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Abstract. Substitutions are combinatorial objects (one replaces a letter by a word) which
produce sequences by iteration. They occur in many mathematical fields, roughly as soon as a
repetitive process appears. In the present monograph we deal with topological and geometric
properties of substitutions, i.e., we study properties of the Rauzy fractals associated to
substitutions.

To be more precise, let σ be substitution over the alphabet A. We assume that the
linearized matrix of σ is primitive and its dominant eigenvalue is a unit Pisot number (i.e.,
an algebraic number whose norm is one and all of whose Galois conjugates are of modulus
strictly smaller than one). It is well-known that one can attach to σ a set T which is now
called central tile or Rauzy fractal of σ. Such a central tile is a compact set that is the closure
of its interior and decomposes in a natural way in n = #A subtiles T (1), . . . , T (n). The
central tile as well as its subtiles are graph directed self-affine sets that often have fractal
boundary.

Pisot substitutions and central tiles are naturally of high relevance in several branches of
mathematics like tiling theory, spectral theory, Diophantine approximation, the construction
of discrete planes and quasicrystals as well as in connection with numeration like generalized
continued fractions and radix representation. The questions coming up in all these domains
can often be reformulated in terms of questions related to the topology and geometry of the
underlying central tile.

After a thorough survey of important properties of unit Pisot substitutions and their
associated Rauzy fractals the present monograph is devoted to the investigation of a variety of
topological properties of T and its subtiles. Our approach is an algorithmic one. In particular,
we dwell upon the question whether T and its subtiles induce a tiling, calculate the Hausdorff
dimension of their boundary, give criteria for their connectivity and homeomorphy to a disk
and derive properties of their fundamental group.

The basic tools for our criteria are several classes of graphs built from the description of
the tiles T (i) (1 ≤ i ≤ n) as graph directed iterated function systems and from the structure
of the tilings induced by these tiles. These graphs are of interest in their own right. They
can be used to construct the boundaries ∂T as well as ∂T (i) (1 ≤ i ≤ n) and all points
where two, three or four different tiles of the mentioned tilings meet.

When working with central tiles in one of the above mentioned contexts it is often useful
to know such intersection properties of tiles. In this sense the present monograph also aims at
providing tools for “everyday’s life” when dealing with topological and geometric properties
of substitutions.

Many examples to illustrate our results are given. Moreover, we give perspectives for
further directions of research related to the topics discussed in this monograph.
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CHAPTER 1

Introduction

The present monograph deals with topological and geometric properties of substitutions.
In this introduction we first emphasize on the great importance of substitutions in many fields
of mathematics, theoretical physics and computer science. Already in this first part it becomes
evident on several places that geometrical objects like Rauzy fractals are intimately related
to substitutions and their topological as well as geometric properties deserve to be studied in
order to get informations about the underlying substitution. After this general part we give an
introductory overview over Rauzy fractals with special emphasis on their topology. We discuss
their history and give some details on different ways of their construction. The introduction
closes with an outline of the content of the present monograph.

1.1. The role of substitutions in several branches of mathematics

Substitutions are combinatorial objects which produce sequences by iteration. They are
given by a replacement rule of the letters of a finite alphabet by nonempty, finite words over
the same alphabet. They are also called iterated morphisms. Since they simply consist in an
iteration process on a finite set, they can be recovered in many fields of mathematics, theoretical
physics and computer science to describe repetitive processes or replacement rules.

1.1.1. Combinatorics. In combinatorics of words, since the beginnings of this domain,
substitutions have been used in order to exhibit examples of finite words or infinite sequences
with very specific or unusual combinatorial properties. The most famous example is the Thue-
Morse sequence defined over the two letter alphabet {1, 2} as σ(1) = 12, σ(2) = 21. This
substitution admits two infinite fixed points: the first one begins with all iterations σn(1)
(n ≥ 1), the second one begins with the words σn(2) (n ≥ 1). Thue and Morse proved for
instance that this infinite sequence is square-free, meaning that is contains no repetition with
the shape uu, where u is a finite word (see for instance [35, 66, 88] where many other properties
of this famous sequence are discussed).

Other well-known infinite sequences that can be defined in terms of substitutions are the so-
called sturmian sequences. They were introduced in the 1940s as sequences having the smallest
complexity among all nonperiodic infinite sequences over a two letter alphabet. In particular,
the number of their factors of size n is always equal to n+1. A famous characterization relates
these sequences with to geometry. Indeed, sturmian sequences are exactly cutting sequences
of lines in R2. In particular, first draw grid lines, which are the horizontal and vertical lines
through the lattice Z2 in the first quadrant of the plane. Then, travelling along the line
y = αx + β away from the origin, write down a 1 each time a vertical grid line is crossed, and
a 2 each time a horizontal grid line is crossed [66, Chapter 6]. When the slope α of the line
is a quadratic irrational with a Galois conjugate outside of (0, 1), we know that the associated
sturmian cutting sequence is the fixed point of a substitution. The most famous case is the
fixed point of the Fibonacci substitution σ(1) = 12, σ(2) = 1 [15, 55]. When the slope α is not
a quadratic number, then a recoding process is used to describe the factors of the sequence as
produced by the suitable compositions of two “basic” substitutions (see [66, Chapter 6]). Their
complexity properties are used in a large scale of applicative domains, such as compression to
recover repetitions in DNA sequences [57] or optimal allocation in networks [69].
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6 1. INTRODUCTION

1.1.2. Number theory. Since the time when they appeared, substitutions have been
deeply related to number theory: following Thue, the Thue-Morse sequence classifies integers
with respect to parity of the sum of their binary digits. The Baum-Sweet sequence describes
whether the binary expansion of an integer n contains at least one odd string of zeros. It is
obtained as the projection of a substitution on a 4 letter alphabet [16]. A bridge between sub-
stitutions and number theory is also given by the Cobham theorem, which states that an infinite
sequence is a letter-to-letter projection of the fixed point of a substitution of constant length k
if and only if each element un of the sequence is produced by feeding a finite automaton with
the expansion in base k of n [51]. This theorem allows to derive deep transcendence properties:
for instance, the real numbers with continued fraction expansions given by the Thue-Morse
sequence, the Baum-Sweet sequence or the Rudin-Shapiro sequence are all transcendental, the
proof being based on the “substitutive” structure of these sequences [2]. Additionally, irrational
numbers whose binary expansion is given by the fixed point of a substitution are all transcen-
dental [1]. In the field of diophantine approximation, substitutions produce transcendental
numbers which are very badly approximable by cubic algebraic integers [113]; the description
of greedy expansions of reals in noninteger basis [5, 123] by the means of substitutions also
results in best approximations characterizations (see [72] and [88, Chapter 10]).

1.1.3. Dynamical systems. Another independent reason of the introduction of substi-
tutions is related to dynamical systems. Indeed, ten years after Thue, Morse rediscovered the
Thue-Morse sequence in the field of dynamical systems. Following Poincaré at the beginning
of the 20th century, the study of dynamical systems shifted from the research of analytical so-
lutions of differential equations to the study of all possible trajectories and their relations. The
research then focused on exhibiting recurrence properties of orbits, that is, properties ensuring
that all points will return close to their initial positions. To perform this task in the context
of connected surfaces with constant negative curvature, Morse followed an idea proposed by
Hadamard: he studied the orbits qualitatively. Here, this means to code a curve by an infinite
sequence of 1 and 2’s according to which boundary of the surface it meets. With this approach
and by using the Thue-Morse substitution fixed point, Morse succeeded in proving that there
indeed exists uniformly non-closed recurrent geodesics [100]. This result initiated the field
of symbolic dynamics, that is, studying dynamical systems by coding their orbits as infinite
sequences; therefore, a complex dynamics over a quite simple space is replaced by a simple
dynamics (the shift map) over an intricate but combinatorial space made of infinite sequences.

For dynamical systems for which past and future are disjoint, the symbolic dynamical
systems are particularly simple and well understood: they are described by a finite number
of forbidden words, and they are called shifts of finite type [85]. A partition that induces a
coding from a dynamical system onto such a shift of finite type is called a Markov partition
[3]: such a partition gives rise to a semiconjugacy from a bi-infinite shift to the dynamical
system which is one-to-one almost everywhere. A first example has been implicitly given in the
invariant Cantor sets of the diffeomorphisms of the sphere studied by Smale [121]. After that
the existence of Markov partitions has been established for several classes of dynamical systems,
including hyperbolic automorphisms of n-dimensional tori and pseudo-Anosov diffeomorphisms
of surfaces [45]. The existence of Markov partitions and their associated semiconjugacies is
extremely useful in studying many dynamical properties (especially statistical ones); as an
example, they are used to prove that hyperbolic automorphisms of the two-dimensional torus
are measure-theoretically isomorphic if and only if they have the same entropy [4].

Explicit Markov partitions, however, are generally known only for hyperbolic automor-
phisms of the two-dimensional torus [3], and they have rectangular shapes. In higher di-
mensions, a sightly different behavior appears since several results attest that the contracting
boundary of a member of a Markov partition cannot be smooth [46, 50]. Markov partitions
have then been proposed by arithmetical means for irreducible hyperbolic toral automorphisms:
using homoclinic points of the dynamics [62, 81] allows to build constant-to-one factor maps
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for the dynamical system; however, switching to semiconjugacy maps is performed only in ex-
amples, and the topological properties of the pieces of the partition are not explicit. Another
approach was proposed, based on the representation of integers in non-integer basis [105] or
referring to two-dimensional iteration processes [24, 75]. These constructions are explicit and
geometrical, based on substitutions. The same problem as before occurs when switching from
a factor map to a semi-conjugacy, but this question is tackled in some cases by using symbolic
dynamics and the combinatorics of substitutions as we shall detail soon.

At the opposite to Markov shifts we mention highly ordered self-similar systems with zero
entropy, which can be loosely defined as systems where the large-scale recurrence structure is
similar to the small-scale recurrence structure, or more precisely as systems which are topo-
logically conjugate to their first return map on a particular subset. Naturally, their symbolic
dynamical systems are generated by substitutions [66, 108]. The codings of recurrent geodesics
studied by Morse in [100] belongs to this class, as well as the return map of the expanding
flow onto the contracting manifold for hyperbolic toral automorphisms with a unique expanding
direction [31]. For these systems, the natural question is to determine their ergodic properties,
among which we mention mixing properties or pure discrete spectrum. A very large literature
is dedicated to this task (see [66, Chapters 5 and 7]). It was shown that symbolic dynamical
systems generated by substitutions have a variety of interesting properties. A specific case is
of great interest: when the incidence matrix of the substitution has a unique expanding direc-
tion (its dominant eigenvalue is a Pisot number). In this case explicit combinatorial conditions
characterize systems with pure discrete spectrum [31, 78]. We will come back to this property
in Chapter 3. These conditions are used to prove that the factor map induced by the Markov
partitions proposed in [24, 75, 105] are indeed semiconjugacies.

1.1.4. Applications to tiling theory, theoretical physics and discrete geometry.
Substitutions also appeared in physics in connection with quasicrystals. In 1984, aluminium-
manganese crystals with icosahedral symmetry where synthesized. However, crystals were
proved to have rotational symmetries confined to orders 2, 3, 4 and 6. The term quasicrystal
was invented to describe new classes of crystals with forbidden symmetry. The definition of
quasicrystals and crystals in general has then evolved and it is not entirely fixed nowadays
[44, 89, 117]. Nevertheless, a solid is usually considered as a quasicrystal when is has an
essentially discrete diffraction diagram. The mathematical question here was to identify atomic
structures (or point sets) with a discrete diffraction diagram.

In this context, substitutions are ubiquitous. Indeed, starting from a substitution, one can
build a tiling space by considering tilings of the real line by intervals with specific length. The
order of intervals in the tilings that are considered in the space is governed by the factors of a
periodic point of the initial substitution. Such tiling spaces support a natural topology and a
minimal and uniquely ergodic R-translation flow.

However, a natural relation exists between tilings and models atoms in crystals: a one-
dimensional tiling can be mapped to a one-dimensional discrete set of points by placing an
atom at the end of each tile. The question whether such a material is a quasi-crystal has been
studied in the 1990s: Lee, Moody and Solomyak proved that if the substitution is Pisot (its
abelianized matrix has a unique expanding direction), then its diffraction spectrum is purely
discrete if and only if the dynamical spectrum of the translation flow on the substitution tiling
space is purely discrete from a topological point of view [84]. Recalling that the translation flow
on a tiling space is related (even if not exactly equal) to the spectrum of substitutive dynamical
systems as mentionned in the previous subsection [31], we realize that a strong bridge exists
between theoretical physics and spectral theory of substitutive systems. Criterions for pure
discrete spectrum provided in [31, 78] and already used for Markov partitions can be directly
applied in the context of quasicrystals.

One-dimensional tiling flows also appeared in classification of dynamical systems since
every orientable hyperbolic one-dimensional attractor is proved to be either a one-dimensional
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substitution tiling space or a classical solenoid [17, 31, 127]. The consequences of this result
will be discussed in Chapter 7.

From a more combinatorial point of view, a quasicrystal is given by an aperiodic but
repetitive structure that plays the role of the lattice in the theory of crystalline structures.
Mathematically, we then speak of Meyer sets and such Meyer sets are obtained by exhibiting
the cut-and-project scheme [99]. In the one-dimensional case, a well-studied family of Meyer
sets is given by integers in non-integral basis, in relation with sturmian sequences [70]. In
higher-dimensional cases, however, all these questions are quite open. The well-known Penrose
tiling is a quasicrystal since it has essentially discrete diffraction diagram, but defining a wide
class of examples of quasicrystals is an open question [17, 80, 81, 112]. By analogy with the
one-dimensional case, good candidates for cut-and-project schemes (hence quasicrystals) are
given by discrete approximations of planes that are orthogonal to Pisot directions [20, 32].
Still by analogy with sturmian sequences, such approximations of planes can be generated from
one-dimensional substitutions by applying suitable continued fractions algorithms [20, 76].
However, the large literature dedicated to ergodic properties of multi-dimensional substitutive
tiling flows [122] applies with difficulty since the definition of substitutive planar tilings is not
stable yet [106] and much work remains to be done in this direction.

As a final direction, let us mention that the use of substitutions to describe discrete planes
in R3 have recently proved to be very useful in discrete geometry to algorithmically decide
whether a discrete patch is the part of a discrete plane [21, 37, 65]. We will discuss this
question in Chapter 7.

1.2. The geometry of substitutions: Rauzy fractals

In the world of substitutions, geometrical objects appeared in 1980 in the work of Rauzy
[110]. The motivation of Rauzy was to build a domain exchange in R2 that generalized the
theory on interval exchange transformations [79, 126]. Thurston introduced this object in the
context of numeration systems in non-integer basis in [123]. As we shall see, this object was
finally used in many other context.

1.2.1. The Rauzy fractal for the Tribonacci substitution. To build a Rauzy fractal
(also called central tile) we restrict to the case of a unit Pisot substitution, i.e., a substitution
such that its abelianization matrix is primitive and its dominant eigenvalue is a Pisot unit (its
Galois conjugates all have a modulus strictly less than 1). There are mainly two methods of
construction for Rauzy fractals. The first approach is based on formal power series and projec-
tions of broken lines to hyperplanes and is inspired by the seminal paper [110]. The principle
is to consider a periodic point for the substitution, then to represent this sequence as a stair in
Rn, where n denotes the size of the alphabet on which the substitution applies. The next step
is to project the vertices of the stair onto a contracting subspace of the abelianization matrix,
spanned by the eigenvectors corresponding to Galois conjugates of the dominant eigenvalue of
the matrix. Since the projection is performed on a contracting stable space of the matrix, and
the object that was projected is a periodic point for the substitution (hence somewhat “con-
tracted” by the abelianization matrix) the closure of the projection is a compact set. A final
step consists in drawing several colors with respect to the direction used in the stair to arrive
on each vertex before the projection, and we get the Rauzy fractal.

The standard example is given by the so-called Tribonacci substitution defined as σ(1) = 12,
σ(2) = 13, σ(3) = 1 which was first studied by Rauzy [110]. The abelianization matrix counts
the number of occurrences of letters in the images of the letters of the substitution; here it is2
4

1 1 1
1 0 0
0 1 0

3
5. The dominant eigenvalue satisfies the relation X3−X2−X−1 = 0, justifying the

name Tribonacci for the substitution. The contracting space is two-dimensional. Projecting the
“broken line” related to the unique fixed point of the Tribonacci substitution to the contracting
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plane yields a nice fractal picture, the so-called Rauzy fractal T which is depicted here with its
basic subtiles T (1) (larger subtile), T (2) (middle size subtile), T (3) (smallest subtile).

Since this compact set is obtained from the fixed point of the substitution, the self-induced
properties of the fixed point have geometrical consequences: we represent the contracting space
as the complex plane C. We denote by α one of the two complex conjugate roots of the
polynomial; one has |α| < 1. With help of α, the Rauzy fractal can be written as graph
directed iterated function system in the flavor of [95] as

T (1) = α(T (1) ∪ T (2) ∪ T (3)), T (2) = α(T (1)) + 1 T (3) = α(T (2)) + 1.

Hence, each basic tile can be mapped onto a finite union of translates of basic tiles, when
multiplied by the parameter α−1. The maps in the GIFS are contractive, thus the nonempty
compact sets T (1), T (2) and T (3) satisfying this equation are uniquely determined [95]; they
have nonzero measure and are the closure of their interior [120]. Let us note that the subdivision
matrix in the graph directed iterated function system is closely connected to the substitution
σ, since it is the transpose of the abelianization matrix.

The unicity of the solution of such a graph directed iterated function system equation
allows to build the Rauzy fractal in a second way, actually used by Rauzy during its attempts
to perform the construction of the fractal (but not published in this way). The principle is
to start from a decomposition of an hexagon splitted into three rhombi. There are actually
two ways for cutting an hexagon into three rhombi: this defines a domain exchange dynamical
system on the hexagon. Then, we add pieces to the hexagon and define a new domain exchange
so that the first return map from the new shape to the hexagon is described by the substitution;
then the process is iterated infinitely often. This idea is formalized by homology-like objects in
[25, 114], and produces Rauzy fractals.

From Rauzy’s seminal paper [110], generalizations of the construction have been proposed
in different contexts: starting from the investigation of irreducible Pisot units [25, 49, 96, 97],
reducible Pisot units and beta-numeration [5, 7, 123], the case of non-unit Pisot numbers
[39, 118] and the hyperbolic case with two expanding directions [24] have been explored so
far.

1.2.2. Using a Rauzy fractal and its topological properties. The large literature
dedicated to the Rauzy fractal and its extensions is motivated by the fact that it is useful
in many of the domains mentioned in the first section. The main reason for this intensive
use is that in each case, the iterative procedure to generate infinite words with the help of a
substitution is geometrically shifted into self-similarity properties that can be studied. Then,
the main questions to be investigated in each domain can be interpreted as a question related
to the topology of the central tile and its tiling properties.

• In number theory, diophantine properties are induced by properties of a distance
function to a specific broken line [72] related to the Rauzy fractal and the size of
the largest ball contained in it. Properties of digits in numeration systems with non-
integer basis are related to the fact that 0 is an inner point of the Rauzy fractal or
not [14]. Rauzy fractals also characterize purely periodic orbits in non-integer basis,
as a generalization of Galois theorem [77].



10 1. INTRODUCTION

• The Rauzy fractal allows to explicitly build the largest spectral factor induced by a
substitutive dynamical system. Explicit Markov partitions for hyperbolic automor-
phisms of tori are constructed for instance in [75, 105], actually using this piece.
Connectivity properties of Rauzy fractals are linked to the generator properties of the
Markov partition [3].

• In tiling theory, the Rauzy fractal is used to represent the tiling flow; then substitutive
systems are proved to be expanding foliations of the space tiling [26].

• In theoretical physics, the Rauzy fractal appears as an explicit model set [38].
• In discrete geometry, there are numerous relations between generalized Rauzy fractals

and discrete planes as studied for instance in [23]. The shape of pieces generating a
discrete plane is widely related to the shape of the Rauzy fractal.

For all these reasons, a thorough study of the topological properties of Rauzy fractals is of
great importance. There are several results scattered in literature. For instance, it is known
that the Tribonacci Rauzy fractal has a nice topological behavior (0 is an inner point of T and
T is homeomorphic to a closed disk [97]) but totally different things can appear for other Rauzy
fractals: they might be not connected or not simply connected, and 0 is not always an inner
point of the central tile; see for instance the examples given in [7]. Some Rauzy fractals seem
not to be homeomorphic to a disk. We will review the different contributions to the topological
properties of Rauzy fractal that appear in the literature in the next section and in Chapter 4.
However, we have to notice that they are incomplete and often based on examples. Therefore,
the main aim of the present paper is to investigate a variety topological properties of Rauzy
fractals associated to unit Pisot substitutions in a thorough and systematic way.

1.3. Topological properties of central tiles

We intend to give a thorough systematic study of the topology of central tiles associated
to unit Pisot substitutions. In particular, we emphasize on algorithmic criteria for various
topological properties.

The monograph starts with two chapters containing a detailed explanation of substitutions,
central tiles and the tilings induced by these tiles. These sections are also intended as a survey
of basic results related to the geometry of unit Pisot substitutions.

After that, in Chapter 4 we give the statements of the main theorems of the present paper.
Among other things we deal with the following properties:

• We give a criterion that decides whether a given tile induces a tiling. A criterion
already exists in terms of super-coincidences [26, 61, 78]. Our criterion has two
advantages compared to the previously known ones: firstly, it can be applied to lattice
tilings in the reducible case, which was not the case for the other criterions. Secondly,
our criterion is an algorithmic necessary and sufficient condition, while the procedure
for checking super-coincidences does not terminate when the condition is not satisfied.

• We calculate the box counting dimension of the fractal boundary of the central tile
and its subtiles. (Examples of such calculations appeared in [64, 74, 97, 124].) In
some cases we are even able to give a formula for the Hausdorff dimension.

• We show that the fact that the origin is an inner point of the central tile is equiva-
lent to a finiteness property of the underlying numeration system (Dumont-Thomas
numeration [58]). This was already known in the beta-numeration context [7]. We
give a general geometrical proof for this result.

• We give a simple criterion to decide whether the central tile and its subtiles are
connected, pursuing the work initiated in [48, 110].

• We give criteria for the central tile and its subtiles to be homeomorphic to a closed
disk. (Examples for disklikeness previously appeared in [90, 97, 98]; in our general
approach we use different methods to derive our results.) To this matter we establish
a general criterion for a solution of a graph directed iterated function system to be a
simple closed curve. This can be applied to the boundary of the subtiles of a central



1.3. TOPOLOGICAL PROPERTIES OF CENTRAL TILES 11

tile. A similar approach as the one we are going to employ has been used in order to
prove the homeomorphy to a disk of a class of solutions of iterated function systems
associated to number systems in the ring of Gaussian integers (see [94]). However, in
our situation there is no possibility to conclude from the connectivity of the interior of
a tile to its homeomorphy to a disk like it can be done in the case of iterated function
systems (see [92]). We have to use several theorems from plane topology to gain our
results.

• We give algorithms that can be used to show that the fundamental group of the
subtiles of the central tile has certain properties. By doing so, we exhibit examples
of fundamental groups that are not free and non-numerable, as the Sierpiński gasket
can be.

The underlying idea in all criterions is to match the structure of the graph directed iterated
function system that defines the central tile with its tiling properties. All criterions make use
and are expressed in terms of graphs.

These graphs are introduced in Chapter 5. Some of them contain the structure of intersec-
tions of two or more tiles in the tilings induced by the central tile and its subtiles. Among other
informations, they give a description of ∂T and ∂T (i) (1 ≤ i ≤ n) and even permit to draw
these boundaries in an easy way. Other graphs defined in this chapter encode the connectivity
of the central tile, its subtiles as well as of certain pieces of their boundary. Summing up, apart
from checking the topological properties listed above these graphs are very useful in order to
study several properties of T , its subtiles and of the tilings induced by them. This is illustrated
by many examples scattered throughout this chapter. In particular, the last section contains a
detailed example for the use of the criterion for the homeomorphy of T (i) to a closed disk.

Chapter 6 contains the proofs of our results. Especially Section 6.5 of this chapter deserves
special attention. It contains the proof of the criteria for checking whether T as well as T (i)
is homeomorphic to a closed disk. In proving these criteria we set up a general theory that
admits to decide the disklikeness question for arbitrary graph directed self-affine sets. The
proofs contained in this chapter make use of general properties of substitutions and central tiles
which are reviewed in Chapters 2 and 3, of the graphs defined in Chapter 5 as well as of several
results from plane topology. The last section contains the exact statement of our results on the
fundamental group of T and T (i) as well as detailed examples illustrating their application to
concrete substitutions.

Chapter 7 contains perspectives for further research. We are confident that the methods
contained in this monograph have high potential to be of use in several branches of mathematics.
In this chapter we discuss this in more detail and mention the influence of our results to the
topology of fractal sets, to number theory (generalized radix representations and continued
fractions), as well as to dynamical systems induced by substitutions.

The Appendix contains all the technical proofs we require and gives the details on those
graphs which recognize the points in the tilings in which four different tiles meet.

Acknowledgements: The authors wish to thank P. Arnoux, V. Berthé, A. Hilion, B. Lori-
dant and M. Lustig, for many fruitful discussions, especially to exhibit the applications provided
in Chapter 7 which contains further perspectives of research on the topic of the present mono-
graph.





CHAPTER 2

Substitutions, central tiles and beta-numeration

In the present chapter we want to recall the definition and basic properties of the main
objects of our study. In the first section we will dwell upon substitutions. Then we will survey
basic facts of the tiles associated to substitutions. Moreover, we shall discuss how these tiles
can be represented by a so-called graph directed iterated function system. The chapter closes
with a description of the relations between substitutions and beta-numeration.

2.1. Substitutions

2.1.1. General setting. Let A := {1, . . . , n} be a finite set called alphabet whose elements
are called letters. The free monoid A∗ on the alphabet A with empty word ε is defined as the set
of finite words on the alphabet A, that is, A∗ := {ε}∪⋃

k∈NAk, endowed with the concatenation
map. We denote by AN and AZ the set of one- and two-sided sequences on A, respectively.
The topology of AN and AZ is the product topology of the discrete topology on each copy of
A. Both of these spaces are metrizable.

The length |w| of a word w ∈ A∗ is defined as the number of letters it contains. For any
letter a ∈ A, we denote by |w|a the number of occurrences of a in w. Let l : w ∈ A∗ 7→
(|w|a)a∈A ∈ Nn be the natural homomorphism obtained by abelianization of the free monoid,
called the abelianization map.

A substitution over the alphabet A is an endomorphism of the free monoid A∗ such that
the image of each letter of A is nonempty; to avoid trivial cases (projection or permutations of
letters), we will always suppose that for at least one letter, say a, the length of the successive
iterations σk(a) tends to infinity. A substitution naturally extends to the set of two-sided
sequences AZ. We associate to every substitution σ its incidence matrix M which is the n× n
matrix obtained by abelianization, that is, l(σ(w)) = Ml(w) for all w ∈ A∗.

A two-sided periodic point of the substitution σ is an infinite word u = (uk)k∈Z ∈ AZ that
satisfies σν(u) = u for some ν > 0, and furthermore its central pair of letters u−1u0 belongs
to the image of some letter by σ` for some ` ∈ N. All substitutions admit periodic points (see
[108, Proposition V.1]).

2.1.2. Pisot substitutions. An important property of a substitution is that of primitiv-
ity : a substitution σ is primitive if there exists an integer k (independent of the letters) such
that, for each pair (a, b) ∈ A2, the word σk(a) contains at least one occurrence of the letter b.

By the definition of primitivity, the incidence matrix of a primitive substitution is a prim-
itive matrix, so that it has a simple real positive dominant eigenvalue β (Perron-Frobenius
Theorem).

• A substitution σ is said to be Pisot if the dominant eigenvalue is a Pisot number2.1.
• A substitution σ is said to be unit if its dominant eigenvalue is a unit.
• A substitution σ is said to be irreducible if the algebraic degree of the dominant

eigenvalue is equal to the size of the alphabet.
Note that there exist substitutions whose largest eigenvalue is Pisot but whose incidence

matrix has eigenvalues that are not conjugate to the dominant eigenvalue. Examples are 1 → 12,

2.1Recall that a Pisot number is an algebraic integer β > 1 such that each Galois conjugate β(i) of β
satisfies |β(i)| < 1.

13
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2 → 3, 3 → 4, 4 → 5, 5 → 1 and the Morse substitution 1 → 12, 2 → 21 (the characteris-
tic polynomial is not irreducible). Such substitutions are not irreducible and they are called
reducible.

2.2. The central tile associated to a unit Pisot substitution

We now want to give a geometric interpretation of a periodic point u of a unit Pisot
substitution. We first need to introduce some algebraic formalism in order to embed u in a
hyperplane spanned by the algebraic conjugates of the dominant eigenvalue of the incidence
matrix; the closure of the “projections” of the prefixes of u will comprise the so-called central
tile or Rauzy fractal.

In all that follows, we suppose that σ is a primitive unit Pisot substitution.

2.2.1. A broken line associated to a Pisot substitution. Let u be a two-sided peri-
odic point of σ. The bi-infinite word u is embedded as a discrete line in Rn by replacing each
letter of u by the corresponding vector in the canonical basis (e1, . . . , en) in Rn. More precisely,
the discrete line has vertices {l(u0 . . . uN−1); N ∈ N}.

2.2.2. A suitable decomposition of the space. We now need to introduce a suitable
decomposition of Rn with respect to eigenspaces of the incidence matrix M associated to the
dominant eigenvalue β. We denote by d the algebraic degree of β; one has d ≤ n, since the
characteristic polynomial of M may be reducible.

Let r − 1 denote the number of real conjugates of β; they are denoted by β(2), . . . , β(r).
Each corresponding eigenspace has dimension one according to the assumption of primitivity.
Let 2s denote the number of complex conjugates of β. They are denoted by β(r+1), β(r+1),
. . . , β(r+s), β(r+s). Each pair of an eigenvector together with its complex conjugate generates
a 2-dimensional plane.

Let vβ be the dominant eigenvector of tM such that 〈vβ , e1〉 = 1 and uβ be the unique
dominant eigenvector of M such that 〈vβ ,uβ〉 = 1 (this normalization is needed to recover
beta-numeration in specific examples; see Section 2.5). Both vectors have coordinates in Q[β].
Moreover, since uβ is the dominant eigenvector of a primitive matrix, each of the entries of
uβ has the same sign. The same is true for vβ . We obtain eigenvectors uβ(i) and vβ(i) for
the algebraic conjugates β(i) of β by replacing β by β(i) in the coordinates of the vectors. By
construction, these vectors satisfy 〈vβ(i) ,uβ(k)〉 = 0 if i 6= k and 〈vβ(i) ,uβ(k)〉 = 1 if i = k (cf.
[49, Section 2] for details and note that we identify R2 with C).

From these vectors we introduce a decomposition of Rn as follows.
• The beta-contracting space of the matrix M is the subspace Hc generated by the

eigenspaces associated to the beta-conjugates, that is uβ(2) , . . . , uβ(r) , <(uβ(r+1)),
=(uβ(r+1)), . . . , <(uβ(r+s)), =(uβ(r+s)). It has dimension r + 2s− 1 = d− 1.
We denote by h : Hc → Hc the restriction of M to Hc; it is a contraction whose
eigenvalues are the conjugates of β. We define a suitable norm on Hc by

(2.1) ∀x ∈ Hc, ||x|| = max{|〈x,vβ(i)〉|; i = 2, . . . , r + s}.
This implies that

(2.2) ∀x ∈ Hc, ||Mx|| = ||hx|| ≤ max{|β(i)|; i = 2, . . . , r + s}||x||.
• We denote by He the beta-expanding line of M, i.e., the real line generated by the

beta-eigenvector uβ .
• Let Minβ be the minimal polynomial of β. The beta-supplementary space is defined to

be Hs = Minβ(M(Rn)). One checks that it is an invariant space of M that satisfies
Rn = Hc ⊕ He ⊕ Hs. The space Hs is generated by the eigenspaces corresponding
to the eigenvalues of M that are not conjugate to β. It is trivial if and only if the
substitution is irreducible.
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From the definition of Hs and the fact that vβ belongs to the kernel of Minβ(tM), we
deduce that the space Hs is orthogonal to vβ (see [61, Lemma 2.5] and [26]), indeed

〈vβ ,Hs〉 = 〈vβ ,Minβ(M(Rn))〉 = 〈Minβ(tM)vβ ,Rn〉 = 0.

Let π : Rn → Hc be the projection onto Hc along He ⊕ Hs, according to the natural
decomposition Rn = Hc⊕He⊕Hs. Then, the relation l(σ(w)) = Ml(w), for all w ∈ A∗ implies
the commutation relation

(2.3) ∀w ∈ A∗, π(l(σ(w))) = hπ(l(w)).

By considering the orthogonality between the vectors vβ(i) and the vectors uβ(j) , we obtain
the following representation of π in the eigenvectors basis

(2.4) ∀x ∈ Rn, π(x) =
∑

2≤i≤r+2s

〈x,vβ(i)〉uβ(i) .

(Again we identified R2 with C.)
For vectors with rational coordinates, the following relation follows by considering Galois

conjugates of (2.4).

(2.5) ∀x,y ∈ Qn, π(x) = π(y) ⇐⇒ 〈x,vβ〉 = 〈y,vβ〉.
Concretely, this equation means that as soon as two points with rational coordinates coin-

cide in the beta-contracting space, they also coincide along the beta-expanding line. We will
often use this property in the following.

2.2.3. Definition of the central tile. In the irreducible case it is well known that the
Pisot assumption implies that the discrete line of σ remains at a bounded distance of the
expanding direction of the incidence matrix (see [25]). In the reducible case, the discrete line
may have other expanding directions, but (2.4) implies that the projection of the discrete line
by π still provides a bounded set in Hc ' Rd−1 (see details in [61, Section 3.2]).

Definition 2.1 (Central tile / Rauzy fractal). Let σ be a primitive unit Pisot substitution
with dominant eigenvalue β. The central tile (or Rauzy fractal) of σ is the projection on the
beta-contracting plane of the discrete line associated to any periodic point u = (uk)k∈Z of σ,
i.e.,

T := {π(l(u0 . . . uk−1)); k ∈ N}.
Subtiles of the central tile T are naturally defined, depending on the letter associated to the
vertex of the discrete line that is projected. One thus sets for i ∈ A

T (i) := {π (l(u0 . . . uk−1)) ; k ∈ N, uk = i}.
Remark 2.2. It follows from the primitivity of the substitution σ that the definition of T

and T (i) (i ∈ A) does not depend on the choice of the periodic point u (see e.g. [25, 49, 108]).

By definition, the central tile T consists of the finite union of its subtiles, i.e.,

T =
⋃

i∈A
T (i).

Examples of central tiles and their subtiles are discussed in Section 2.4.

2.3. Central tiles viewed as graph directed iterated function systems

The tiles T (i) (i ∈ A) can be written as a so-called graph directed iterated function system,
GIFS for short. For the convenience of the reader we recall the definition of GIFS (cf. [95] for
a variant of our definition).

Definition 2.3 (GIFS). Let G be a finite directed graph with set of vertices {1, . . . , q} and
set of edges E. Denote the set of edges leading from i to j by Eij . To each e ∈ E associate a
contractive mapping τe : Rn → Rn. If for each i there is some outgoing edge we call (G, {τe}e∈E)
a GIFS.
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Definition 2.4 (Open set condition). If there exist nonempty open sets J1, . . . , Jq such
that {τe(Jj) ; e ∈ Eij} is a disjoint family for each fixed i and

Ji ⊇
⋃

e∈Eij

τe(Jj) (i ∈ {1, . . . , q})

we say that the GIFS satisfies the generalized open set condition.

It can be shown by a fixed point argument that to a GIFS (G, {τe}e∈E) there corresponds
a unique collection of nonempty compact sets K1, . . . , Kq ⊂ Rn having the property that

Ki =
⋃

e∈Eij

τe(Kj).

The sets Ki are called GIFS attractors or solutions of the GIFS.
The graph we are going to define now will permit us to view the subtiles T (i) (i ∈ A) as

solution of a GIFS. The corresponding result is stated immediately after the definition.

Definition 2.5 (Prefix-suffix graph). Let σ be a substitution over the alphabet A and let
P be the finite set

P := {(p, a, s) ∈ A∗ ×A×A∗; ∃ b ∈ A, σ(b) = pas}.
We call prefix-suffix graph of σ the graph Γσ with nodes in A and such that there is an edge
labelled by (p, a, s) ∈ P from a towards b if pas = σ(b).

Theorem 2.6. Let σ be a primitive unit Pisot substitution over the alphabet A. Let d be
the degree of its dominant eigenvalue. The central tile T is a compact subset of Rd−1 with
nonempty interior. Each subtile is the closure of its interior. The subtiles of T are solutions
of the GIFS

(2.6) ∀i ∈ A, T (i) =
⋃

j∈A,

i
(p,i,s)−−−−→j

hT (j) + πl(p).

Here the union is extended over all edges in the prefix-suffix graph of σ leading away from the
vertex i.

Proof. In the irreducible case, the fact that T is compact with nonempty interior is
proved in [120] and the GIFS equation is contained in [38, Theorem 2]. The generalization
to the reducible case is given in [26, 61]. Let S be the shift operator on AZ and let u be a
periodic point of the substitution σ. Denote by O the closure of the orbit of u under S. The
GIFS structure (2.6) comes from the decomposition of every two-sided sequence w ∈ O. In
particular, w = Sν(σ(v)), with v ∈ O and 0 ≤ ν < |σ(v0)|, where v0 is the 0th coordinate of v.
For more details see the survey [38]. ¤

We use the GIFS equation to expand every point of the central tile.

Corollary 2.7. Let σ be a primitive unit Pisot substitution over the alphabet A. A point
γ ∈ Hc belongs to the subtile T (i) (i ∈ A) if and only if there exists a walk (pk, ik, sk)k≥0

starting at i = i0 in the prefix-suffix graph such that

(2.7) γ =
∑

k≥0

hkπl(pk).

The sequence (pk, ik, sk)k≥0 is called a h-ary representation of γ.

In what follows the letter γ will always be used to refer to points on the contractive space
Hc.
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Figure 2.1. The central tile T of σ0. On the left hand side the decomposition
T = T (1) ∪ T (2) ∪ T (3) ∪ T (4) is shown. On the right hand side the GIFS
decomposition of each subtile is illustrated. The white cross “X” indicates the
position of the origin 0.

Proof. Suppose that γ ∈ T (i). Then the GIFS equation allows to express γ as γ =
hγ1 + πl(p0) where γ1 ∈ T (i1) and σ(i1) = p0is0. By iterating this we get γ = πl(p0) + · · · +
hkπl(pk) + hkγk. Since γk is bounded and h is contracting, the power series is convergent and
γ =

∑
k≥0 hkπl(pk). ¤

2.3.1. Disjointness of the subtiles of the central tile. To ensure that the subtiles are
disjoint, we introduce the following combinatorial condition on substitutions.

Definition 2.8 (Strong coincidence condition). A substitution σ over the alphabet A
satisfies the strong coincidence condition if for every pair (b1, b2) ∈ A2, there exists k ∈ N and
a ∈ A such that σk(b1) = p1as1 and σk(b2) = p2as2 with l(p1) = l(p2) or l(s1) = l(s2), where l
denotes the abelianization map.

The strong coincidence condition is satisfied by every unit Pisot substitution over a two-
letter alphabet [29]. It is conjectured that every substitution of Pisot type satisfies the strong
coincidence condition.

Theorem 2.9. Let σ be a primitive unit Pisot substitution. If σ satisfies the strong coinci-
dence condition, then the subtiles of the central tile have disjoint interiors and the GIFS (2.6)
satisfies the generalized open set condition.

Proof. The proof for the disjointness is given in [25] for the irreducible case and gener-
alized to the reducible case in [38, 61]. The generalized open set condition is easily seen to be
satisfied by the interiors of the sets T (i) (i ∈ A). ¤

2.4. Examples of central tiles and their subtiles

We now want to give some examples of unit Pisot substitutions and their associated central
tiles. Moreover, we will state the topological properties of their central tiles here. All these
properties will be proved in the present monograph. Indeed, the examples given here will be
used frequently throughout the monograph in order to illustrate our results.

σ0: This substitution is our main example. It is defined by

σ0(1) = 112, σ0(2) = 113, σ0(3) = 4, σ0(4) = 1.

σ0 is a reducible primitive unit Pisot substitution whose dominant eigenvalue β has
degree 3 and satisfies β3 − 3β2 + β − 1 = 0. Its subtiles T (1), T (2), T (3), T (4) are
shown on the left hand side of Figure 2.1. The GIFS decomposition of these subtiles is
given on the right hand side of Figure 2.1. According to (2.6) the largest subtile T (1)
can be decomposed into five pieces, namely two copies hT (1) of the largest tile, two
copies hT (2) of the second largest tile, and a copy hT (4) of the smallest tile. This
corresponds to the equation T (1) = hT (1)∪(hT (1)+π(e1))∪hT (2)∪(hT (2)+π(e1))∪
hT (4). Similar decompositions are obtained for the other subtiles: the second largest
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Figure 2.2. In the first line (from left to right) the central tiles of the sub-
stitutions σ1, σ2 and σ3 can be seen. The second line (also from left to right)
contains the central tiles of σ4, σ5 and σ6. In all these central tiles the de-
composition in subtiles is indicated by different colors. The white cross “X”
indicates the position of the origin 0.

tile T (2) actually is a copy of the largest tile: T (2) = h(T (1) + 2π(e1)). The third
largest tile T (3) can be seen as a copy of the second one: T (3) = h(T (2) + 2π(e1)).
Finally, the smallest tile T (4) is a copy of the third subtile with the same ratio:
T (4) = h(T (3)).
Notice that h includes a rotation of about (but not exactly) π

2 , hence, each subtile
hT (i) appears with a rotation in the decomposition of T (i). We will prove that this
central tile as well as each of its subtiles is homeomorphic to a closed disk. Moreover,
0 is an inner point of T (1).

σ1: This substitution is defined by σ1(1) = 12, σ1(2) = 3, σ1(3) = 4, σ1(4) = 5, σ1(5) =
1. It is reducible and its dominant eigenvalue β satisfies β3 = β − 1. The central tile
as well as each of its subtiles T (1), . . . , T (5) is homeomorphic to a closed disk which
has also been proved in Luo [90] (see Figure 2.2 for a picture of T and its subtiles).
Moreover, 0 is an inner point of T .

σ2: This substitution is defined by σ2(1) = 2, σ2(2) = 3, σ2(3) = 12. It is irreducible
and its dominant eigenvalue satisfies the same equation as the one for σ1. T as well
as T (i) (i = 1, 2, 3) are connected and have uncountable fundamental group. 0 lies on
the boundary of T (see Figure 2.2).

σ3: This substitution is defined by σ3(1) = 3, σ3(2) = 23, σ3(3) = 31223. It is discon-
nected and 0 does not lie in the interior of T (see Figure 2.2).

σ4: This substitution is defined by σ4(1) = 11112, σ4(2) = 11113, σ4(3) = 1. It is
irreducible and its central tile T has uncountable fundamental group. 0 is contained
in its interior (see Figure 2.2).

σ5: This substitution is defined by σ5(1) = 123, σ5(2) = 1, σ5(3) = 31. It is irreducible
and its central tile has uncountable fundamental group (see Figure 2.2). Moreover, 0
is not an inner point of the central tile.

σ6: This substitution is defined by σ6(1) = 12, σ6(2) = 31, σ6(3) = 1. It is irreducible
and its central tile has uncountable fundamental group (see Figure 2.2).
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2.5. Recovering beta-numeration from unit Pisot substitutions

Let β > 1 be a real number. The (Renyi) beta-expansion of a real number x ∈ [0, 1]
is defined as the sequence (ai)i≥1 over the alphabet Aβ := {0, 1, . . . , dβe − 1} produced by
the beta-transformation Tβ : x 7→ βx (mod 1) with a greedy procedure, i.e., such that
∀i ≥ 1, ai = bβT i−1

β (x)c, and x =
∑

i≥1 aiβ
−i (see [104]).

We denote the beta-expansion of 1 by dβ(1) = (ti)i≥1. When dβ(1) is finite with length m,
an infinite expansion of 1 is given by d∗β(1) = (t1 . . . tm−1(tm − 1))∞; let us stress the fact that
this infinite expansion cannot be obtained by a greedy algorithm. If dβ(1) is infinite we define
d∗β(1) = dβ(1). In the Pisot case, d∗β(1) is ultimately periodic and every element in Q(β)∩ [0, 1]
has eventually periodic beta-expansion according to [40, 116]. Then, beta-expansions of real
numbers in [0, 1) are completely characterized by d∗β(1): a sequence w1 . . . wk . . . ∈ ANβ is the
beta-expansion of a real number if and only if all truncations wk0 . . . wk . . . are strictly smaller
than d∗β(1) in the lexicographical order [43, 104].

We define the set of integers in base β as the set of positive real numbers with no fractional
part in their beta-expansion:

Int(β) =



z =

∑

0≤i≤K

aiβ
i ∈ Z[β]; aK . . . a0

are produced by the
beta-transformation applied on β−K−1z



 .

The set Int(β) is a discrete subset of R+. It has some regularity: two consecutive points in
Int(β) can differ only by a finite number of values, namely, the positive numbers T a−1

β (1),
a ∈ {1, . . . , n} (see [8, 123]).

To understand the structure of Int(β), Thurston [123] defined a compact representation ϕ
of Int(β) by

ϕ : Int → Rr−1 × Cs

x 7→ (x(2), . . . , x(r+s)).

Here x(i) (i = 2, . . . , r + s) are the Galois conjugates of x.
The closure of Im ϕ is denoted by T̃ := ϕ(Int(β)). In this paragraph, this tile will be called

the beta-numeration tile.
A natural partition of Int(β) is given by the distance between a point and its successor in

Int(β). Concretely, this can be done as follows:

• for i ∈ {2, . . . , n}, we define T̃ (i) as the closure of the representation of points z =∑
0≤k≤K wkβk ∈ Int(β) such that wK . . . w0 ends with t1 . . . ti−1, that is: wi−2 . . . w0 =

t1 . . . tn−1.
• For i = 1, the set T̃ (1) is defined as the closure of the representation of points z =∑

0≤k≤K wkβk ∈ Int(β) such that wK . . . w0 does not end with any t1 . . . tj−1 for
1 ≤ j ≤ n.

We thus obtain a decomposition of the beta-numeration tile T̃ into subtiles T̃ (i). A
precise study of the language generated by the beta-transformation shows that the numera-
tion subtiles satisfy a GIFS equation deduced from the expansion of 1. Indeed, if d∗β(1) =
t1 . . . tm(tm+1 . . . tn)∞ (cf. [88, 123])

(2.8)





T̃ (1) =
⋃

a∈{1,...,n}
⋃

p<ta

(
ϕ(β)T̃ (a) + ϕ(p)

)

T̃ (m+1) =
(
ϕ(β)T̃ (m) + ϕ(tm)

)
∪

(
ϕ(β)T̃ (n) + ϕ(tn)

)

T̃ (k+1) = ϕ(β)T̃ (k) + ϕ(tk), k ∈ {1, . . . , n− 1} \ {m}
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(if m = 0, i.e., if there is no pre-period then the first part of the union in the second line has to be
omitted). In this equation, the notation ϕ(β)T̃ (a) stands for the multiplication by each conju-
gate of β on each coordinate, that is defined by ϕ(β)(x2, . . . , xr+s) = (β(2)x2, . . . , β

(r+s)xr+s) ∈
Rr−1 × Cs.

Now, let us introduce the so called beta-substitution over the n-letter alphabet A = Aβ ,
defined as σ(k) = 1tk(k + 1) for each k < n and σ(n) = 1tn(m + 1) where m stands for the
length of the pre-period in d∗β(1) (as mentioned above, m can possibly be equal to 0). One can
check easily that β is the largest eigenvalue of this substitution. Its beta-contracting space Hc

is isomorphic to Rr−1 × Cs (each element of Rr−1 × Cs corresponds to a coordinate along an
eigendirection). Moreover, this isomorphism is a conjugacy between the multiplication by ϕ(β)
and the contracting map h on Hc. As a specific example, the isomorphism maps ϕ(p) to πl(1p)
for every p ∈ N. With this correspondence at hand, one checks that the GIFS in (2.8) is exactly
the same as the one in (2.6) satisfied by the central tile of the substitution. By unicity of the
solution to an GIFS, we can conclude that beta-numeration tiles as introduced in [123] form a
special class of central tiles of substitutions (for more details see [38]).



CHAPTER 3

Tilings induced by the central tile and its subtiles

One interesting feature of the central tile T and its subtiles T (i) (i ∈ A) is that they can
tile the plane in two different ways. Exploiting properties of these tilings will allow us to study
the boundary as well as topological properties of T and T (i). In the following definition we
will make precise what we want to understand by a tiling.

Definition 3.1 ([81, 83, 109]). A multiple tiling of Hc by the subtiles T (i) (i ∈ A) is
given by a translation set Γ ⊂ Hc ×A such that

(1) Hc =
⋃

(γ,i)∈Γ T (i) + γ,
(2) each compact subset of Hc intersects a finite number of tiles,
(3) almost all points in Hc (w.r.t. the (d− 1)-dimensional Lebesgue measure) are covered

exactly p times for some positive integer p.
When distinct translates of tiles have nonintersecting interiors, i.e., if p = 1, then the

multiple tiling is a tiling.

For subtiles of central tiles, several multiple tilings can be defined. The principle is to project
a subset of points of Zn on the beta-contracting space Hc. Depending on the properties of this
subset, we get different multiple tilings which will be discussed in the subsequent subsections.

3.1. The self-replicating multiple tiling

3.1.1. The self-replicating translation set. A first translation set can be obtained by
projecting on the beta-contracting space all the points with integer coordinates that approx-
imate this space. The “discretization” stemming from this approximation corresponds to the
notion of an arithmetic space introduced in [111]; it consists in approximating the space Hc

by selecting points x with integral coordinates that are above Hc and such that the same point
shifted down by a canonical base vector ei, say, is below Hc [23].

Definition 3.2. Let σ be a primitive unit Pisot substitution over the alphabet A. The
self-replicating translation set is defined as follows.

(3.1) Γsrs = {[π(x), i] ∈ π(Zn)×A; 0 ≤ 〈x,vβ〉 < 〈ei,vβ〉}.
The pairs [π(x), i] are called faces.

Remark 3.3. In the irreducible case, the term faces can be justified as follows. Consider
a face [γ, i] ∈ Γsrs as defined above. If the substitution is irreducible, the restriction of the
mapping π to Zn is one-to-one by (2.5). In particular, if we have [π(x), i], [π(y), i] ∈ Γsrs with
x,y ∈ Zn satisfying [π(x), i] = [π(y), i] then x = y. Consequently, there exists a unique x ∈ Zn

such that γ = π(x). Thus we can interpret [γ, i] as the set

x + {θ1e1 + · · ·+ θi−1ei−1 + θi+1ei+1 + · · ·+ θnen ; θj ∈ [0, 1] for j 6= i},
which is the face orthogonal to the i-th canonical coordinate in a unit cube located in x. One
can show that this set of faces is the discrete approximation of the beta-contracting space Hc

(cf. [23]). Moreover, the projections of the faces

π(x) + π({θ1e1 + · · ·+ θi−1ei−1 + θi+1ei+1 + · · ·+ θnen) ; θj ∈ [0, 1] for j 6= i}
have disjoint interior in Hc and they provide a polyhedral tiling of Hc.
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In the reducible case Hc is no longer a hyperplane, hence, the notion of discrete approxi-
mation by faces of cubes is not well defined in general (for special cases where this is possible
even in the reducible case see [61]). In this case, the projections of faces do overlap. The
restriction of the mapping π to Zn is not one-to-one. Nevertheless, if [π(x), i], [π(y), i] ∈ Γsrs

with x,y ∈ Zn satisfy [π(x), i] = [π(y), i] then 〈x,vβ〉 = 〈y,vβ〉 so that y − x ∈ Hs.

3.1.2. The dual substitution rule and the geometric property (F). The set Γsrs

is named self-replicating since it is stabilized by an inflation action on π(Zn)×A, obtained as
the dual of the one-dimensional realization of σ. This dual is defined as follows.

Definition 3.4. The dual of a substitution σ is denoted by E1. It is defined on the set
P(π(Zn)×A) of subsets of π(Zn)×A as follows:
(3.2)
E1[γ, i] =

⋃

j∈A,σ(j)=pis

[h−1(γ+πl(p)), j] ∈ P(π(Zn)×A) and E1(X1)∪E1(X2) = E1(X1∪X2).

The stabilization condition for E1 is contained in the following proposition.

Proposition 3.5 ([25, 61]). Let σ be a primitive unit Pisot substitution. Then the dual
substitution rule E1 maps Γsrs onto Γsrs. Moreover, for all X1, X2 ⊆ π(Zn)×A we have

(3.3) X1 ∩X2 = ∅ =⇒ E1(X1) ∩E1(X2) = ∅.
For abbreviation let U denote the faces of the unit cube of Rn, i.e.,

(3.4) U :=
⋃

i∈A
[0, i] ⊂ Γsrs.

A main property of E1 is that U is contained in E1(U) (cf. [25, 61]). Hence the sets Em
1 (U)

are increasing subsets of Γsrs.

Definition 3.6 (Geometric property (F)). Let σ be a primitive unit Pisot substitution.
When the iterations of E1 eventually cover the whole self-replicating translation set Γsrs, i.e.,
if

(3.5) Γsrs =
⋃

m≥0

E1
m(U),

we say that the substitution satisfies the geometric property (F).

By expanding points using the definition of E1, this means that every point [γ, i] ∈ Γsrs

has a unique finite h-ary representation

(3.6) γ = h−mπl(p0) + · · ·+ h−1πl(pm−1)

where (pk, ik, sk)0≤k≤m−1 is the labelling of a finite walk in the prefix-suffix graph that ends at
i = im. Even if the geometric property (F) does not hold, (3.3) implies that if [γ, i] ∈ Γsrs has
a finite representation of the shape (3.6), then this representation is unique.

This condition was introduced by Frougny and Solomyak [67] in the beta-numeration frame-
work and then studied by Akiyama [6]. It is stated in the present form in [38]. There exist
several sufficient conditions for property (F) for specific classes of substitutions related to beta-
numeration ([6, 26, 67]). In one of our results we will relate the geometric property (F) to
topological properties of the central tile.

3.1.3. Definition of the self-replicating multiple tiling. Now, we can use the self-
replicating translation set to obtain a multiple tiling, as proved in [26, 38, 61, 78]. Before
we state the result, recall that a Delauney set is a uniformly discrete and relatively dense set.
Moreover, by an aperiodic set we mean a discrete subset of Rn that is not invariant by n linearly
independent translations.
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Figure 3.1. Self-replicating multiple tiling for the substitution σ1 defined by
σ1(1) = 12, σ1(2) = 3, σ1(3) = 4, σ1(4) = 5, σ1(5) = 1. We will see in
Example 4.2 that the self-replicating multiple tiling induced by σ1 is a tiling
since σ1 satisfies the super coincidence condition.

Proposition 3.7. Let σ be a primitive unit Pisot substitution. The self-replicating trans-
lation set Γsrs provides a multiple tiling for the subtiles T (i) (i ∈ A), that is

(3.7) Hc =
⋃

[γ,i]∈Γsrs

(T (i) + γ)

where almost all points of Hc are covered p times (p is a positive integer). The translation set
Γsrs is an aperiodic Delaunay set.

Remark 3.8. Such a multiple tiling is called self-replicating multiple tiling (see for instance
[83]). As T (i) (i ∈ A) are compact sets this multiple tiling is locally finite, i.e., there exists a
P ∈ N such that each point of Hc is covered at most P times.

Figure 3.1 contains an example for a self-replicating multiple tiling that is actually a tiling.

3.2. The lattice multiple tiling

Another discrete plane can be defined by considering points with integral coordinates that
lie on the antidiagonal hyperplane with equation 〈x, (1, . . . , 1)〉 = 0.

Definition 3.9. Let σ be an irreducible unit Pisot substitution on n letters. The lattice
translation set is defined by

(3.8) Γlat =

{
[γ, i] ∈ π(Zn)×A; γ ∈

n∑

k=2

Z(π(ek)− π(e1))

}
.

The lattice translation set is obviously periodic.

Proposition 3.10 ([25, 49]). Let σ be an irreducible unit Pisot substitution that satisfies
the strong coincidence condition. Then the lattice translation set Γlat is a Delaunay set that
provides a multiple tiling for the central subtiles T (1), . . . , T (n), that is

(3.9) Hc =
⋃

[γ,i]∈Γlat

(T (i) + γ)

where almost all points are covered exactly p times by this union (p ∈ N).

Proof. Consider the quotient map φ from Hc to the (d− 1)-dimensional torus T = Hc/L,
where L denotes the lattice L =

∑n
k=2 Z(π(ek)− π(e1)).

We first prove that the union in (3.9) forms a covering of Hc. This is equivalent with
proving that the central tile maps to the full torus, that is, φ(T ) = T. The key point is to
notice that the set {φ(π(ei)); 1 ≤ i ≤ n} contains a single point, say t. This follows from the
definition of the quotient map φ.



24 3. TILINGS INDUCED BY THE CENTRAL TILE AND ITS SUBTILES

Figure 3.2. Self-replicating multiple tiling and lattice tiling for the substitu-
tion σ4(1) = 11112, σ4(2) = 11113 and σ4(3) = 1. We will see in Example 4.2
that σ4 satisfies the super-coincidence condition and that it is irreducible. Thus
the self-replicating and lattice multiple tilings are tilings.

Let u0 . . . uk . . . denote a periodic point of σ. By the definition of the central tile T , we
have φ(T ) = {φ(l(u0 . . . uk−1)); k ∈ N} = {kt; k ∈ N} in the torus T. To achieve the proof
it remains to show by algebraic considerations that the addition of t on the torus is minimal:
to this matter the Kronecker theorem can be applied after a precise study of the dependency
between t and the projection φ. Hence φ(T ) = T which is equivalent to the covering property
in (3.9). The fact that we get actually a multiple tiling follows from the minimality of the
rotation by t.

Details can be found in [25, 49]; see also the proof of Proposition 3.13 in the Appendix. ¤

Example 3.11. The substitution σ4 is irreducible. Its self-replicating multiple tiling as
well as its lattice multiple tiling which are actually tilings (see Example 4.2) is depicted in
Figure 3.2.

To be generalized to the reducible case, this result needs to exhibit a suitable projection
φ onto a (d − 1)-dimensional torus such that {φ(π(ei)); 1 ≤ i ≤ n} contains a single point. A
sufficient condition is the following one.

Definition 3.12 (Quotient map condition). Let σ be a primitive unit Pisot substitution
on n letters. Let d denote the degree of its dominant eigenvalue. We say that σ satisfies the
quotient map condition if there exist d distinct letters B(1), . . . , B(d) in A such that

(3.10) ∀i ∈ {1, . . . , n} 〈ei − eB(1),vβ〉 ∈
∑

k∈{2,...,d}
Z〈eB(k) − eB(1),vβ〉.

Then, the lattice translation set is defined by

(3.11) Γlat =

{
[γ, i] ∈ π(Zn)×A; γ ∈

d∑

k=2

Z(π(eB(k))− π(eB(1)))

}
.

Under this condition the results of Proposition 3.10 hold.

Proposition 3.13. Let σ be a primitive unit Pisot substitution that satisfies the strong
coincidence condition and the quotient map condition. Then the lattice translation set Γlat is
a Delaunay set that provides a multiple tiling for the central subtiles T (1), . . . , T (n), that is
(3.9) is satisfied where almost all points are covered exactly p times by this union (p ∈ N).

Proof. If the quotient map condition is satisfied, the following relation holds for all i:

π(ei) = π(eB(1)) (mod
d−1∑

k=1

Z(π(eB(k))− π(eB(1))).
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Figure 3.3. Self-replicating and lattice multiple tilings for the substitution
σ0. In the lattice tiling, the subtiles are shown only in the central tile. Subdi-
vision in subtiles is omitted in the other copies of the central tile.
Since σ0 satisfies the super-coincidence condition, the self-replicating multiple
tiling is a tiling. The same is true for the lattice multiple tiling (see Exam-
ple 4.2).

Hence the quotient map from Hc to Hc/L maps {φ(π(ei)); 1 ≤ i ≤ n} to a single point t. The
condition also implies that 〈vβ , eB(1)〉, 〈vβ , eB(2)〉, . . . , 〈vβ , eB(d)〉 are rationally independent
so that the addition of t is minimal, which yields the result. A detailed proof is given in the
Appendix. ¤

Example 3.14. The substitution σ1(1) = 12, σ1(2) = 3, σ1(3) = 4, σ1(4) = 5, σ1(5) = 1
does not satisfy the quotient map condition. Indeed, if the condition is satisfied, the elements
〈vβ , eB(1)〉, 〈vβ , eB(2)〉 and 〈vβ , eB(3)〉 are rationally independent. In this example we have
vβ = (1, β − 1, β2 − β,−β2 + β + 1, β2 − 1). Then 〈vβ ,−e1 + e3 + e4〉 = 0 and 〈vβ , e2 + e3 −
e5〉 = 0. The first relation yields 〈vβ , e4〉 = 〈vβ , e1〉 − 〈vβ , e3〉. Hence, if {B(1), B(2), B(3)}
contains {1, 3} we deduce that 〈vβ , e4〉 belongs to the set on the right hand side of (3.10).
Since the quotient map condition holds this set must contain also 〈vβ , e4 − e1〉. Hence, also
〈vβ , e1〉 belongs to this set. But this implies that there must be a rational dependency between
the vectors in {B(1), B(2), B(3)}, a contradiction. With similar arguments we prove that
{1, 4}, {2, 5} and {3, 5} cannot be subsets of {B(1), B(2), B(3)}. Thus the only possibility is
{B(1), B(2), B(3)} = {2, 3, 4}. However, if the quotient map condition is satisfied for this set
then β − 2 = 〈vβ , e2〉 − 〈vβ , e1〉 is an integer combination of 〈vβ , e3 − e2〉 = β2 − 2β + 1 and
〈vβ , e4 − e2〉 = −β2 + 2 which is impossible. Hence, the condition is not satisfied for σ1.

Example 3.15. The substitution σ0(1) = 112, σ0(2) = 113, σ0(3) = 4, σ0(4) = 1 satisfies
the quotient map condition. Indeed, we have vβ = (1, β − 2, β2 − 2β − 2, β2 − 3β + 1). Hence
〈vβ , e4−e1〉 = β2− 3β = β2− 2β− 2− (β− 2) = 〈vβ , e3−e1〉− 〈vβ , e2−e1〉. Then a suitable
basis is given by B(1) = 1, B(2) = 2, B(3) = 3. The self-replicating multiple tiling and the
lattice multiple tiling which are actually tilings (see Example 4.2)are depicted in Figure 3.3.

Remark 3.16. It remains to characterize all reducible primitive unit Pisot substitutions
that satisfy the quotient map condition. We are not sure whether this is possible by means of
a simple criterion.

3.3. The Pisot conjecture and the super-coincidence condition

A fundamental question is whether the multiple tilings defined in the previous subsections
are indeed tilings. A combinatorial condition appeared for self-replicating tilings, the so-called
super-coincidence condition, defined first in [26, 78] in the irreducible case and then generalized
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to the reducible case in [61]. Since we will not use it explicitly in this monograph, we refer to
the original papers for a precise definition. The main result is the following.

Theorem 3.17 ([26, 61, 78]). Let σ be a primitive unit Pisot substitution. Then the self-
replicating multiple tiling is a tiling if and only if σ satisfies the super-coincidence condition.

If σ is irreducible, the lattice multiple tiling is a tiling if and only if σ satisfies the super-
coincidence condition.

The Pisot conjecture states that as soon as σ is an irreducible Pisot substitution, then
the self-replicating and the lattice multiple tilings are tilings. In the reducible case, the Pisot
conjecture states that the self-replicating multiple tiling is a tiling. In each case, no counter-
example has been found yet.

The coincidence conjecture cannot be properly stated by means of lattice tilings in the re-
ducible case, since there exist examples of reducible substitutions for which the lattice multiple-
tiling cannot be properly defined (when they do not satisfy the quotient map condition detailed
in Definition 3.12). A generalization of the Pisot conjecture to the reducible case could then
be that if a substitution satisfies the quotient map condition, then the lattice multiple tiling is
a tiling.

In the irreducible case, the multiple lattice tiling has been widely studied and presents many
interesting features, related to the symbolic dynamical system associated with the substitution
[25, 66, 110]. As a consequence of the proof of Proposition 3.10, if the lattice multiple tiling is
a tiling, then the substitutive dynamical system associated with σ has a pure discrete spectrum,
since it is measure theoretically conjugate to a toral translation.



CHAPTER 4

Statement of the main results: topological properties of
central tiles

In this chapter we will state our main results in a slightly informal way. All details will be
given in Chapter 6 where we also give the full proofs of all results. We do it that way in order
to provide those readers who want to apply our results a way to use them without having to
go into technical details.

4.1. A description of specific subsets of the central tile

We start with some notions and definitions needed in order to state the results. In all
what follows we assume that σ is a primitive unit Pisot substitution. We build several graphs
to describe with GIFSs the intersections of tiles. Technical details and precise definitions will
be given in Chapter 5. The main idea is the following: we intend to describe the intersection
between two tiles T (i) and T (j) + γ. To do so, we consider the GIFS decomposition of each
tile, that is T (i) =

⋃
σ(i1)=p1is1

hT (i1)+πl(p1) and T (j) =
⋃

σ(j1)=p2js2
hT (j1)+πl(p2). Then

we write a decomposition of the intersection as

T (i) ∩ (T (j) + γ) =
⋃

σ(i1)=p1is1
σ(j1)=p2js2

(hT (i1) + πl(p1)) ∩ (hT (j1) + πl(p2) + γ).

We express each element of this decomposition as the image by h of a translated intersection
of tiles

(4.1) T (i)∩ (T (j) + γ) =
[

σ(i1)=p1is1
σ(j1)=p2js2

h

0
B@T (i1) ∩ (T (j1) + h−1πl(p2)− h−1πl(p1) + h−1γ| {z }

=γ1

)

1
CA+ πl(p1).

This equation means that the intersection between two tiles can be expressed as the union
of intersections between other tiles. Let us denote by B[i, γ, j] the intersection T (i)∩(T (j)+γ).
Then we have

B[i, γ, j] =
⋃

σ(i1)=p1is1,σ(j1)=p2js2

γ1=h−1πl(p2)−h−1πl(p1)+h−1γ

hB[i1, γ1, j1] + πl(p1).

Now we build a graph with nodes [i, γ, j] such that there exists and edge between [i, γ, j] and
[i1, γ1, j1] if the latter node appears in the decomposition of the former. Starting from a finite
set of nodes, we will prove that this graph is finite. Hence, a node [i, γ, j] is the starting point
of an infinite walk in this graph if and only if the intersection B[i, γ, j] = T (i) ∩ (T (j) + γ) is
nonempty.

Depending on the purpose, we use different sets of initial nodes, and we use a similar process
to describe intersections of more than two tiles, so that we finally define several different graphs.
Besides these graphs, several other types of graphs will be used. We want to give a short survey
over all these graphs in the following list.

Zero-expansion graph: The nodes of the zero-expansion graph correspond to tiles
T (i) + γ in the self-replicating tiling that contain 0.

27
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Connectivity graphs: The tile-connectivity graph contains an edge between two letters
i, j ∈ A if and only if T (i) and T (j) intersect.
For each letter i, the tile-refinement-connectivity graph of T (i) exhibits intersections
between the subtiles that appear in the GIFS decomposition of T (i).
Similarly, the boundary-connectivity graph of T (i) contains a node for each piece T (i)∩
(T (j)+γ) that is nonempty and an edge between each two pieces that have nonempty
intersection.
Moreover, the boundary-refinement-connectivity graph of a piece T (i) ∩ (T (j) + γ) of
∂T (i) exhibits intersections between the pieces that appear in the GIFS decomposition
of T (i) ∩ (T (j) + γ).

Self-replicating (SR) and lattice boundary graph: A point is called a double point
if it is contained in a subtile of the central tile and in at least one other tile of a multiple
tiling (self-replicating tiling or lattice tiling). The structure of the double-points in
each of the above-mentioned tilings can be described by a GIFS governed by a graph.
This graph is called SR-boundary graph and lattice boundary graph, respectively.

Contact graph: The boundary of the tiles T (i) (i ∈ A) can be written as a GIFS. We
call contact graph the graph directing this GIFS.

Triple point and quadruple point graph: A point is called triple point (quadruple
point, respectively) if it is contained in a subtile of the central tile as well as in at
least two (respectively three) other tiles of a multiple tiling. The triple (quadruple,
respectively) points of the above mentioned self-replicating multiple tiling are the
solutions of a GIFS directed by the so-called triple point graph (quadruple point graph,
respectively).

Now we are ready to state our main results.

4.2. Tiling properties of the central tile and its subtiles

The contact graph and the lattice boundary graph allow to check that the self-replicating
or lattice multiple tilings are indeed tilings.

Theorem 4.1 (cf. [119]). Let σ be a primitive unit Pisot substitution over the alphabet A.
Let β be the dominant eigenvalue of its incidence matrix. Then the following assertions hold.

(1) The self-replicating multiple tiling is a tiling if and only if the largest eigenvalue in
modulus of the SR-boundary graph4.1 is strictly less than β. This is equivalent to the
super-coincidence condition.

(2) When the quotient map condition is satisfied, the lattice multiple tiling is a tiling if
and only if the largest eigenvalue in modulus of the lattice boundary graph is strictly
less than β.

The interest of the first point of the theorem is the following. Usually, one checks whether
the self-replicating multiple tiling is a tiling by considering the super-coincidence condition.
More precisely, the super-coincidence condition cannot be checked directly but the so called
balanced pair algorithm (cf. [86]) terminates if and only if this condition is satisfied; and this
is the criterion that is usually used. However, this algorithm does not allow to test whether a
substitution does not satisfy the super-coincidence condition. Theorem 4.1, however, is effective
for checking both super-coincidence and not-super-coincidence, since the SR-boundary graph
as well as the contact graph4.2 can be constructed in finite time for each primitive unit Pisot
substitution.

The second part of the theorem is not needed in the irreducible case because the lattice
tiling property is equivalent to the self-replicating tiling property. The interest of this part lies

4.1It is possible to use the contact graph instead of the SR-boundary graph here. The contact graph is
often much smaller than the SR-boundary graph and therefore more convenient for calculations. However, the
contact graph does not exist for some reducible substitutions (see Section 5.4).

4.2See footnote 4.1.
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in the reducible case. Ea and IO [60] have provided examples of computations of lattice tilings
for some substitutions. Here we provide a general criterion for lattice tilings in the reducible
case.

Example 4.2. The example substitutions of Section 2.4 have the following tiling properties.
• The substitution σ0 generates both, a self-replicating and a lattice tiling. Both tilings

are shown in Figure 3.3. A detailed treatment of the tiling properties of σ0 is given
in Example 5.11.

• The substitution σ1(1) = 12, σ1(2) = 3, σ1(3) = 4, σ1(4) = 5, σ1(5) = 1 generates an
self-replicating tiling (see Figure 3.1) but not a lattice tiling. It does not satisfy the
quotient map condition. To prove the self-replicating tiling property, details can be
done in the same way as in the case of σ0.

• Each of the substitutions σ2, . . . , σ6 induces an self-replicating and a lattice tiling.
This can be shown in the same way as it is shown for σ0 in Example 5.11.

4.3. Dimension of the boundary of central tiles

A natural question is now to compute the Hausdorff and box counting dimension of the
boundary of T (a) (for a definition of these notions of dimension see e.g. Falconer [63]). This
question was handled for the Tribonacci substitution in [74, 97]. Moreover, in [64] an upper
bound of the Hausdorff dimension is computed for a class of substitutions. Finally, [124]
exhibits a formula for the box-counting dimension of a central tile in the irreducible case. This
box counting dimension coincides with the Hausdorff dimension when the contraction h on
the contracting plane Hc is a similarity, that is, when the conjugates of β all have the same
modulus. If this is not the case, the calculation of the Hausdorff dimension of the boundary
seems to be a very hard problem.

We include a slightly more general version of [124, Proposition 5.7 and Theorem 5.9].
Indeed, our version also contains the case of reducible substitutions.

Theorem 4.3. Let σ be a primitive unit Pisot substitution over the alphabet A. Let β be
the dominant eigenvalue of its incidence matrix and β′ be one of the smallest conjugates of β
in modulus. Let µ denote the largest eigenvalue in modulus of the SR-boundary graph4.3 of σ.

Suppose that the SR-boundary graph of σ is strongly connected and µ < β. Then the box
counting dimension of the boundary of T satisfies

(4.2) ∀i = 1, . . . , n, dimB(∂T ) = dimB(∂T (i)) = d− 1 +
log β − log µ

log |β′| .

If all the conjugates of β have the same modulus, then the box counting dimensions in (4.2)
agree with the associated Hausdorff dimensions.

Example 4.4. In this example we deal with the box counting dimension of the boundaries
of T as well as T (i) (i ∈ A) for the examples in Section 2.4. For σ0, σ1, σ2, σ4 and σ6 all
conjugates of β have the same modulus. Thus for these examples the box counting dimension
is equal to the Hausdorff dimension. We calculate the following values.

• For σ0 we have dimB(∂T ) = dimB(∂T (i)) = 1.196510420 . . .
• For σ1 we have dimB(∂T ) = dimB(∂T (i)) = 1.100263385 . . .
• For σ2 we have dimB(∂T ) = dimB(∂T (i)) = 1.946434603 . . .
• For σ3 we have dimB(∂T ) = dimB(∂T (i)) = 1.630544213 . . .
• For σ4 we have dimB(∂T ) = dimB(∂T (i)) = 1.563995213 . . .
• For σ5 we have dimB(∂T ) = dimB(∂T (i)) = 1.744561766 . . .
• For σ6 we have dimB(∂T ) = dimB(∂T (i)) = 1.791903475 . . .

In the case of σ0 the dimension calculations are detailed in Example 5.11. For all the other
examples the calculations are similar to this case.

4.3See Footnote 4.1.
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4.4. Exclusive inner points and the geometric property (F)

As mentioned in Definition 3.6, the well-known finiteness property (F) for beta-expansions
invented by Frougny and Solomyak [67] can be extended to number systems associated to a sub-
stitution and expressed in geometrical terms. In the context of beta-numeration, Akiyama [7]
proved that property (F) has consequences for the topology of the tile T since it is equivalent
with 0 to be an exclusive inner point of T . Notice that an exclusive point of a patch of finitely
many tiles in a multiple tiling is a point that is contained exclusively in this patch and in no
other tile of the multiple tiling.

We generalize Akiyama’s result to every substitution by giving a geometric proof.

Theorem 4.5. Let σ be a primitive unit Pisot substitution with strong coincidence. Then
σ satisfies the geometric property (F) (see Definition 3.6) if and only if 0 is an exclusive inner
point of the patch T = T (1) ∪ . . . ∪ T (n) in the self-replicating multiple tiling. If the geometric
property (F) holds, the self-replicating multiple tiling is a tiling.

Hence, the geometric property (F) implies super-coincidence, but the converse is not true
(see Example 4.7).

The geometric property (F) cannot be checked directly since it implies infinite iterations.
We provide an algorithm to check (F) in terms of boundary graph, by considering the tiles
containing 0 in the self-replicating multiple tiling.

Theorem 4.6. Let σ be a primitive unit Pisot substitution over the alphabet A that satisfies
the strong coincidence condition. Then σ satisfies the geometric property (F) if and only if the
zero-expansion graph contains only nodes of the shape [0, i] (i ∈ A).

Example 4.7. For the substitutions in Section 2.4 we have the following situation.
• The substitutions σ0, σ1 and σ4 satisfy the geometric property (F).
• The substitutions σ2, σ3, σ5, σ6 do not satisfy the geometric property (F). For σ3 for

instance, 0 belongs to four different tiles [0, 2], [0, 3], [(1, 1, 0), 3] and [(−1,−1, 1), 3].
The same holds for σ5.

For σ0 and σ2 details are given in Example 5.3. The zero-expansion graph of σ0 contains
only one node with a loop, while the zero expansion graph of σ2 contains 8 nodes and is
depicted in Figure 5.1. This means that 0 is contained in 8 subtiles of the self-replicating
tiling associated to σ2. Thus σ2 does not satisfy the geometric property (F) despite it satisfies
the super-coincidence condition. Thus the geometric property (F) is strictly stronger than the
super-coincidence condition.

4.5. Connectivity properties of the central tile

Apart from the Tribonacci substitution [110], sufficient conditions for connectivity appear
in [48], but they are not algorithmic. We provide an effective checking of the connectivity
condition.

Theorem 4.8. Let σ be a primitive unit Pisot substitution over the alphabet A. The subtiles
T (i) (i ∈ A) are locally connected continua if and only if the tile-refinement-connectivity graph
of T (j) is connected for each j ∈ A.

The central tile T is a locally connected continuum if the tile-connectivity graph as well as
each tile-refinement-connectivity graph is connected.

Notice that it is not easy to provide a necessary and sufficient condition for the full con-
nectivity of the central tile. The reason is that the central tile T may be connected even if
some of the subtiles are disconnected. However, we were not able to find an example with this
constellation.

Example 4.9. We will use this theorem in Example 5.15 to prove that the central tile of
σ3(1) = 3, σ3(2) = 23, σ3(3) = 31223 is not connected. Indeed the tile-connectivity graph is
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connected for this substitution, however, the tile-refinement-connectivity graph of T (2) is not
connected (the tile is depicted in Figure 2.2).

For all the other substitutions given in Section 2.4 the central tiles as well as all their
subtiles are connected. For σ0 this is proved in Example 5.14. The proofs for all the other
examples runs along the same lines.

4.6. Disklikeness of the central tile and its subtiles

Next we turn to the question whether a given tile T or one of its subtiles T (a) is homeo-
morphic to a closed disk. This implies that the dominant eigenvalue β has degree 3.

Examples of central tiles being homeomorphic to a closed disk are given in [90, 97, 98],
where a parametrization of the boundary is given for a class of substitution related to the
Tribonacci substitution. Here, we start by proving the following criterion for T to be homeo-
morphic to a closed disk.

Theorem 4.10. Let σ be a primitive unit Pisot substitution such that the dominant eigen-
value of its incidence matrix has degree 3. Suppose that the substitution satisfies the quotient
map condition and that the lattice multiple tiling is a tiling (see Theorem 4.1).

Assume further that the associated central tile T is homeomorphic to a closed disk. Then
there exist at most eight values γ with [γ, i] ∈ Γlat and

(4.3) T ∩ (T + γ) 6= ∅.
Among these eight values of γ there are at most six ones for with the intersection in (4.3)
contains more than one point.

These “neighbor constellations” of T can be checked algorithmically by checking the nodes
of the lattice boundary graph of σ.

The previous result can often be used in order to prove that a given tile T is not home-
omorphic to a disk by exhibiting too many “neighbors” T + γ of T in the induced lattice
tiling.

Example 4.11. We discuss the theorem for two examples from Section 2.4.
The central tile of σ4(1) = 11112, σ4(2) = 11113 and σ4(3) = 1 is not homeomorphic to

a disk (see the tile in its induced tilings in Figure 3.2). Indeed, in the lattice tiling the tile
T has 10 neighbors (for details see Example 5.13 and the lattice boundary graph depicted in
Figure 5.3).

Notice that the criterion is very precise: indeed, for the substitution σ0, the (disk-like)
central tile T has eight neighbors, but four of the intersections are single points. Thus Theo-
rem 4.10 cannot be used (see the tiling in Figure 3.3, the lattice boundary graph in Figure 5.4
and Example 5.13 for further details).

We will also prove the following criterion for the subtiles T (i) (i ∈ A) to be homeomorphic
to a closed disk.

Theorem 4.12. Let σ be a primitive unit Pisot substitution such that the dominant eigen-
value of its incidence matrix has degree 3. Suppose that the self-replicating multiple tiling is a
tiling (see Theorem 4.1).

Then each T (i) (i ∈ A) is homeomorphic to a closed disk if the following assertions hold.
(1) Each boundary-connectivity graph is a simple loop.
(2) Each boundary-refinement connectivity graph is either empty or a single node or a

line.
(3) Each intersection between three distinct tiles of the self-replicating tiling is either empty

or a single point.

Remark 4.13. If a boundary-connectivity graph is a single node and the associated boun-
dary-refinement-connectivity graph is a unique loop then the theorem is also true. The proof of
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this variant runs along the same lines as the proof of the theorem. As we could not construct
a single example with this property we omit the details.

It is also possible to give a condition for the central tile T to be homeomorphic to a closed
disk. This is the case for instance if all the subtiles T (i) (i ∈ A) are closed disks and if they
intersect each other in a point or in a simple arc in a way that no holes occur. All this can be
checked by means of our graphs.

Example 4.14. The subtiles of the central tile of the substitutions σ0 and σ1 are home-
omorphic to a closed disk. Details are given in Examples 5.34 and 5.35, respectively. All the
other examples contained in Section 2.4 are not homeomorphic to a closed disk.

4.7. The fundamental group of the central tile and its subtiles

Finally, we are able to say something about the fundamental group of T (a) (a ∈ A).

Theorem 4.15. Let σ be a primitive unit Pisot substitution such that the dominant eigen-
value of its incidence matrix has degree 3. Suppose that the substitution satisfies the super-
coincidence condition.

Then there exists a criterion which guarantees that each subtile T (i) (i ∈ A) has an un-
countable fundamental group which is not free.

The detailed statement of this result is contained in Theorem 6.21 (see also Theorem 6.18
which contains a criterion for the fundamental group of T (i) (i ∈ A) to be nontrivial).

Example 4.16. Four of the examples of Section 2.4 have uncountable fundamental group.
The subtiles of the central tile of the substitution σ5(1) = 123, σ5(2) = 1, σ5(3) = 31 has

an uncountable fundamental group which is not free. Details are given in Example 6.24.
The subtiles of the central tile for the flipped Tribonacci substitution σ6(1) = 12, σ6(2) =

31, σ6(3) = 1 has an uncountable fundamental group which is not free. Details are given in
Example 6.23.

Also for σ2 and σ4 one can prove in a similar way as for σ5 and σ6 that the fundamental
group of each of the subtiles of their central tiles has uncountable and not free fundamental
group.



CHAPTER 5

Several graphs that contain topological information on
the central tile

We intend to describe topological properties of a central tile T and its subtiles T (i) (i ∈ A)
by using the self-affinity of T (i) and information on the intersections of tiles in the induced
tilings.

In all what follows σ is a primitive unit Pisot substitution over the alphabet A with domi-
nant eigenvalue β.

5.1. The graph detecting expansions of zero

Let us start our definitions by building a graph that permits to decide whether the origin
0 is contained in a given tile of the self-replicating tiling.

Definition 5.1 (Zero-expansion graph). The zero-expansion graph G(0) of σ is the largest5.1

graph such that the following conditions hold.
(1) The nodes [γ, i] of the graph belong to the self-replicating translation set Γsrs and

satisfy

(5.1) ||γ|| ≤ max{||πl(p)||; (p, a, s) ∈ P}
1−max{|β(j)|; j = 2, . . . , d} ,

where β(j), j = 2, . . . , d denote the algebraic conjugates of β.
(2) There is an edge between two nodes [γ1, i1] and [γ2, i2], if and only if there exists

(p1, i1, s1) ∈ P such that

p1i1s1 = σ(i2) and hγ2 = γ1 + πl(p1).
(3) Every node belongs to an infinite path.

Proposition 5.2. The zero-expansion graph G(0) of a primitive unit Pisot substitution is
well defined and finite. A pair [γ, i] is a node of this graph if and only if 0 ∈ T (i) + γ.

This type of graph first appeared in more specific settings in [7, 110, 119]. For the sake
of clarity, we detail the proof of Proposition 5.2 in the Appendix.

Example 5.3. In this example we give the details for Example 4.7.
• The zero-expansion graph for the substitution σ0(1) = 112, σ0(2) = 113, σ0(3) = 4,

σ0(4) = 1 is equal to the node [0, 1] together with a self-loop. Thus the origin 0
only belongs to one subtile of the central tile in the self-replicating tiling. Hence, σ0

satisfies the geometric property (F).
• The zero-expansion graph for the substitution σ2(1) = 2, σ2(2) = 3, σ2(3) = 12 is

shown in Figure 5.1. It consists of eight states which are grouped in two independent
cycles. Hence, 0 belongs to eight tiles of the self-replicating tiling: it belongs to
the three subtiles T (1), T (2) and T (3) as well as to the translated subtiles T (1) +
π(1, 1,−1), T (2)+π(−1, 1, 0), T (2)+π(−1, 0, 1), T (3)+π(1, 0, 0), T (3)+π(0,−1, 1).
Thus σ2 does not satisfy the geometric property (F).

5.1By “largest” we mean that every set of nodes that satisfies the condition has to be included in G(0). We
will prove that such a set exists.

33
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Figure 5.1. Zero-expansion graph for the substitution σ2(1) = 2, σ2(2) = 3,
σ2(3) = 12. “pi” stands for the projection map π.

5.2. Graphs describing the boundary of the central tile

Our aim here is to investigate the intersections between the central tile and some translated
subtiles (corresponding to the self-replicating tiling or the lattice tiling). We introduce the
following terminology. We will say that T (i) + γ1 and T (j) + γ2 with [γ1, i], [γ2, j] ∈ Γsrs are
neighbors if they have nonempty intersection.

In this setting, the intersection between T (i) and T (j)+γ is described by the node [i, γ, j] ∈
A × π(Zn) × A. However, [i, γ, j] and [j,−γ, i] will then stand for the same intersection. To
avoid redundancy in boundary graphs, we reduce the set of admissible nodes to

D = {[i, γ, j] ∈ A× π(Zn)×A; γ = π(x), (〈x,vβ〉 > 0) or (γ = 0 and i ≤ j)}.
We are now going to define graphs whose set of nodes are finite subsets of D.

Definition 5.4 (Boundary graph). Let S ⊂ D be a finite set. The boundary graph of S is
denoted by G(B)(S). It is the largest5.2 graph such that the following conditions hold.

(1) If [i, γ, j] is a node of G(B)(S) then [i, γ, j] ∈ D and

(5.2) ||γ|| ≤ 2max{||πl(p)||; (p, a, s) ∈ P}
1−max{|β(j)|; j = 2, . . . , d}

where β(j) are the algebraic conjugates of β.
(2) There is an edge between two nodes [i, γ, j] and [i′, γ′, j′], if and only if there exist

[i, γ, j] ∈ A× π(Zn)×A and [(p1, a1, s1), (p2, a2, s2)] ∈ P × P such that

(5.3)





[i′, γ′, j′] = [i, γ, j] (type 1) or [i′, γ′, j′] = [j,−γ, i] (type 2)
a1 = i and p1a1s1 = σ(i)
a2 = j and p2a2s2 = σ(j)
hγ = γ + π(l(p2)− l(p1)).

The edge is labelled by e ∈ {πl(p1), πl(p2) + γ} such that

〈e,vβ〉 = min{〈l(p1),vβ〉, 〈l(p2) + x,vβ〉}, π(x) = γ, x ∈ Zn.

(3) Each node belongs to an infinite path starting from a node [i, γ, j] ∈ S.

Definitions of edges in this graph are directly deduced from (4.1).

Proposition 5.5. The boundary graph associated with a finite subset of D is well defined
and finite.

5.2The meaning of “largest” is explained in Definition 5.1.
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We give the full proof of this proposition in the Appendix. It implies that a boundary
graph can be algorithmically computed as soon as the set S is known. Indeed, start with the
set of nodes S. Then recursively increase this set with nodes [i′, γ′, j′] that satisfy conditions (1)
and (2). The finiteness property in Proposition 5.5 ensures that this procedure will eventually
stabilize the set of nodes. From this final set, nodes with no outgoing edges have to be removed
recursively, so that condition (3) is also fulfilled.

Theorem 5.6. Let S be a finite subset of D. Let [i, γ, j] ∈ S. The intersection between
T (i) and T (j) + γ is nonempty if and only if [i, γ, j] is a node of the boundary graph G(B)(S).

The proof is given in the Appendix.

Depending on the set S, we build several boundary graphs that have certain useful prop-
erties.

5.2.1. The self-replicating boundary graph. The self-replicating tiling is based on
the set Γsrs (see Definition 3.2), that is, the condition 0 ≤ 〈γ,vβ〉 < 〈ej ,vβ〉. Hence, the
set of points in Γsrs that satisfy condition (5.2) is finite (the proof is similar to the proof of
Proposition 5.5).

(5.4) Ssrs =



[i, γ, j] ∈ D;

∣∣∣∣∣∣

γ = π(x), x ∈ Zn, 0 ≤ 〈x,vβ〉 < 〈ej ,vβ〉
γ 6= 0 or i 6= j
γ satisfies condition (5.2)



 .

The self-replicating boundary graph (SR-boundary graph, for short) is the boundary graph
of this set, i.e.,

G(B)
srs = G(B) (Ssrs) .

By its definition, this graph describes tiles of the self-replicating tiling that intersect the central
tile.

Theorem 5.7. Let σ be a primitive unit Pisot substitution and let [i, γ, j] ∈ Ssrs. Let
B[i, γ, j] denote the nonempty compact set that is uniquely defined by the GIFS

(5.5) B[i, γ, j] =
⋃

[i,γ,j]
e−→[i1,γ1,j1] in G(B)

srs

hB[i1, γ1, j1] + e.

which is directed by the graph G(B)
srs .

Then the following assertions are true.

• If [i, γ, j] is a node of the SR-boundary graph G(B)
srs , then [γ, j] belongs to the self-

replicating translation set Γsrs so that T (j)+γ is a piece of the self-replicating multiple
tiling.

• The intersections between two tiles are solutions of (5.5), since the solutions B[i, γ, j]
of the GIFS equation satisfy5.3

B[i, γ, j] = T (i) ∩ (T (j) + γ).

• If the self-replicating multiple tiling is a tiling, then the boundary of the subsets of the
central tile is described by the sets B[i, γ, j], in particular,

(5.6) ∂T (i) :=
⋃

[i,γ,j]∈G(B)
srs

[i,γ,j]6=[i,0,i]

B[i, γ, j] ∪
⋃

[j,0,i]∈G(B)
srs

j<i

B[j,0, i].

The proof of this theorem is given in the Appendix. Note that the first part of Theorem
4.1 is a direct consequence of this result.

Lemma 5.8. If B[i, γ, j] contains only one point it can be omitted in the representation of
∂T in (5.6).

5.3This justifies the notation B[i, γ, j] in (5.5).
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Proof. Suppose that B[i, γ, j] contains a single point. If this single point is not isolated in
∂T (i) then B[i, γ, j] has to be contained in another intersection B[i′, γ′, j′] because each of these
intersections is compact. So let us assume that B[i, γ, j] is an isolated point of ∂T (i). Then,
as T (i) is the closure of its interior, each point in a small neighborhood of B[i, γ, j] belongs to
Int(T (i)) (note that each two points in this neighborhood are not separated by ∂T (i)). Thus
B[i, γ, j] is an inner point of T (i), a contradiction. ¤

From the GIFS equation (5.5) we deduce that each point in T (i) ∩ (T (j) + γ) can be
expanded through h by following edges labels in the SR-boundary graph.

Corollary 5.9. Let [i, γ, j] ∈ D. A point x belongs to the intersection T (i) ∩ (γ + T (j))
if and only if there exists an infinite path in G(B)(S), starting from [i, γ, j] and labelled by
(e(k))k≥0 such that

x =
∑

k≥0

hke(k).

This is an immediate consequence of (5.5) (it is proved analogously to Corollary 2.7).
Note that Theorem 5.7 and Corollary 5.9 can be used to draw boundaries of central tiles

and their subtiles. They were used to draw the boundaries of the tiles in the figures of the
present monograph.

We need the following definition.

Definition 5.10. Two infinite paths in a boundary graph G(B) are called essentially dif-
ferent if their labelling (e(k)

1 )k≥0 and (e(k)
2 )k≥0 give rise to two different expansions, i.e., if

∑

k≥0

hke(k)
1 6=

∑

k≥0

hke(k)
2 .

According to Proposition 5.30 we can check algorithmically whether a given node of the
SR-boundary graph is the starting point of one or more essentially different paths. This is
equivalent to the fact that the associated intersection contains one or more points.

Example 5.11. The SR-boundary graph for σ0(1) = 112, σ0(2) = 113, σ0(3) = 4, σ0(4) = 1
is depicted in Figure 5.2. We deduce that the central tile T = T (1) ∪ T (2) ∪ T (3) ∪ T (4)
intersects 11 tiles in the self-replicating tiling, corresponding to the different pairs [γ, j] with
γ 6= 0 appearing in a node [i, γ, j] of the SR-boundary graph.

As mentioned in the caption of Figure 5.2 the boundary of T (1) consists of eight intersec-
tions: three intersections with tiles inside the full central tile and five intersections with tiles
outside the central tile. In particular,

∂T (1) = B[1,0, 2] ∪ B[1,0, 3] ∪ B[1,0, 4] ∪ B[1, π(0, 0, 1, 0), 1] ∪ B[1, π(0, 0, 1, 0), 2]
∪ B[1, π(0, 1,−1, 0), 1] ∪ B[1, π(0, 1, 0, 0), 1] ∪ B[1, π(1,−1, 1), 1].

Note that in the boundary graph a unique path goes out from each of the nodes [1,0, 3]
and [1, π(0, 0, 1, 0), 1]. This means that each of the pieces T (1) ∩ T (3) and T (1) ∩ (T (1) +
π(1,−1, 1, 0)) consists of a single point. Therefore by Lemma 5.8 these pieces can be omitted
in the description of the boundary of T (1). Thus

∂T (1) = B[1,0, 2] ∪ B[1,0, 4] ∪ B[1, π(0, 0, 1, 0), 1]
∪ B[1, π(0, 0, 1, 0), 2] ∪ B[1, π(0, 1,−1, 0), 1] ∪ B[1, π(0, 1, 0, 0), 1].

As we know the SR-boundary graph of σ0 we can easily calculate the dominant eigenvalue
µ = 1.839286755 . . . of its incidence matrix. Since µ is strictly less than the dominant eigenvalue
β = 2.769292354 . . . of the incidence matrix of σ0, Theorem 4.1 shows that the self-replicating
multiple tiling as well as the lattice tiling induced by σ0 are actually tilings. Moreover, the
knowledge of µ, β and |β′| = 0.6009185307 . . . yields in view of Theorem 4.3 that

dimB(∂T ) = dimB(∂T (i)) = 1.196510420 . . .
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Figure 5.2. The SR-boundary graph for the substitution σ0(1) = 112,
σ0(2) = 113, σ0(3) = 4, σ0(4) = 1. Labels of edges are omitted, “pi” stands for
the projection map π. A node [i, γ, j] occurs in this graph if and only if T (i)
intersects the tile T (j) + γ in the self-replicating tiling.
For instance, the tile T (1) intersects the three other subtiles T (2), T (3) and
T (4) since the nodes [1,0, 2], [1,0, 3] and [1,0, 4] appear in the graph (nodes
with dotted frame). The tile T (1) also intersects five tiles outside the central
tile, namely T (1)+π(0, 0, 1, 0), T (2)+π(0, 0, 1, 0), T (1)+π(0, 1,−1, 0), T (1)+
π(0, 1, 0, 0) and T (1) + π(1,−1, 1, 0), since the corresponding nodes appear in
the graph. These are [1, π(0, 0, 1, 0), 1], [1, π(0, 0, 1, 0), 2], [1, π(0, 1,−1, 0), 1],
[1, π(0, 1, 0, 0), 1], [1, π(1,−1, 1, 0), 1] (nodes with dashed frame).

Since the conjugates of β have all the same modulus the Hausdorff dimension of the boundaries
∂T (i) is the same as their box counting dimension in this case.

5.2.2. The lattice boundary graph. Here we suppose that σ satisfies the quotient
map condition (see Definition 3.12). Then the points of the lattice translation set that satisfy
condition (5.2) is finite. The lattice boundary graph is the boundary graph of this set, i.e.,

G(B)
lat = G(B)(Slat)

with

Slat :=
{

[i, γ, j] ∈ D;
∣∣∣∣

γ ∈ Γlat \ {0}
γ satisfies condition (5.2)

}
.

As in Theorem 5.7 the definition implies that the graph describes tiles of the lattice tiling that
intersect the central tile. In particular, we have the following result.

Proposition 5.12. Assume that σ satisfies the quotient map condition. Let [γ, i] ∈ Γlat \
{0}. The intersection between the subtile T (i) and the subtile T (j) + γ in the lattice tiling is
nonempty if and only [i, γ, j] or [j,−γ, i] is a node of the lattice boundary graph.

This graph is used in Theorem 4.10 to obtain a sufficient condition for non-dislikeness of
T . Contrarily to the set Γsrs in the SR-boundary graph, the lattice translation set Γlat is not
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Figure 5.3. Lattice boundary graph for the substitution σ4(1) = 11112,
σ4(2) = 11113, σ4(3) = 1. Nodes with dashed frame correspond to inter-
sections in the lattice tiling, that is, γ ∈ Slat.

Figure 5.4. Lattice boundary graph for the substitution σ0(1) = 112, σ0(2) =
113, σ0(3) = 4, σ0(4) = 1. Nodes with dashed frame correspond to intersections
in the lattice tiling, that is, γ ∈ Slat.

stable by the edge condition (5.3). Thus there may well exist nodes in the lattice boundary
graph that correspond to elements not belonging to Γlat.

Example 5.13. In Figure 5.3 the lattice boundary graph of σ4 is depicted. From this figure
we deduce that T ∩ (T + γ) 6= ∅ if and only if γ ∈ ±{π(1,−1, 0, 0), π(0, 1,−1, 0), π(1, 0,−1, 0),
π(0, 2,−2, 0), π(1, 1,−2, 0)}. Thus the central tile has 10 neighbors and, hence, Theorem 4.10
applies to deduce that the central tile associated to σ4 is not homeomorphic to a closed disk
(the tile together with its neighbors in the induced tilings is depicted in Figure 3.2).

In Figure 5.4 the lattice boundary graph of σ0 is depicted. From this figure we deduce that
T ∩ (T + γ) 6= ∅ if and only if γ ∈ ±{π(1,−1, 0, 0), π(1, 0,−1, 0), π(0, 1,−1, 0), π(1, 1,−2, 0}.
Notice that a unique infinite path starts from the node [3;π(1, 0,−1, 0); 1] and from the node
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Figure 5.5. The tile-connectivity graph (left side) and the tile-refinement-
connectivity graph of T (1) (right side) for the substitution σ0. The notation
“pi” stands for π in the labelling. Additionally, we check that for each of the
subtiles T (2), T (3) and T (4) the tile-refinement-connectivity graph is equal to
a single node. Therefore, all the tile-refinement-connectivity graphs and the
tile-connectivity graph are connected; from this we deduce that the central tile
is connected (see Figure 2.1 for a picture of the tile).

[2;π(1,−2, 1, 0); 4]. This implies that each of the intersections T ∩ (T + π(1, 0,−1, 0)) and
T ∩ (T + π(1, 1,−2, 0)) is equal to a single point. Thus Theorem 4.10 cannot be applied.

5.3. Graphs related to the connectivity of the central tile

The following graphs make it possible to decide whether certain sets are connected or not.
Tile-connectivity graph: This non-oriented graph encodes intersections between tiles in

the central tile. Its nodes are the elements of A. There is an edge from i to j if and
only if T (i) and T (j) intersect.
Concretely, There is an edge from i to j if [i,0, j] or [j,0, i] belongs to the SR-boundary
graph.

Tile-refinement-connectivity graph: According to Theorem 2.6, the tiles T (i) (i ∈ A) are
the solutions of a GIFS governed by the prefix-suffix graph. Thus each T (i) can be
represented as

T (i) =
⋃

i
(p,i,s)−−−−→j

hT (j) + πl(p).

Denote the sets in the union on the right hand side by Ti1, . . . , Ti`. These sets are
the nodes of the tile-refinement-connectivity graph of T (i). Each two of them are
connected by an edge if and only if they have a nonempty intersection.
Therefore, there is an edge between hT (j1)+πl(p1) and hT (j2)+πl(p2) if and only if
[j1,h−1π(l(p2)− l(p1)), j2] or [j2,h−1π(l(p1)− l(p2)), j1] is a node of the SR-boundary
graph.

Example 5.14. The central tile of σ0 is depicted in Figure 2.1 together with its GIFS
decomposition. We now prove that this tile as well as each of its subtiles is connected.

We first use the SR-boundary graph of σ0 (see Figure 5.2) to build the global-connectivity
graph. We check that [1,0, 2], [1,0, 3], [1,0, 4], [2,0, 3] are nodes of the SR-boundary graph.
Thus we obtain the tile connectivity graph depicted in Figure 5.5. It means that the largest tile
T (1) intersects all the tiles, while the second and third tiles T (2) and T (3) intersect each other
and the smallest tile T (4) only intersect the largest one T (1). Therefore the T -connectivity
graph is connected.

The tile-refinement-connectivity graphs for T (2), T (3) and T (4) are equal to a single node
since only one subset appears in their GIFS decomposition (see details in Section 2.4). The
last graph to compute is the tile-refinement-connectivity graph of T (1): it has five nodes,
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Figure 5.6. The global-connectivity graph (upper left side) and the tile-
refinement-connectivity graph of T (2) (upper right side) for the substitution
σ3(1) = 3, σ3(2) = 23, σ3(3) = 31223. The prefix-suffix equation shows that
T (2) can be decomposed into three pieces. The tile-refinement-connectivity
graph shows that the piece hT (3) + π(1, 0, 1) is disconnected from the other
pieces appearing in the decomposition of T (2). The subdivision of T (2) is in-
dicated by the three dark tiles in the figure. The light tiles correspond to T (1)
and T (3) (these are drawn without subdivision). We deduce that the central
tile is not connected.

corresponding to the tiles that appear in the decomposition of T (1), namely hT (1), hT (1) +
π(1, 0, 0, 0), hT (2), hT (2) + π(1, 0, 0, 0), hT (4).

We use the boundary graph to check intersections between these tiles, that is, to check
whether the SR-boundary graph contains the nodes [1,h−1π(1, 0, 0, 0), 1], [1,0, 2], [1,0, 4],
[1,h−1π(1, 0, 0, 0), 2], [2,h−1π(1, 0, 0, 0), 1], [2,h−1π(1, 0, 0, 0), 2], [2,0, 4], [4,h−1π(1, 0, 0, 0), 2],
or their symmetric nodes. We deduce that the tile-refinement-connectivity graph of T (1) is
connected (it is depicted in Figure 5.5).

By Theorem 4.8, we conclude that all the tiles T (1), T (2), T (3), T (4) as well as the central
tile T of σ0 are connected, as suggested by Figure 2.1.

Example 5.15. The central tile of σ3 is depicted in Figure 5.6. We use the SR-boundary
graph (which contains 29 nodes) to build the tile-connectivity graph, it turns out that it is a
complete graph, meaning that each subtile intersects all the other subtiles.

The SR-boundary graph is also used to build the tile-refinement-connectivity graph of T (2).
This graph contains three nodes corresponding to the GIFS decomposition of T (2), namely
hT (2), hT (3) + π(1, 0, 1), hT (3) + π(1, 1, 1). We check that [2,h−1π(1, 1, 1), 3] is a node of the
boundary graph, leading to an edge in the tile-refinement-connectivity graph between hT (2) and
hT (3) + π(1, 1, 1). Meanwhile, [2,h−1π(1, 0, 1), 3] and its symmetric [3,−h−1π(1, 0, 1), 1] are
not nodes of the SR-boundary graph, hence, there is no edge in the tile-refinement-connectivity
graph between hT (2) and hT (3) + π(1, 1, 1).

Similarly, neither [3,h−1π(0, 1, 0), 3] nor [3,−h−1π(0, 1, 0), 3] is a node in the SR-boundary
graph, hence, there is no edge between hT (3) + π(1, 0, 1) and hT (3) + π(1, 1, 1) in the tile-
refinement-connectivity graph. We conclude that tile-refinement-connectivity graph of T (2)
contains an isolated node hT (3) + π(1, 0, 1). By Theorem 4.8, this proves that T (2) is not
connected, as suggested by the picture in Figure 5.6. The same figure also contains the tile-
connectivity graph as well as the tile-refinement-connectivity graph of T (2).
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5.4. Contact graphs

In the present section we have to assume that the faces [π(x), i] have a geometric interpre-
tation as polyhedra that induce a tiling of Hc. If σ is irreducible this is always true in view of
Remark 3.3. Indeed, in this case the union of the faces contained in the set Γsrs forms a tiling
related to a discrete approximation of the beta-contracting space Hc (see for instance [38]). In
the case of reducible substitutions it is not known whether such a geometric interpretation is
always possible (see [61]). Only for some special instances like for the substitution σ1 such an
interpretation is known (see [60]). In particular, for these examples we can associate a certain
polyhedron to each of the faces [π(x), i]. However, in the reducible case there is no univer-
sal construction known to obtain such polyhedra. They have to be constructed by separate
considerations for each of the known instances (cf. [60, 61]). So in this section we confine
ourselves to irreducible unit Pisot substitutions as well as reducible ones admitting a geometric
interpretation of their faces.

If the elements of Γsrs can be viewed as polyhedra then images of these faces under the
dual substitution E1 can be regarded as finite unions of such polyhedra which form a subset of
the discrete approximation of Hc mentioned before. Indeed, the dual substitution can be used
to define natural approximations of the central tile T and its subtiles T (i) (i ∈ A) in this case.
In particular, we set

Tm(i) := hmE1
m[0, i] (i ∈ A).

Comparing the definition of E1 with the set equation (2.6) we conclude from the theory of GIFS
(see Definition 2.3 and the remarks after it) that

(5.7) T (i) = lim
m→∞

Tm(i) (i ∈ A)

holds in Hausdorff metric. For this reason we call Tm(i) the (natural) m-th approximation of
T (i).

Contact graphs describe intersections between these approximations of tiles in the self-
replicating multiple tiling. Indeed, if the approximations Tm(i) + γ1 and Tm(j) + γ2 have
non-empty intersection for arbitrarily large m then we say that they have contact.

Definition 5.16 (Pre-contact graph). Let S ⊂ D be finite. The pre-contact graph of S is
denoted by G̃(C)(S). It the largest5.4 graph such that

(1) The nodes of G̃(C)(S) belong to D.
(2) There is an edge between two nodes [i1, γ1, i2] and [j1, γ2, j2], labelled by e if and only

if the relation (5.3) is satisfied.
(3) Every node belongs to a path ending in a node in S.

Proposition 5.17. For every finite S ⊂ D, the pre-contact graph is finite.

This is proved in [124]. We give a sketch of the proof in the Appendix.
Now we can state the main properties of contact graphs. The first result is proved in [124].

We recall the proof in the Appendix.

Proposition 5.18. Let G̃(C)(S) be a pre-contact graph and [i, γ, j] ∈ S. [i, γ, j] is a node
of G̃(C)(S) which is the starting point of an infinite path if and only if the approximations
Tn(i) and Tn(j) + γ have nonempty intersection for arbitrarily large n. As a consequence, T (i)
and T (j) + γ have nonempty intersection, so that [i, γ, j] is also a node of the boundary graph
G(B)(S).

For a directed graph G denote by Red(G) the graph emerging from G by successively
removing all nodes which are not the starting point of an infinite walk.

5.4The meaning of “largest” is explained in Definition 5.1.
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Definition 5.19 (Contact graph). Let G̃(C)(S) be the pre-contact graph of S. Then the
contact graph of S is defined by

G(C)(S) := Red(G̃(C)(S)).

Proposition 5.18 now implies that when [i, γ, j] is a node of the contact graph, not only
the tiles T (i) and T (j) + γ do intersect, but this intersection can already be “seen” in their
approximation. We say in this case that T (i) and T (j) + γ have contact instead of being only
neighbors in the tiling.

Let

Scont := {[i, γ, j] ∈ D; Ld−2([0, i] ∩ [γ, j]) > 0}
(Lk denotes the k-dimensional Lebesgue measure; [γ, j] stands for a polygonal face as in Def-
inition 3.2). We define the self-replicating contact graph (SR-contact graph for short) as the
contact graph with respect to this set, i.e.,

G(C)
srs = G(C) (Scont) .

Theorem 5.20. Let σ be an irreducible primitive unit Pisot substitution.
Let [i, γ, j] ∈ Scont. Let C[i, γ, j] denote the non-empty compact sets that are uniquely

defined by the GIFS

C[i, γ, j] =
⋃

[i,γ,j]
e−→[i1,γ1,j1] in G(C)

srs

hC[i1, γ1, j1] + e

which is directed by the contact graph G(C)
srs .

If the self-replicating multiple tiling is a tiling, then the boundary of the subsets of the central
tile is described by the sets C[i, γ, j], i.e.,

∂T (i) :=
⋃

[i,γ,j]∈G(C)
srs

[i,γ,j]6=[i,0,i]

C[i, γ, j] ∪
⋃

[j,0,i]∈G(C)
srs

j<i

B[j,0, i].

The proof of this result in given in [124] for the irreducible case. The remaining cases
mentioned at the beginning of the present section can be treated in the same way. We can
understand better the structure of the subset C[i, γ, j] in this theorem.

Proposition 5.21. Suppose that σ is an irreducible primitive unit Pisot substitution that
satisfies the super-coincidence condition. Let C[i, γ, j] be the nonempty compact sets that are
defined in Theorem 5.20. Then for every [i, γ, j], we have C[i, γ, j] ⊂ T (i) ∩ (T (j) + γ).

Proof. (see [124, Section 4]). In Proposition 5.18 we saw that the nodes of the contact
graph G(C)

srs form a subgraph of the boundary graph G(B)
srs . Thus

C[i, γ, j] ⊂ B[i, γ, j] = T (i) ∩ (T (j) + γ)

and we are done. ¤

Despite the SR-contact graph is not always defined it is often more convenient to apply
this graph rather than the SR-boundary graph. Note that all nodes in the SR-contact graph
correspond to intersections of the shape Tm(i) ∩ Tm(j) + γ which are nonempty for m large
enough. However, if this intersection is nonempty for m ≥ m0 then T (i) ∩ T (j) + γ is also
nonempty. This follows from Proposition 5.21 together with the definition of the Hausdorff
limit.
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Figure 5.7. The dark nodes in the graph depicted in this figure shows the
SR-contact graph of the substitution σ4. The whole graph is the SR-boundary
graph. In this example the SR-contact graph is a proper subgraph of the
SR-boundary graph.

Thus the SR-contact graph is a subgraph of the SR-boundary graph. In [124] the SR-
contact graphs of the class (b ≥ a ≥ 1)

σ(1) = 1 . . . 1︸ ︷︷ ︸
b times

2

σ(2) = 1 . . . 1︸ ︷︷ ︸
a times

3

σ(3) = 1

of irreducible Pisot substitutions have been calculated. The number of their nodes is uniformly
bounded by 20. On the other hand, numerical evidence suggests that the number of nodes of
the associated SR-boundary graphs becomes arbitrarily large within this class. This is due to
the fact that approximations of central tiles often behave much more nicely than the central
tiles themselves. Taking the limit may increase the number of neighbors considerably.

In the following example we deal with the choice a = b = 4 of the above class. This
corresponds to our example σ4.

Example 5.22. Consider the substitution σ4. Its SR-contact as well as SR-boundary graph
is depicted in Figure 5.7. One can see that the contact graph without one isolated node is a
proper subgraph of the SR-contact graph.

5.5. Triple points and connectivity of the boundary

We generalize the definition of boundary graphs to describe intersections between three
tiles. We will restrict to the self-replicating tiling, but the definition also holds in the lattice
tiling setting. We are interested in intersections of three distinct tiles of a tiling. