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Abstract. In this paper, we study a quantity Rb which is closely re-
lated to the quality of an important subclass of digital (t,m, s)-nets over
a finite field Fb, namely polynomial lattices. Niederreiter has shown by
an averaging argument that there always exist generators of polynomial
lattices for which Rb is small, establishing thereby the existence of poly-
nomial lattices with particularly low star discrepancy. In this work, we
show that this result is best possible, i.e., we prove that for all gener-
ators of polynomial lattices the quantity Rb cannot go below a certain
threshold.

1. Introduction and Statement of the Result

In many applications, one is interested in approximating the value of an

integral Is(F ) :=
∫

[0,1]s
F (x) dx of a function F : [0, 1]s → R. One way of

numerically approximating Is(F ) is to employ a quasi-Monte Carlo (QMC)

rule,

QN,s(F ) :=
1

N

N−1∑
n=0

F (xn),

where x0,x1, . . . , xN−1 are deterministically chosen points in [0, 1)s. We

refer to a collection of integration nodes as a “point set”, by which we

mean a multi-set, i.e., points may occur repeatedly. It is well known (see,

e.g., [5, 18]) that point sets which are in some sense evenly distributed in

the unit cube yield a low integration error when applying a QMC rule for

approximating Is(F ).

Naturally, an essential question in the theory of QMC methods is how the

node set of a QMC integration rule should be chosen. One very prominent

class of point sets are polynomial lattices, as proposed by Niederreiter in

[17, 18]. These point sets are special cases of digital (t,m, s)-nets (see [5,

15, 18]).
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For the construction of a polynomial lattice, choose a prime b and let

Fb be the finite field consisting of b elements. Furthermore let Fb[x] be the

field of polynomials over Fb, and let Fb((x
−1)) be the field of formal Laurent

series over Fb, with elements of the form

∞∑

l=z

tlx
−l,

where z is an arbitrary integer and the tl are arbitrary elements in Fb. Note

that the field of Laurent series contains the field of rational functions as a

subfield. Given an integer m ≥ 1, define a function χm : Fb((x
−1)) → [0, 1)

by

χm

( ∞∑

l=z

tlx
−l

)
:=

m∑

l=max(1,z)

tlb
−l.

Let, in the following, given a prime b and an integer m ≥ 1,

Gb,m := {a ∈ Fb[x] : deg(a) < m}.
Given a prime b, an integer m ≥ 1, and a dimension s ≥ 2, we choose an

f ∈ Fb[x] with deg(f) = m and s polynomials g1, . . . , gs ∈ Fb[x] and define

xh :=

(
χm

(
h(x)g1(x)

f(x)

)
, . . . , χm

(
h(x)gs(x)

f(x)

))
, h ∈ Gb,m.

The point set consisting of the points xh, h ∈ Gb,m, is denoted by P (g, f),

where g := (g1, . . . , gs). Note that |P (g, f)| = |Gb,m| = bm. Due to the

many analogies of such a point set to good lattice points (see, e.g, [18, 19]),

a QMC rule using P (g, f) is called polynomial lattice rule, and P (g, f) is

called polynomial lattice. Using a more general terminology, P (g, f) can

also be called a polynomial lattice rule of rank 1, see, e.g., [13, 14]. The

polynomial f in the construction of P (g, f) is referred to as the modulus,

and the vector g is referred to as the generating vector of the polynomial

lattice.

Furthermore, given two vectors of polynomials u = (u1, . . . , ur),

v = (v1, . . . , vr) ∈ (Fb[x])r, we define

u · v :=
r∑

i=1

uivi.

When studying the quality of a QMC rule using a polynomial lattice

P (g, f), one frequently considers (see [1]– [5], [11, 12, 18]) the quantity

Rb(g, f) :=
∑

h∈Gs
b,m

\{0}
h·g≡0 ( mod f)

rb(h),
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where for h = (h1, . . . , hs) ∈ Gs
b,m we put rb(h) = rb(h1) · · · rb(hs), and for

h ∈ Gb,m we put

rb(h) =

{
1 if h = 0,

1
br+1 sin(πκr/b)

if h = κ0 + κ1x + · · ·+ κrx
r, κr 6= 0.

Note that slightly different versions of rb are considered in some of the

papers cited above.

It is well known that low values of Rb(g, f) imply high quality of P (g, f)

with respect to the performance of a QMC algorithm using P (g, f) as the

underlying node set. In particular, the quantity Rb(g, f) is closely related

to the so-called star discrepancy of P (g, f). The star discrepancy of a point

set P of N points is defined as follows.

