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Abstract. Rado’s Theorem characterizes the systems of homogenous
linear equations having the property that for any finite partition of the
positive integers one cell contains a solution to these equations. Fursten-
berg and Weiss proved that solutions to those systems can in fact be
found in every central set. (Since one cell of any finite partition is cen-
tral, this generalizes Rado’s Theorem.) We show that the same holds
true for the larger class of D-sets. Moreover we will see that the con-
clusion of Furstenberg’s Central Sets Theorem is true for all sets in this
class.

1. Introduction

Schur’s Theorem ([Sch16]) states that for any finite partition of the posi-
tive integers one cell contains solutions to the equation x1 + x2 = x3.

Another classical result of partition Ramsey theory is van der Waerden’s
Theorem [vdW27] which states that arithmetic progressions of arbitrary
finite length can be found in one cell of any finite partition. This follows
from the fact that a solution to the equations x1 = x3−x2 = . . . = xn−xn−1

can always be found in one cell.1

Both statements are special instances of Rado’s Theorem which provides
necessary and sufficient conditions for the system A(x1, . . . , xq)T = 0, A ∈
Zp×q to be partition regular in the sense that for every finite partition of the
positive integers one cell contains x1, . . . , xq satisfying A(x1, . . . , xq)T = 0.
Each such system of linear equations is called a Rado system.

Theorem 1 (Rado’s Theorem [Rad33]). A system of linear equations of the
form A(x1, . . . , xq)T = 0, A = (aij) ∈ Zp×q is a Rado system iff the index
set {1, 2, . . . , q} can be divided into disjoint subsets I1, I2, . . . , Il and for all
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1This somewhat stronger result which asserts that the arithmetic progression and the
increment can be forced to lie in the same cell is due to Brauer [Bra28].
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r ∈ {1, . . . , l}, j ∈ I1 ∪ . . . ∪ Ir rational numbers crj may be found such that
the following relations are satisfied:∑

j∈I1

aij = 0

∑
j∈I2

aij =
∑
j∈I1

c1jaij

. . .∑
j∈Il

aij =
∑

j∈I1∪I2∪...∪Il−1

cl−1
j aij .

We want to mention a corollary2 of Rado’s Theorem extending Schur’s
Theorem. It is possible to find arbitrarily many numbers x1, . . . , xn, to-
gether with all finite sums xk1 + . . .+xkl , k1 < . . . < kl ≤ n in one cell of any
finite partition. Only some forty years after the publication of Rado’s re-
sult, Hindman ([Hin74, Theorem 3.1]) established that one can actually find
an infinite sequence together with all finite sums from its elements in one
cell. (See [DHLL95, HS00, HLS03] for more information on infinite partiton
regular systems of equations.)

Sometimes a deeper understanding of results in Partition Ramsey The-
ory is achieved by finding the proper notion of largeness which guarantees
that one cell of a finite partition contains rich combinatorial structure. The
Theorems of van der Waerden and Szemerédi provide an example of this
principle: While the first one states that every finite partition of the inte-
gers has one cell which contains arbitrarily long arithmetic progressions, the
latter reveals that those can be found in every set S of positive upper Ba-
nach density d∗(S) = lim(m−n)→∞|S ∩ {n, . . . ,m}|/(m− n+ 1). Clearly, at
least one cell of each finite partition of N has positive upper Banach density
and thus van der Waerden’s Theorem is a corollary of Szemerédi’s Theorem.

Furstenberg and Weiss improved Rado’s result by showing that solutions
to Rado systems can be found in every central set.3 One can give a defini-
tion of central sets using ultrafilters on N, but since we want to postpone
dealing with these somewhat esoteric objects to Section 4, we will give here
Furstenberg’s original definition ([Fur81, Definition 8.3]).

A set S ⊆ N is central iff there exist a dynamical system (X,T ) (i.e. a
compact metric space (X, ρ) and a continuous transformation T of X), a
point x ∈ X, a uniformly recurrent point y which is proximal to x, and an
open neighborhood U of y such that

S = {n ∈ N : Tnx ∈ U}.

2This was proved independently (but much later then Rado’s Theorem) by Folkman
(unpublished) and Sanders [San69].

