0. Hence the bound holds trivially for d = 1.

Assume we have already shown that

Sα,γ(g∗, f) ≤ 1

pm/λ

d∏
i=1

(
1 + γλ

i 2cp,αλ

)1/λ

for d ≥ 1 and any 1/α < λ ≤ 1.
We have

Sα,γ((g∗, gd+1), f) =
∑

(k,kd+1)∈Gd+1
p,m\{0}

kg∗+kd+1gd+1≡0 (mod f)

r(α, γ, (k, kd+1))

= Sα,γ(g∗, f) + θ(gd+1),

where
θ(gd+1) =

∑

(k,kd+1)∈Gd+1
p,m

kd+1 6=0

kg∗+kd+1gd+1≡0 (mod f)

r(α, γ, (k, kd+1)).

As g∗d+1 is chosen such that Sα,γ((g∗, gd+1), f) is minimized and since Sα,γ(g∗, f) is inde-
pendent of gd+1 it follows that for all gd+1 ∈ G∗

p,m(f) and all λ > 0 we have

θ(g∗d+1)
λ ≤ θ(gd+1)

λ

12



and therefore together with Jensen’s inequality we obtain for all 1/α < λ ≤ 1,

θ(g∗d+1) ≤

 1

φp(f)

∑

gd+1∈G∗p,m(f)

θ(gd+1)
λ




1/λ

≤




1

φp(f)

∑

gd+1∈G∗p,m(f)

∑

(k,kd+1)∈Gd+1
p,m

kd+1 6=0

kg∗+kd+1gd+1≡0 (mod f)

r(αλ, γλ, (k, kd+1))




1/λ

.

We now consider

M :=
1

φp(f)

∑

gd+1∈G∗p,m(f)

∑

(k,kd+1)∈Gd+1
p,m

kd+1 6=0

kg∗+kd+1gd+1≡0 (mod f)

r(αλ, γλ, (k, kd+1))

=
1

φp(f)

∑

(k,kd+1)∈Gd+1
p,m

kd+1 6=0

d+1∏
i=1

r(αλ, γλ
i , ki)

∑
gd+1∈G∗p,m(f)

kg∗+kd+1gd+1≡0 (mod f)

1.

Since ∑
gd+1∈G∗p,m(f)

kg∗+kd+1gd+1≡0 (mod f)

1 =
∑

g∈G∗p,m(f)

1

pm

∑
v∈Gp,m

Xp

(
v

f
(kg∗ + kd+1g)

)

we have

M =
1

φp(f)

1

pm

∑
v∈Gp,m

∑

k∈Gd
p,m

r(αλ,γλ,k)Xp

(
v

f
kg∗

)

×

 ∑

k∈Gp,m

∑

g∈G∗p,m(f)

r(αλ, γλ
d+1, k)Xp

(
v

f
kg

)
− φp(f)


 .

Let

Y (v, f) =
∑

k∈Gp,m

∑

g∈G∗p,m(f)

r(αλ, γλ
d+1, k)Xp

(
v

f
kg

)
.

Then we have
Y (0, f) = φp(f)

∑

k∈Gp,m

r(αλ, γλ
d+1, k)

and from the proof of Lemma 3 we know that

Y (v, f) = φp(f) + γλ
d+1cp,αλH(v, f),

where

H(v, f) =
∑

l|f
µp

(
f

l

)
p(1−αλ) deg(l)pαλ deg((l,v)).
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Thus

M = −
∑

k∈Gd
p,m

r(αλ, γλ,k)
1

pm

∑
v∈Gp,m

Xp

(
v

f
kg∗

)

+
1

φp(f)

1

pm

∑

k∈Gd
p,m

r(αλ, γλ,k)Y (0, f)

+
1

φp(f)

1

pm

∑

v∈Gp,m\{0}

∑

k∈Gd
p,m

r(αλ, γλ, k)Xp

(
v

f
kg∗

)
Y (v, f)

= −
∑

k∈Gd
p,m

r(αλ, γλ,k)
1

pm

∑
v∈Gp,m

Xp

(
v

f
kg∗

)
+

1

pm

∑

k∈Gd+1
p,m

r(αλ, γλ, k)

+
1

pm

∑

v∈Gp,m\{0}

∑

k∈Gd
p,m

r(αλ, γλ,k)Xp

(
v

f
kg∗

)

+
1

φp(f)

1

pm
γλ

d+1cp,αλ

∑

k∈Gd
p,m

r(αλ, γλ, k)
∑

v∈Gp,m\{0}
H(v, f)Xp

(
v

f
kg∗

)

Since

1

pm

∑

v∈Gp,m\{0}

∑

k∈Gd
p,m

r(αλ, γλ,k)Xp

(
v

f
kg∗

)

=
∑

k∈Gd
p,m

r(αλ, γλ,k)
1

pm

∑
v∈Gp,m

Xp

(
v

f
kg∗

)
− 1

pm

∑

k∈Gd
p,m

r(αλ, γλ,k)

we have

M =
1

pm

∑

k∈Gd+1
p,m

r(αλ,γλ,k)− 1

pm

∑

k∈Gd
p,m

r(αλ,γλ,k) + Kd
p (f)

where

Kd
p (f) :=

1

φp(f)

1

pm
γλ

d+1cp,αλ

∑

k∈Gd
p,m

r(αλ, γλ,k)
∑

v∈Gp,m\{0}
H(v, f)Xp

(
v

f
kg∗

)
.

Now we consider

T (f) :=
1

φp(f)

∑

v∈Gp,m\{0}
H(v, f)Xp

(
v

f
kg∗

)
.

As
∣∣∣Xp

(
v
f
kg∗

)∣∣∣ = 1 for all v ∈ Gp,m we have |T (f)| ≤ |H1(f)| ≤ 1 (see the proof of

Lemma 3) and therefore we have

Kd
p (f) ≤ γλ

d+1cp,αλ

pm

∑

k∈Gd
p,m

r(αλ, γλ,k)
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and

M ≤ 1

pm

∑

k∈Gd+1
p,m

r(αλ, γλ,k)− 1

pm

∑

k∈Gd
p,m

r(αλ, γλ,k)

+
γλ

d+1cp,αλ

pm

∑

k∈Gd
p,m

r(αλ, γλ,k)

=
1

pm

∑

k∈Gd
p,m

r(αλ, γλ, k)


 ∑

k∈Gp,m

r(αλ, γλ
d+1, k)− 1 + γλ

d+1cp,αλ




We have ∑

k∈Gp,m

r(αλ, γλ
d+1, k) ≤ 1 + γλ

d+1cp,αλ

and
∑

k∈Gd
p,m

r(αλ, γλ,k) ≤
d∏

i=1

(
1 + γλ

i cp,αλ

)

where cp,αλ = p−1
1−p1−αλ . Hence

M ≤ 1

pm

d∏
i=1

(
1 + γλ

i cp,αλ

)
γλ

d+12cp,αλ.

From the induction hypothesis together with another application of Jensen’s inequality
we obtain

Sα,γ((g∗, g∗d+1), f) ≤
(

1

pm

d∏
i=1

(
1 + γλ

i 2cp,αλ

)
)1/λ

+ M1/λ

≤
(

1

pm

d∏
i=1

(
1 + γλ

i 2cp,αλ

)
+

1

pm

d∏
i=1

(
1 + γλ

i cp,αλ

)
γλ

d+12cp,αλ

)1/λ

≤ 1

pm/λ

d+1∏
i=1

(
1 + γλ

i 2cp,αλ

)1/λ
.

2
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