D∗
N(P ) := sup

0≤αi≤1
1≤i≤s

∣∣∣∣
AN ([0, α1)× · · · × [0, αs), P )

N
− α1 · · ·αs

∣∣∣∣ ,

where AN(E, P ) denotes the number of points of P lying in an interval

E ⊆ [0, 1)s. Obviously, the star discrepancy of a point set provides a way of

measuring to which extent the points are uniformly distributed in the unit

cube. It was shown by Niederreiter ([18, p. 77]) that the star discrepancy

D∗
N of a polynomial lattice P (g, f) with N = bm points in dimension s

satisfies

(1.1) D∗
N(P (g, f)) ≤ s

N
+ Rb(g, f),

hence low values of Rb(g, f) imply low star discrepancy. In particular, The-

orem 4.43 in [18] states that for any prime b and dimension s ≥ 2 there

exists a number Cs,b > 0 such that for any f ∈ Fb[x] with deg(f) = m ≥ 1

there exists a vector g0 ∈ Gs
b,m such that

(1.2) Rb(g0, f) ≤ Cs,b
ms

bm
.

The result in (1.2) was obtained by averaging over all g ∈ Gs
b,m. Together

with (1.1) this establishes for any N = bm the existence of polynomial

lattices P (g, f) of cardinality N and with star discrepancy

D∗
N(P (g, f)) = O

(
(log N)s

N

)
.

Constructions of such polynomial lattices using the component-by-component

approach or generating vectors of so-called Korobov form can be found in

[1, 3, 5].

In this paper, we are going to show that Niederreiter’s result is essentially

best possible, i.e., given f , there is no g with components different from zero

such that the order of magnitude of Rb(g, f) with respect to the degree of
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f is better than that given in (1.2). To be more precise, in Section 3 we are

going to show the following theorem.

Theorem 1.1. For any prime b and dimension s ≥ 2 there exists a number

cs,b > 0 with the following property: for any f ∈ Fb[x] with deg(f) = m ≥ 1

and any g ∈ Gs
b,m, gi 6= 0, 1 ≤ i ≤ s, we have

Rb(g, f) ≥ cs,bb
deg(δs)

(m− deg(δs))
s

bm
,

where δs := gcd(g1, . . . , gs, f).

We remark here that a corresponding result for classical integration lat-

tices has been shown by Larcher [9] (for dimension s = 2) and [10] (for

arbitrary dimensions s ≥ 2).

2. Preliminaries

We use the convention deg(0) = −∞. Note that for any h ∈ Gb,m \ {0}
we have rb(h) ≥ b−1−deg(h).

For L ∈ Fb((x
−1)) we write bLc for the polynomial part of L and {L} :=

L− bLc.
For the proof of Theorem 1.1 we use facts from the theory of continued

fractions of formal Laurent series; see, for example, [18, Appendix B], or [7].

For the sake of completeness we recall the most important results.

Let g, f ∈ Fb[x] with deg(g) < deg(f) and let [0, A1, A2, . . . , Ar] be the

continued fraction expansion of g/f , Q1, . . . , Qr, Qr = f , the denominators

of the convergents. Formally, we set Q−1 = 0 and Q0 = 1. Furthermore, we

denote by Pi the numerator of the i-th convergent to g/f . It is well known

that deg(Q1) < deg(Q2) < · · · < deg(Qr), that deg(Qi) ≥ i, and that

m = deg(Qr) =
r∑

i=1

deg(Ai).

We define ν as the discrete exponential valuation on Fb((x
−1)) defined

by

ν(L) =

{ −min{k : uk 6= 0} if L =
∑∞

k=w ukx
−k 6= 0,

−∞ if L = 0.

Note that ν extends the degree function from Fb[x] to Fb((x
−1)), in partic-

ular, ν(p) = deg(p) for p ∈ Fb[x]. Furthermore, for p, q ∈ Fb[x], q 6= 0, we

have ν(p/q) = deg(p)− deg(q).

It is known that (see, e.g., [18, p. 220], or [7, p. 11]), for 0 ≤ i < r,

ν

(
g

f
− Pi

Qi

)
= − deg(Qi)− deg(Qi+1)
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= −2 deg(Qi)− deg(Ai+1).(2.1)

Furthermore, see again [7], for 0 ≤ i < r we have

g

f
− Pi

Qi

=
(−1)i

(Ri+1Qi + Qi+1)Qi

,

where Ri := [Ai; Ai+1, . . . , Ar]. Using the identity Qi+1 = Ai+1Qi +Qi−1, we

obtain

g

f
− Pi

Qi

=
(−1)i

Ri+1Q2
i + Ai+1Q2

i + Qi−1Qi

=
1

Ai+1Q2
i

(−1)i

Ri+1

Ai+1
+ 1 + Qi−1

Ai+1Qi

.

Since ν(l1l2) = ν(l1) + ν(l2), for l1, l2 ∈ Fb((x
−1)), it follows from (2.1) that

ν

(
(−1)i

Ri+1

Ai+1
+ 1 + Qi−1

Ai+1Qi

)
= 0,

such that we arrive at

(2.2)
g

f
− Pi

Qi

=
θi

Ai+1Q2
i

for 0 ≤ i < r, with θi 6= 0 and ν(θi) = 0.

3. The Proof of Theorem 1.1

We now give the proof of Theorem 1.1.

Proof. The proof is inspired by [10]. Note that it is sufficient to show The-

orem 1.1 for the case deg(δs) = 0, since

Rb(g, f) ≥
∑

h∈Gs
b,m′ \{0}

h·g′≡0 ( mod f ′)

rb(h),

where f ′ = f/δs, g′ = g/δs, and m′ = m− deg(δs).

Hence, we assume in the following that deg(δs) = 0. Furthermore, we are

going to assume that m is large enough to satisfy the inequality logb m <

2 logb(m− 2s logb m). For the finitely many m not satisfying this condition,

the theorem holds by choosing the constant cs,b > 0 small enough.

Let di := gcd(gi, f) for 1 ≤ i ≤ s, and giti ≡ di (modf) such that

deg(gcd(ti, f)) = 0. We consider three cases:

(1) Suppose that deg(di0) ≥ s logb m for an i0 ∈ {1, . . . , s}. Then we

have

Rb(g, f) ≥
∑

hi0
∈(Gb,m\{0})

hi0
gi0

≡0 ( mod f)

1

bdeg(hi0
)+1

.
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However, hi0gi0 ≡ 0 (mod f) if and only if hi0 = l f
di0

, where 0 ≤
deg(l) < deg(di0), so

Rb(g, f) ≥ 1

b

∑
l∈Fb[x]

0≤deg(l)<deg(di0
)

bdeg(di0
)

bdeg(l)+deg(f)
≥ b− 1

b

ms

bm
.

Hence, we can assume deg(di) ≤ s logb m for all i ∈ {1, . . . , s} in the

following.

(2) Suppose that one continued fraction coefficient Ak0 of a
gi0

tj0dj0

f
,

i0 6= j0, 1 ≤ i0, j0 ≤ s satisfies deg(Ak0) ≥ s logb m. Then we have

Rb(g, f) ≥
∑

(hi0
,hj0

)∈G2
b,m

\{0}
hi0

gi0
+hj0

gj0
≡0 ( mod f)

rb(hi0)rb(hj0)

=
∑

(hi0
,hj0

)∈G2
b,m

\{0}
hi0

gi0
tj0

+hj0
gj0

tj0
≡0 ( mod f)

rb(hi0)rb(hj0)

=
∑

(hi0
,hj0

)∈G2
b,m

\{0}
hi0

gi0
tj0

+hj0
dj0

≡0 ( mod f)

rb(hi0)rb(hj0)

≥
∑

(hi0
,hj0

)∈G2
b,m\{0}

hi0
≡0 ( mod dj0

)

hi0
gi0

tj0+hj0
dj0

≡0 ( mod f)

rb(hi0)rb(hj0)

≥
∑

(hi0
,hj0

)∈G2
b,m′\{0}

hi0
gi0

tj0+hj0
≡0 ( mod f/dj0

)

rb(hi0)rb(hj0)

bdeg(dj0
)

,

where m′ := deg(f/dj0). Let now Qk, 0 ≤ k ≤ r, be the denominator

of the k-th convergent of
gi0

tj0dj0

f
, Q−1 = 0, Q0 = 1, Qk = AkQk−1 +

Qk−2 for 1 ≤ k ≤ r.

Furthermore, let h′i0 := Qk0−1, then there is a solution h′j0 of

h′i0gi0tj0 + h′j0 ≡ 0 (mod f/dj0) such that

deg(h′j0) = deg(f/dj0) + ν

({
Qk0−1gi0tj0dj0

f

})

= deg(f/dj0) + ν

({
Qk0−1

(
gi0tj0dj0

f
− Pk0−1

Qk0−1

)})

≤ deg(f/dj0) + ν

(
Qk0−1

(
gi0tj0dj0

f
− Pk0−1

Qk0−1

))

= deg(f/dj0)− deg(Ak0)− deg(Qk0−1),
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where we used (2.1). Hence,

Rb(g, f) ≥ r(h′i0)r(h
′
j0

)

bdeg(dj0
)

≥ 1

b2

bdeg(Ak0
)

bdeg(dj0
)bdeg(f/dj0

)
≥ 1

b2

ms

bm
.

So we can assume that the degrees of the continued fraction coeffi-

cients of
gitjdj

f
, i 6= j, 1 ≤ i, j ≤ s, are smaller than s logb m.

(3) Suppose that deg(di) ≤ s logb m for all 1 ≤ i ≤ s and that the

degrees of the continued fraction coefficients of
gitjdj

f
, i 6= j, 1 ≤

i, j ≤ s, are smaller than s logb m. In this case the result follows

from the subsequent Lemma 3.1, so the result of the theorem is

shown.

¤

We now prove the following lemma which completes the proof of Theo-

rem 1.1.

Lemma 3.1. Let b be a prime, let s ≥ 2, σ ∈ {2, . . . , s}, and g =

(g1, . . . , gs) ∈ Gs
b,m, gi 6= 0, 1 ≤ i ≤ s. Furthermore, define di := gcd(gi, f)

with deg(di) ≤ s logb m for 1 ≤ i ≤ s. Let giti ≡ di (modf) such that

deg(gcd(ti, f)) = 0, and assume that the degrees of the continued fraction

coefficients of
gitjdj

f
, i 6= j, 1 ≤ i, j ≤ s, are less than s logb m. More-

over, assume that m is large enough to satisfy the inequality logb m <

2 logb(m− 2s logb m). Then it is true that

R̃(σ, g, f, w) :=
∑

h∈Gσ
b,m

\{0}
h1g1+···+hσgσ≡w ( mod f)

rb(h) ≥ c(σ, s, b)bdeg(δσ)m
σ

bm
,

for any w ∈ Fb[x] for which

δσ := gcd(g1, . . . , gσ, f)

is a divisor of w. Here c(σ, s, b) > 0 is a constant depending only on σ, s,

and b.

Proof. First of all, assume that the bound in the lemma holds true for

deg(δσ) = 0, then for the case that deg(δσ) > 0 we set g′i = gi/δσ for

1 ≤ i ≤ σ, w′ = w/δσ, f ′ = f/δσ, and m′ = m− deg(δσ). Since we assumed

deg(di) ≤ s logb m, which implies deg(δσ) ≤ s logb m, we then obtain
∑

h∈Gσ
b,m

\{0}
h1g1+···+hσgσ≡w ( mod f)

rb(h) ≥
∑

h∈Gσ
b,m′ \{0}

h1g′1+···+hσg′σ≡w′ ( mod f ′)

rb(h)

≥ c(σ, s, b)
(m′)σ

bm′
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≥ c(σ, s, b)bdeg(δσ) (m− s logb m)σ

bm

≥ c̃(σ, s, b)bdeg(δσ)m
σ

bm
,

with another constant c̃(σ, s, b) > 0 depending only on σ, s, and b.

Hence there is no loss of generality in assuming in the following that

deg(δσ) = 0.

We are going to show the result of the lemma by induction on σ.

The case σ = 2: Here, we study

R̃(2, (g1, g2), f, w) :=
∑

h∈G2
b,m

\{0}
h1g1+h2g2≡w ( mod f)

rb(h),

where we assume, without loss of generality, deg(gcd(g1, g2, f)) = 0, and set

di := gcd(gi, f), p := f/d2.

Now, if h1g1 + h2g2 ≡ w (mod f), then h2g2 ≡ w − h1g1 (mod f), and

the latter equivalence can be solved if w − h1g1 ≡ 0 (modd2), which is

fulfilled due to our assumptions. Hence there exist a, l ∈ Fb[x], deg(a) <

deg(d2), such that h1 = a + ld2 and w − ag1 ≡ 0 (modd2), so h2g2 ≡
w− g1a− g1ld2 (mod f). Let now v := w−g1a

d2
t2. With this notation, we have

that h2 ≡ v − g1lt2 (mod p), where p is defined as above.

Therefore, for every l ∈ Fb[x], there exists a solution

h2 = p

{
v

p
− g1lt2

p

}
,

and we obtain

R̃(2, (g1, g2), f, w) ≥ 1

b2

∑
06=l∈Fb[x]

deg(l)<deg(p)

1

bdeg(ld2) max
(
1, bdeg(p{ v

p
− g1lt2

p }))

=
1

b2

1

bdeg(p)

1

bdeg(d2)

∑
06=l∈Fb[x]

deg(l)<deg(p)

1

bdeg(l) max
(

1
bdeg(p) , b

ν({ v
p
− g1lt2

p })) .

Let now G := g1t2
d1

and F := p
d1

, then gcd(G,F ) = 1
d1

gcd(g1t2, p) = 1, and,

due to our assumptions, G/F has continued fraction coefficients Ak with

deg(Ak) < s logb m < 2s logb(m− 2s logb m) ≤ 2s logb(deg(F )).

We are now going to show the following inequality. For every a ∈ Fb((x
−1)),

ν(a) < 0, and for a constant c(s, b) > 0 it is true that

(3.1) Σ :=
∑

0 6=l∈Fb[x]

deg(l)<deg(F )

1

bdeg(l) max
(

1
bdeg(F ) , b

ν({a−l G
F })

) ≥ c(s, b)(deg(F ))2.

Let Q0, Q1, . . . , Qr, Q0 = 1, Q−1 = 0, Qr = F , be the denominators of the

convergents to G/F , with Qi = AiQi−1 + Qi−2 for 1 ≤ i ≤ r, deg(Ai) <
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s logb m. Then we have, as shown in (2.2),

G

F
− Pi

Qi

=
θi

Ai+1Q2
i

, where ν(θi) ≤ 0.

Furthermore,

Σ =

deg(F )−1∑
y=0

∑
l∈Fb[x]

deg(l)=y

1

bdeg(l) max
(

1
bdeg(F ) , b

ν({a−l G
F })

)

≥
r−1∑
i=0

deg(Ai+1)−1∑
z1=0

∑

z2∈{−∞,0,1,2,...,deg(Qi)−1}
S(i, z1, z2),

where

S(i, z1, z2) :=
∑

l=κQi+λ

deg(κ)=z1

deg(λ)=z2

1

bdeg(l) max
(

1
bdeg(F ) , b

ν({a−l G
F })

) .

We have

bdeg(l) max

(
1

bdeg(F )
, bν({a−l G

F })
)

= bz1bdeg(Qi)bmax(−deg(F ),ν({a−l G
F }))

= bz1bmax(deg(Qi)−deg(F ),deg(Qi)+ν({a−l G
F })).

Now, on the one hand, for 0 ≤ i < r we have

deg(Qi)− deg(F ) ≤ −1,

and, on the other hand, for 0 ≤ i < r and l = κQi + λ we have

deg(Qi) + ν

({
a− l

G

F

})
=

= deg(Qi) + ν

({
a− (κQi + λ)

(
G

F
− Pi

Qi

+
Pi

Qi

)})

= deg(Qi) + ν

({
a− (κQi + λ)

(
θi

Ai+1Q2
i

+
Pi

Qi

)})

= deg(Qi) + ν

({
a− λPi

Qi

− (κQi + λ)θi

Ai+1Q2
i

})

= deg(Qi) + ν

({baQic+ {aQi} − λPi

Qi

− (κQi + λ)θi

Ai+1Q2
i

})

= deg(Qi) + ν

({
k(λ) + {aQi}

Qi

− (κQi + λ)θi

Ai+1Q2
i

})

= deg(Qi) + ν

(
k(λ) + {aQi}

Qi

− (κQi + λ)θi

Ai+1Q2
i

)

= ν

(
Qi

(
k(λ) + {aQi}

Qi

− (κQi + λ)θi

Ai+1Q2
i

))
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= ν

(
k(λ) + {aQi} − (κQi + λ)θi

Ai+1Qi

)

≤ deg(k(λ)) + 1.

where k(λ) := baQic − λPi (mod Qi).

Consequently,

bdeg(l) max

(
1

bdeg(F )
, bν({a−l G

F })
)
≤ bz1bφ(λ),

where

φ(λ) :=

{
deg(Qi)− deg(F ) if k(λ) = 0,

deg(k(λ)) + 1 otherwise.

Therefore,

Σ ≥
r−1∑
i=0

deg(Ai+1)−1∑
z1=0

1

bz1

∑

z2∈{−∞,0,1,2,...,deg(Qi)−1}

∑
κ∈Fb[x]

deg(κ)=z1

∑
λ∈Fb[x]

deg(λ)=z2

1

bφ(λ)
.

= (b− 1)
r−1∑
i=0

deg(Ai+1)
∑

λ∈Fb[x]

deg(λ)<deg(Qi)

1

bφ(λ)

= (b− 1)
r−1∑
i=0

deg(Ai+1)




1

bdeg(Qi)−deg(F )
+

∑

λ∈Fb[x]
k(λ)6=0

deg(λ)<deg(Qi)

1

bdeg(k(λ))+1




.

Now as λ runs through all polynomials in Fb[x] with degree less than

deg(Qi), so does k(λ).

Σ ≥ (b− 1)
r−1∑
i=0

deg(Ai+1)

deg(Qi)−1∑
z=0

1

bz+1

∑
λ∈Fb[x]

deg(λ)=z

1

=
(b− 1)2

b

r−1∑
i=0

deg(Ai+1) deg(Qi).

For the latter expression,
r−1∑
i=0

deg(Ai+1) deg(Qi) =
r−1∑
i=0

deg(Ai+1)
i∑

j=1

deg(Aj).

Note that
r−1∑
i=0

deg(Ai+1)
i∑

j=1

deg(Aj) =
r∑

i=1

deg(Ai)
i−1∑
j=1

deg(Aj)

=
r∑

j=1

deg(Aj)
r∑

i=j+1

deg(Ai).
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Hence,

2
r∑

i=1

deg(Ai)
i−1∑
j=1

deg(Aj) =
r∑

i=1

deg(Ai)
r∑

j=1

deg(Aj)−
r∑

i=1

deg(Ai)
2

= (deg(F ))2 −
r∑

i=1

deg(Ai)
2.

However, from the assumption on deg(Ai) we obtain deg(Ai) ≤ 2s logb(deg(F )),

hence the latter expression is bounded from below by

(deg(F ))2 − deg(F )(2s logb(deg(F ))2,

and (3.1) is shown.

However, (3.1) implies

R̃(2, (g1, g2), f, w) ≥ 1

b2

1

bdeg(p)

1

bdeg(d2)
c(s, b)(deg(F ))2

≥ 1

b2

1

bdeg(p)

1

bdeg(d2)
c(s, b)(m− 2s logb m)2

=
1

b2

1

bdeg(f)−deg(d2)

1

bdeg(d2)
c(s, b)(m− 2s logb m)2

≥ c′(s, b)
m2

bm
,

with c′(s, b) > 0 another constant depending only on s and b. Hence we

have shown the result of the lemma for σ = 2.

Induction step σ−1 → σ: The condition h1g1+· · ·+hσgσ ≡ w ( mod f)

is equivalent to

h1g1 + · · ·+ hσ−1gσ−1 ≡ w − hσgσ (mod f).

The latter congruence has a solution if and only if δσ−1 := gcd(g1, . . . , gσ−1, f)

is a divisor of w − hσgσ, i.e.,

hσgσ ≡ w (mod δσ−1).

Now, since deg(gcd(δσ−1, gσ)) = deg(δσ) = 0, there exists an a ∈ Fb[x],

deg(a) < deg(δσ−1), such that

w − agσ ≡ 0 (mod δσ−1),

and so

hσ = a + lδσ−1.

Hence we have, using the induction assumption,

R̃(σ, g, f, w)

≥
∑

l∈Fb[x]

deg(l)<m−deg(δσ−1)

1

bdeg(a+lδσ−1)

∑

h∈Gσ−1
b,m

\{0}
h1g1+···+hσ−1gσ−1≡w−(a+lδσ−1)gσ ( mod f)

rb(h)
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≥ c(σ − 1, s, b)bdeg(δσ−1)m
σ−1

bm

∑
l∈Fb[x]

deg(l)<m−deg(δσ−1)

1

bdeg(a+lδσ−1)
.

Now, for the latter sum we have
∑

l∈Fb[x]

deg(l)<m−deg(δσ−1)

1

bdeg(a+lδσ−1)
≥ 1

bdeg(a)
+

1

bdeg(δσ−1)

∑
l∈Fb[x]

0≤deg(l)<m−deg(δσ−1)

1

bdeg(l)

≥ 1

bdeg(δσ−1)
(m− deg(δσ−1))

≥ 1

bdeg(δσ−1)
c′′(s, b)m,

where c′′(s, b) > 0 is another constant depending only on s and b, and

where we made use of the assumption that deg(δσ−1) ≤ s logb m. The result

follows. ¤
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