3The Theorem in this form was spelled out in [Fur81, Theorem 8.22] but can also be
deduced from [FW78, Theorem 4.4] which was published before the introduction of central
sets.
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(A point y ∈ X is called uniformly recurrent if for each neighborhood U of y
the set {n ∈ N : Tny ∈ U} is syndetic, i.e. has bounded gaps. Points x, y ∈ X
(which are not necessarily distinct) are proximal if infn≥0 ρ(Tnx, Tny) = 0.)

For our purposes the following characterization of central sets via product
systems will also be of interest.

Proposition 2 ([BD08, Theorem 2.3]). A set S ⊆ N is central iff there
exist a dynamical system (X,T ), a pair (x, y) ∈ X×X where y is uniformly
recurrent in (X,T ) and such that (y, y) belongs to the orbit closure of (x, y)
in the product system (X×X,T ×T ), and an open neighborhood U of (y, y)
such that

S = {n ∈ N : (Tnx, Tny) ∈ U}.
For the sake of completeness we include a short sketch of the proof.

Sketch of proof. First assume that S is central and that it is obtained via
(X,T ), x, y ∈ X and an open U ⊆ X. Utilizing the fact that y is uniformly
recurrent and that x, y are proximal one easily checks that (y, y) belongs to
the orbit closure of (x, y) in the product system (X × X,T × T ). Clearly
S = {n ∈ N : (Tnx, Tny) ∈ U ×X}.

Conversely, let S = {n ∈ N : (Tnx, Tny) ∈ U}, where (X,T ), x, y and
U ⊆ X satisfy the assumptions of the Proposition. Notice that (y, y) is
uniformly recurrent and (x, y), (y, y) are proximal in the product system.
Hence one gets that S is central by using (x, y) and (y, y) as a pair of
proximal points in the system (X ×X,T × T ). �

One can prove (and this is in fact apparent from the ultrafilter description
given in Section 4) that one cell of each finite partition of the positive integers
is central, that every set containing a central set is central itself and that
central sets remain central after removing finitely many points.

Central sets have positive upper Banach density. In fact, if S is central,
it posseses the strictly stronger property that there exists k ∈ N such that
S∪(S−1)∪ . . .∪(S−k) contains arbitrarily long intervals, i.e. S is piecewise
syndetic.

While it is merely an exercise to derive van der Waerden’s Theorem from
the fact that every piecewise syndetic set contains arbitrarily long arithmetic
progressions, Szemerédi’s Theorem which guarantees the existence of arbi-
trarily long arithmetic progressions in sets of positive upper Banach density
is highly nontrivial. Analogously, one might search for a class of not nec-
essarily piecewise syndetic sets which contain solutions to Rado systems.
Clearly positive upper Banach density is not the appropriate notion (for
instance the set of all odd numbers contains no configuration of the form
x1, x2, x1 +x2). In fact it is possible to find for each ε > 0 a set S of density
bigger than 1 − ε such that for no t ∈ Z, S − t contains solutions to all
Rado systems.4 (In contrast to this it is always possible to shift a piecewise

4Following Ernst Strauss (see [BBHS06, Theorem 2.20]) one can construct a set S with
density arbitrarily close to 1 such that there doesn’t exist t ∈ Z such that (S− t)∩Nn 6= ∅



4 M. BEIGLBÖCK, V. BERGELSON, T. DOWNAROWICZ, A. FISH

syndetic set such that it becomes central (see [HS98, Theorem 4.40]) and
then contains solutions to all Rado systems.)

In this paper we prove that solutions of Rado systems are contained in
any member of a class of sets which is larger than the class of central sets.
This class is comprised of D-sets defined in [BD08]. The main distinction of
D-sets from the class of central sets is that in the definition of central sets
instead of a uniformly recurrent point, one considers an essentially recurrent
point y, meaning that the set {n ∈ N : Tny ∈ U} has positive upper Banach
density for every neighborhood U of y. Note that since every syndetic set
has positive upper density, every uniformly recurrent point is an essentially
recurrent point.

A set S ⊆ N is a D-set iff there exist a dynamical system (X,T ) (i.e. a
compact metric space X and a continuous transformation T of X), a pair of
points x, y ∈ X where y is essentially recurrent, and such that (y, y) belongs
to the orbit closure of (x, y) in the product system (X ×X,T × T ), and an
open neighborhood U of (y, y) such that

S = {n ∈ N : (Tnx, Tny) ∈ U}.
By Proposition 2 a set S ⊆ N is central iff it satisfies the above defini-

tion with the twist that y is not just essentially recurrent, but a uniformly
recurrent point. Hence every central set is a D-set. Similarly to central
sets, the family of D-sets is closed under forming supersets and every D-set
has positive upper Banach density. But D-sets don’t need to be piecewise
syndetic. (See [BM08].) In particular the class of D-sets is strictly larger
than the class of central sets.

So our main result is:

Theorem 3. Rado systems are solvable in D-sets.

We will give two proofs of Theorem 3. The first one, given in Section 3 is
formulated in the language of topological dynamics, while the second one,
presented in Section 4 makes use of the algebraic structure on the set of
ultrafilters on N. This second proof actually establishes that Furstenberg’s
Central Sets Theorem ([Fur81, Proposition 8.21] can be extended to D-sets.
In Section 2 we collect some tools which will be used in both proofs of
Theorem 3.

Note that in [BD08] D-sets are defined as subsets of the group Z and
also the transformations considered there are invertible. However it is more
traditional to work with subsets of the positive integers when the focus of
interest lies on combinatorial applications. The proofs of the statements in
[BD08] work in this modified setting without any significant changes and the
connection between D-sets in N and D-sets in Z is rather natural: Every

for every n ∈ N. Given positive integers x1, . . . , xm,m = n2 there exist i1 < . . . < ik ≤ m
such that xi1 + . . .+ xik ∈ nN. Hence if (S − t) ∩ Nn = ∅, S − t cannot contain positive
integers x1, . . . , xm and all finite sums from these numbers. In particular, no shifted copy
of S contains solutions to all Rado systems.
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D-set in N is a D-set in Z and S ⊆ Z is a D-set iff S ∩ N or (−S) ∩ N is a
D-set in N. (The analogous statement holds true for central sets.)

One might wonder whether any set satisfying the conclusion of the Central
Sets Theorem must have positive Banach density. It is shown in [Hin08] that
this is not the case.

2. Preliminaries

The following concept is due to Deuber ([Deu73], see also [HS98, Chapter
15].): Given positive integers m, p, c, the (m, p, c)-system generated by the
(m+ 1)-tuple (s(0), . . . , s(m)) is the following array of numbers:

cs(0),

cs(1) + i0s
(0), |i0| ≤ p,
· · ·

cs(m) + im−1s
(m−1) + . . .+ i0s

(0), |im−1|, . . . , |i0| ≤ p.
Deuber ([Deu73, Satz 2.1]) proved that every Rado-system is solvable within
a set S of positive integers iff for any triple (m, p, c) of positive integers S
contains an (m, p, c)-system. Thus for our purposes it is sufficient to prove
the following result.

Proposition 4. Let S be a D-set and m, p, c positive integers. Then S
contains an (m, p, c)-system.

Since we are going to prove the existence of structures extending arith-
metic progressions in sets which need not be piecewise syndetic, it is no
surprise that we will employ some version of Szemerédi’s Theorem. In fact
we shall use the Furstenberg and Katznelsons’s deep multiple IP recurrence
Theorem and its combinatorial corollary, the IP Szemerédi Theorem.

To formulate these theorems we introduce some notation: By F we denote
the set of all finite nonempty sets of positive integers. For α, β ∈ F , we
write α < β iff maxα < minβ. Given a sequence s1, s2, . . . in Z or Zm
and α = {k1, . . . , kl} ∈ F , k1 < . . . < kl, we let sα = sk1 + . . . + skl and
call the family (sα)α∈F an IP -system. Similarly, for a sequence T1, T2, . . .
of commuting transformations of a space, we assign to α the transformation
Tα = Tk1 ◦ . . . ◦ Tkl and call (Tα)α∈F an IP -system of transformations.

