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Abstract

In this note we prove an exact formula for the Lo discrepancy of the shifted two-
dimensional Hammersley point set in base 2. Our formula shows that this quantity
only depends on the number of zero digits in the dyadic expansion of the shift and
the cardinality of the point set. Our result is the solution to an open problem stated
by O. Strauch. Further we obtain the best shifts from our formula and we show that
the Lo discrepancy of the shifted two-dimensional Hammersley point set in base 2
satisfies a central limit theorem.
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1 Introduction

For a point set P = {xg,...,xy_1} in the two-dimensional unit cube [0,1)? the Lo
discrepancy is defined as

L2(73):/01/01

where A(E,P) = [P N E| for a subset £ C [0,1)2. This is a measure for the irregularity
of distribution of the point set P in [0,1)?, see [1, 3, 8, 10, 14].

In this note we consider the Ly discrepancy of the shifted Hammersley point set which
has been considered in a number of papers [2, 4, 5, 6, 7, 12, 15] and which is defined as
follows.

For m € N let z,y be two dyadic m-bit numbers with dyadic expansions

A([0,a) X [0,),P)
N —af| dadpg,
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=Gty and y=T-4 400
Define
Yy 9 om’

where z; = z; + y; (mod 2), 1 <i < m.
Further let ¢ : Ny — [0, 1) be the van der Corput radical inverse function defined by
No 1y
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if n € Ny has dyadic expansion n = ng + n12 + --- (note that this expansion is in fact
finite).

For a dyadic m-bit number ¢ the o-shifted two-dimensional Hammersley point set
H.(0) in base 2 is given by the points

<¢2(n),2%@0>, n=0,...2"_1

Note that the point sets H,, (o) are examples of a so-called (0, m, 2)-net in base 2 (for
an introduction on the theory of (¢,m, s)-nets we refer to [11]).

In [7, Theorem 2 and Theorem 3] the authors gave tight lower and upper bounds on
the Ly discrepancy of ‘H,,(¢) depending on the number of zeros in the dyadic expansion of
the shift o. This lead to the conjecture that the Ly discrepancy of a o-shifted Hammersley
point set only depends on the number of zero digits in the dyadic expansion of the shift
and not on the distribution of these (opposed to the star discrepancy as proved in [6]).
Furthermore, finding an exact formula for Ly(H,, (o)) remained an open problem in [7] as
recently pointed out by O. Strauch [13, Problem 1.1.8] in the unsolved problem section
of the journal Uniform Distribution Theory.

In this note we close the gap between the lower and upper bounds in [7, Theorem 2
and Theorem 3] and give an exact formula for Ly(H,,(c)) depending only on the number
of zero digits in the dyadic expansion of the shift and m. This gives the answer to the
question of O. Strauch and proves the conjecture mentioned above. From our result we
easily deduce the best shifts and we show that the Ly discrepancy of the shifted two-
dimensional Hammersley point set in base 2 satisfies a central limit theorem.

2 Statement and Proof of the Results
We have

Theorem 1 For m € N let o be a dyadic m-bit number and let | denote the number of
zero digits in the dyadic expansion of o. Then

m2 19m Im * | 3 m l 1 1
I Ly (Hy(0))? = L —2om _m b S _ _ .
( 2(H <U))) 64 192 16+16+4+8+16~2m 8~2m+4~2m 72 - 4m

Remark 1 This formula generalizes the well known formula for the L, discrepancy of
the unshifted two-dimensional Hammersley point set in base 2 which can be obtained by
setting [ = m, see [4, 12, 15]. Once again we point out that it only depends on m and the
number of zero digits in the dyadic expansion of the shift o.

The following easy consequence of Theorem 1 improves [7, Theorem 4].

Corollary 1 Form > 5 we obtain the best Ly discrepancy if we choose a shift with exactly
[ = (mT_E’ + QL,J zero digits in its dyadic expansion. Therefore it follows that

2
s (Bl S - L) if m is even,
mir})‘tLg(Hm(a)) =
o m—>bi 1/2 . .

Lm 2y - ) if m is odd.



We can also show that the Ly discrepancy of the shifted two-dimensional Hammersley
point set satisfies a central limit theorem.

Corollary 2 Let Z,, be the set of all dyadic m-bit numbers. For any real x > % we
have
1 19222 — 5
lim —# <0 € Zy,: Lo(Hp(0)) < x@ Y i 1,
m—oo 2M 2m 3
where

1 Y 2

denotes the normal distribution function.

For the proof of Theorem 1 we need the subsequent lemma for which we introduce a
quantity that appears therein.
For integers 0 < u < m and dyadic m-bit numbers «, # and ¢ with dyadic expansions

a=H o ﬁ:%+---+§—fj and o= 4.4 20
we define
0 if u=20,
=y’ o 2
max{j < u: mi1—; # B; B o,} else,
where here @& denotes addition modulo 2. Further we set a,,y; := 0. This function

appears in the exact formula for the discrepancy function of H,, (o). Since we do not need
this formula here we refer to [7, Lemma 1] and [9, Theorem 1] for further details.

Lemma 1 With the definitions from above we have

2m—1 U
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where & denotes addition modulo 2 and where v; := 3; ® o;. (Here and in the following
Z;T;il means summation over all a > 0 m-bit (in dyadic expansion).)

Proof. We have
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Since j(u) only depends on aup 41—y, - - - , Qmy1—j(w) and not on ay, ..., y,_, we have
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(1) If Umy1—j(u) = O, then
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(i) If cupg1—j) = 1, then we obtain, in a similar way,

1
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Together we have
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and therefore

1
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We evaluate the last sum in the above expression.
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We obtain
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and the result follows. |

Now we give the proof of Theorem 1. Since large parts of the proof are identical with
the proof of Theorem 2 in [7], we restrict ourselves to demonstrating only the new parts
of our argument in greater detail. For further details, we refer the interested reader to [7].

Proof. For short we define A(a, 3) = A([0,«) x [0,3),P) — Naf, where N = |P|. Then

we have

(2™ Ly(H // A(a, 8))? dadp
/12m/2 dadﬁ+/12m/12m )2 dadp
/lzm/”m dad5+/12m/2m )2 dadj

= L+ L+ 13+ 1,



In [7, Proof of Theorem 2| it was shown that

. ®» 5 % 2
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and
7 1 2

B 6~4m+9'16m 3-8m°

In [7] the authors gave lower and upper bounds on I; which then lead to lower and upper
bounds on Ly(H,,(0)). Here we give the precise value of I;. From [7, Proof of Theorem
2] we find that

1 2m_12m—1 a b 2
ho= g 2 XA () +
=1

Iy

= 21 + 22 -+ 23.
By [7, Lemma 6],

1
——(9m® + 15m — 36lm + 361> + 16 — 4°™™).

X
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Analyzing ¥, is a matter of straightforward computation and yields
1
Yy =— 2™ —1)%(32-2™ — 25-4™ — 8).

So it remains to deal with 3. Here, we find that
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We start with >,.
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Using [7, Lemma 1|, we find that
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where ||z|| denotes the distance to the nearest integer of a real number x.
By Lemma 1, we obtain
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which, in turn, by [7, Lemma 4] equals
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For given u € {0,...,m — 1} let us study the expression
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Since the value of [|2(|| does not depend on f3y, ..., (,, the latter expression equals
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It follows that
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Furthermore, it has been shown in [7] that we also have
1 1 /1l m
— 5 — (L=
24m ~42 ™ om (8 16)’

1 l m
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On the other hand we already had in [7]

such that we arrive at

thus,

as claimed.

Finally we give the proof of Corollary 2.



Proof. We denote the right hand side of the formula in Theorem 1 by d(m,[). Then we

have
1 vm 1 - m
gH{rezn Lot <=0 S (7)
T D) <oV
We have /d(m,l) < x-/m iff a,,(x) <1< b, (), where
1 44 — 288 - 2m — 72 . 22m 4 3. 22mm (19222 — 5
i) = 2 g LY +3 Prm{1927 - 5)
2 2m 6-2m
and
1 44 — 288 - 2m — 72 . 22m 4 3. 22mm (19222 — 5
bm<x>:%_2+2_m+\/ 6.2m"r‘ m( T )

Therefore (at least for m large enough)

5
Since for z > 795 We have
am(z) — % /19222 — 5
lim — =/ —
and
. bp(r) = 19222 — 5
lim ————= = -
the result follows from the central limit theorem. |
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