Theorem 5. (multiple IP -recurrence theorem, see [FK85, Theorem A])
Let (X,B, µ) be a probability measure space. Let (T (1)

α )α∈F , . . . , (T
(p)
α )α∈F

be commuting IP -systems of transformations which preserve µ. Then for
every A ∈ B with µ(A) > 0 there exists α ∈ F such that

µ
(
A ∩

(
T (1)
α

)−1
A ∩ . . . ∩

(
T (p)
α

)−1
A
)
> 0.

We plan to apply Theorem 5 in the dynamical proof of Proposition 4.
The link to D-sets will be established using the following result:
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Theorem 6. ([BD08, Theorem 2.6]) Let (X,T ) be a dynamical system, let
y ∈ X be an essentially recurrent point and U a neighborhood of y. Then
there exists a probability Borel measure µ on X preserved by the action T
such that µ(U) > 0.

In the ultrafilter proof of Proposition 4 we use the above mentioned com-
binatorial corollary of Theorem 5.

Theorem 7. (IP Szemerédi Theorem) Assume that S ⊆ N has posiive
upper Banach density and let (s(1)

α )α∈F , . . . , (s
(p)
α )α∈F be IP -systems of in-

tegers. Then there exist α ∈ F and a ∈ S such that a+s
(1)
α , . . . , a+s

(p)
α ∈ S.

We’ll also need the following lemma on IP -systems. (The proof is left as
an exercise.)

Lemma 8. Let (sα)α∈F be an IP -system of integers and let c ∈ N. There
exist α1 < α2 < . . . in F such that for every n ∈ N, sαn is divisible by c.

3. A proof via Topological Dynamics

The proof of Proposition 4 is more transparent for c = 1. Therefore we
will first restrict ourselves to this special case and make some remarks on
what needs to be changed to achieve the result in full generality later.

For the rest of this section, fix a dynamical system (X,T ) and x, y ∈ X
such that y is essentially recurrent, and such that (y, y) belongs to the orbit
closure of (x, y) in the product system (X × X,T × T ). Given an open
neighboorhood U of (y, y), we let SU = {n ∈ N : (Tnx, Tny) ∈ U}. In this
setting Proposition 4 (for c = 1) translates to:

Proposition 9. Let m, p ∈ N and let U be an open neighborhood of (x, y).
Then SU contains an (m, p, 1)-system.

The proof of Proposition 9 is based on the following Lemma:

Lemma 10. Fix some p ∈ N. If m ≥ 0 is such that for every open
U 3 (y, y), SU contains a (m, p, 1)-system, then for every such U , SU con-
tains a family of (m, p, 1)-systems such that their generating (m+ 1)-tuples(
s
(0)
α , . . . , s

(m)
α

)
α∈F form an IP -system in Nm+1.

Proof. Clearly, it suffices to consider symmetric sets U , i.e. sets of the form
V × V , where V is an open set containing y.

Fix m ≥ 0 for which the assumption holds. Fix a symmetric open set
U1 3 (y, y). We know that SU1 contains a (m, p, 1)-system D1 generated by
some (m+ 1)-tuple

(
s
(0)
1 , . . . , s

(m)
1

)
. In particular, the set

U ′2 =
⋂
n∈D1

(T × T )−n(U1)

contains (x, y) and, since U1 was symmetric, also (y, y). Let now U2 be
a symmetric neighborhood of (y, y) contained in U1 ∩ U ′2. By assumption,
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the set SU2 also contains a (m, p, 1)-system D2 generated by
(
s
(0)
2 , . . . , s

(m)
2

)
.

Clearly SU2 ⊆ SU1 , so SU1 contains both D1 and D2. Moreover, it contains
the algebraic sum of D1 and D2. In particular, it contains the Deuber system
D1,2 generated by

(
s
(0)
1 + s

(0)
2 , . . . , s

(m)
1 + s

(m)
2

)
. Continuing by an obvious

induction we construct a family of Deuber systems as in the assertion. �

Proof of Proposition 9. We proceed by induction on m.
For m = 0 the (m, p, 1)-system reduces to a single number s0, such that

(T ×T )s0(x, y) ∈ U . The set of such numbers s0 is nonempty for every open
U 3 (y, y), because (y, y) ∈ O(x, y).

Suppose the assertion holds for some m and all open sets U 3 (y, y). Fix
U . By Lemma 10, SU contains many such systems indexed by α ∈ F , where
the generating (m + 1)-tuples

(
s
(0)
α , . . . , s

(m)
α

)
form an IP -system in Nm+1.

Then for any fixed integers i0, . . . , im the numbers i0s
(0)
α + · · ·+ ims

(m)
α (with

varying α) form an IP -system and
(
Ri0s

(0)
α +...+ims

(m)
α
)
α∈F is an IP -system of

transformations for any given transformation R. Let (i0, . . . , im) range over
the integers in [−p, p]m+1 and consider the following (2p+1)m+1 commuting
IP -systems of transformations on X ×X:

T (i0,...,im)
α = (T × T )i0s

(0)
α +···+ims(m)

α .

Apply Theorem 6 to (y, y) ∈ O(y, y)(⊆ (X × X,T × T )) to get a T ×
T -invariant measure µ which assigns positive measure to U . Since µ is
preserved by all the above transformations, Theorem 5 asserts that there
exists an α ∈ F such that

V =
⋂

(i0,...,im)∈[−p,p]m+1

(
T (i0,...,im)
α

)−1
U

has positive measure. Since µ is supported by O(y, y) ⊆ O(x, y), these facts
imply that there exists an integer s, such that (T × T )s(x, y) ∈ V . This,
in turn, implies that the numbers s + i0s

(0)
α + · · · + ims

(m)
α belong to SU

for all (i0, . . . , im) ∈ [−p, p]m+1. Because SU already contains the (m, p, 1)-
system generated by the (m+ 1)-tuple

(
s
(0)
α , . . . , s

(m)
α

)
, we have proved that

SU also contains the (m + 1, p, 1)-system generated by the (m + 2)-tuple(
s
(0)
α , . . . , s

(m)
α , s

)
. The proof of Proposition 9 is now complete. �

Finally we explain what has to be changed if c 6= 1. Lemma 10 is valid
without any significant changes in the proof, if we just replace every appear-
ance of “(m, p, 1)-system” with “(m, p, c)-system”. The same holds true for
the inductive step in the proof of Proposition 9 up to the point where s is
chosen. In order to achieve that SU contains an (m + 1, p, c)-system, we
would need that s is divisible by c but at this point it is not obvious why
this should be the case. Thus we end up with SU containing an (m+1, p, c)-
system generated by

(
s
(0)
α , . . . , s

(m)
α , s

)
=
(
t(0), . . . , t(m+1)

)
which is flawed

in the sense that t(m+1) is multiplied by 1 instead of c. However we can
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apply Lemma 10 to see that SU actually contains such structures generated
by (m+2)-tuples which form an IP -system

(
t
(0)
α , . . . , t

(m+1)
α

)
α∈F . Hence we

can apply Lemma 8 to get that t(m+1)
α is divisible by c if α ∈ F is prop-

erly chosen. Therefore SU contains the (m + 1, p, c)-system generated by(
t
(0)
α , . . . , t

(m)
α , t

(m+1)
α /c

)
and thus the c 6= 1 version of Proposition 9 also

holds for m+ 1.

4. A proof via ultrafilters

In this section we use the algebraic structure of the Stone-Čech compact-
ification βN of N to give a proof to Proposition 4. We start with a brief
description of the concepts required in this proof, see [Ber03] for a short “self
contained” or [HS98] for an exhaustive treatment of the algebraic structure
on βN.

Take βN to be the set of all ultrafilters on N. A non empty system of sets
q ( P(N) is called a filter if it is closed under forming supersets and finite
intersections. It is an ultrafilter if it is a filter with the additional property
that whenever C1 ∪ . . . ∪ Cn = N, some Ci lies in D. Using the axiom of
choice, it is possible to show that |βN| = 22|N| but the only elements of
βN which can be explicitly constructed are the principle ultrafilters q(n) =
{S ⊆ N : n ∈ S} where n ∈ N. While not being overly exciting, they allow
us to view N as a subset of βN by identifying each n ∈ N with q(n) ∈ βN.
Using standard properties of the Stone-Čech compactification one obtains
that there exists a unique extension of the addition on N to βN such that the
map q 7→ r + q is continuous for every r ∈ βN and q 7→ q + n is continuous
for every n ∈ N. (Note that it is not possible to have both q 7→ q + r
and q 7→ r + q continuous for all r ∈ βN. In particular + is highly non
commutative on βN.) An explicit description of the addition on βN is given
by

S ∈ q + r ⇔ {n ∈ N : S − n ∈ q} ∈ r.(1)

(Here S−n = {k ∈ N : k+n ∈ N}.) Another interpretation of + is obtained
if we interpret ultrafilters as {0, 1}-valued finitely additive measures. Then
the addition turns out to be just the convolution of measures. Thus it is not
very surprising that + is associative. In fact, the compactness of βN together
with continuity of r + q in the right argument guarantees that (βN,+) is
a semigroup with quite rich algebraic structure. Moreover, algebraic prop-
erties of ultrafilters are nicely linked with combinatorial properties of their
elements as is exemplified by the following facts.

• Similar to finite semigroups, βN contains idempotents, that is el-
ements q such that q + q = q. A set S ⊆ N is contained in an
idempotent ultrafilter iff there exists an IP -system (sα)α∈F such
that all sα lie in S.
• A subset I of a semigroup (G,+) is a two sided ideal if I+G,G+I ⊆
I. It can be shown that βN has a smallest two sided ideal K(βN)
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(with respect to inclusion). A set S ⊆ N is piecewise syndetic iff
there exists q ∈ K(βN) such that S ∈ q.

An ultrafilter which is idempotent and lies in the smallest ideal of βN is
called a minimal idempotent. It was established in [BH90, Corollary 6.12]
that S ⊆ N is central iff there exists a minimal idempotent q such that S ∈ q.

Replacing piecewise syndetic with positive upper Banach density leads to
the class of essential idempotents: q ∈ βN is an essential idempotent iff it is
an idempotent ultrafilter, all of whose elements have positive upper Banach
density. By [BD08, Theorem 2.8], S ⊆ N is a D-set iff it is contained in
some essential idempotent.

We are now ready to employ these concepts to prove that D-sets satisfy
the conclusion of Furstenberg’s Central Sets Theorem ([Fur81, Proposition
8.21]).

Theorem 11. 5 Assume that S is a D-set and that
(
s
(1)
α

)
α∈F , . . . ,

(
s
(p)
α

)
α∈F

are IP -systems. There exist sequences a1, a2, . . . ∈ N and α1 < α2 < . . . in
F such that for all k1 < . . . < kl and i ∈ {1, . . . , p},

(2)
(
ak1 + s(i)αk1

)
+ . . .+

(
akl + s(i)αkl

)
∈ S.

The following standard Lemma (cf. [HS98, Lemma 4.14]) nicely simplifies
the inductive process used in the proof of Theorem 11.

Lemma 12. Let q be an idempotent ultrafilter, let S ∈ q and set S? = {n ∈
S : S − n ∈ q}. Then S? ∈ q and S? − n ∈ q for all n ∈ S?.

Proof. S? = S ∩ {m ∈ N : S −m ∈ q} ∈ q by (1) and since q is closed under
finite intersections. Given n ∈ S?, we have S? − n = (S − n) ∩ {m ∈ N :
S −m ∈ q} − n = (S − n) ∩ {m ∈ N : (S − n) −m ∈ q}. The first set lies
in q since n ∈ S? and the second set lies in q because S − n ∈ q and we can
substitute S − n for S in (1). �

Proof of Theorem 11. Let q be an essential idempotent such that S ∈ q and
define S? as in Lemma 12. We will inductively construct a1, a2, . . . and
α1 < α2 < . . . ∈ F such that (2) is satisfied. To keep the induction going
we will in fact demand that (2) is even true with S replaced by S?. To start
the construction use the fact that S? has positive upper Banach density
together with Theorem 7 to find a1 and α1 such that a1 + s

(i)
α1 ∈ S? for all

i ∈ {1, . . . , p}.
Assume that after n steps we have found a1, . . . , an and α1, . . . , αn such

that all t which are of the form

t =
(
ak1 + s(i)αk1

)
+ . . .+

(
akl + s(i)αkl

)
for some k1 < . . . < kl ≤ n and i ∈ {1, . . . , p} lie in S?. Then all sets
S? − t are in q and hence so is the intersection B of S? with all the sets

5While stronger versions of the Central Sets Theorem hold true (see in particular
[DHS08]), we chose to go with this version to keep the formulation simple.



10 M. BEIGLBÖCK, V. BERGELSON, T. DOWNAROWICZ, A. FISH

S?− t. Thus we may use Theorem 7 to find an+1 and αn+1 > αn
6 such that

an+1 + s
(i)
αn+1 ∈ B for all i ∈ {1, . . . , p}. Then by the definition of B,(

an+1 + s(i)αn+1

)
, t+

(
an+1 + s(i)αn+1

)
∈ S?,

for all t as above and for all i ∈ {1, . . . , p}. Continuing in this fashion we
arrive at the desired statement. �

Finally Proposition 4 follows from Theorem 11 using the following purely
combinatorial fact.

Proposition 13. Let S ⊆ N. Assume that for every q ∈ N and IP -systems(
s
(1)
α

)
α∈F , . . . ,

(
s
(q)
α

)
α∈F there exist sequences a1, a2, . . . ∈ N and α1 < α2 <

. . . in F such that for all k1 < . . . < kl and i ∈ {1, . . . , q},

(3)
(
ak1 + s(i)αk1

)
+ . . .+

(
akl + s(i)αkl

)
∈ S.

(In short, let S be a set which satisfies the conclusion of the Central Sets
Theorem, i.e. the conclusion of Theorem 11 above.)

Then S contains an (m, p, c)-system for all positive integers m, p, c.

The proof of Proposition 13 is sketched in [Fur81, page 174] and fully
carried out in [HS98, Theorem 15.5]. Therefore we refrain from giving a full
proof, but try to explain the required ideas in the case c = 1.

Proof. To carry out an inductive argument one proves a stronger statement
already familiar from Lemma 10. Fix S ⊆ N and p ∈ N. We show that for
each m ≥ 0 there exists an IP -system

(
s
(0)
α , . . . , s

(m)
α

)
α∈F in Nm+1 such that

for all α ∈ F and all integers i0, . . . , im−1 ∈ [−p, p]m+1

(4) s(0)
α ∈ S, s(1)

α + i0s
(0)
α ∈ S, . . . , s(m)

α + im−1s
(m−1)
α + . . .+ i0s

(0)
α ∈ S.

The case m = 0 of our claim asserts precisely that S contains some IP -
system. This is quite obvious by the assumption on the set S. Applying it to
the trivial system consisting only of 0’s, we find that there exists a sequence
a1, a2, . . . ∈ N such that ak1 + . . .+akl ∈ S for all k1 < . . . < kl ∈ N. Setting
s
(0)
n = an for n ∈ N, this means that(

s(0)
α

)
∈ S(5)

for all α ∈ F .
In order to prove the first non-trivial instance m = 1, we apply our

assumption on S to the q = (2p+ 1) IP -systems(
i0s

(0)
α

)
α∈F , (|i0| ≤ p)

to find an, n ∈ N and α1 < α2 < . . . such that for all k1 < . . . < kl(
ak1 + i0s

(0)
αk1

)
+ . . .+

(
akl + i0s

(0)
αkl

)
∈ S.(6)

6To see that one can in fact require that αn+1 > αn, apply Theorem 7 to the IP -systems

generated by the numbers the sequences (s
(i)
k )k>maxαn .
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Set t(1)
n = an and t

(0)
n = s

(0)
αn for n ∈ N. Then it is special case of (5) that

t
(0)
α ∈ S for α ∈ F and it follows from (6) that t(1)

α + i0t
(0)
α ∈ S for α ∈ F

and all integers i0 ∈ [−p, p]. Hence the IP -system
(
t
(0)
α , t

(1)
α

)
witnesses that

the case m = 1 of (4) is valid.
To prove the case m = 2, apply the assumption on S to the q = (2p+ 1)2

IP -systems (
i1t

(1)
α + i0t

(0)
α

)
α∈F , (|i0|, |i1| ≤ p).

The induction continues in the natural way. �
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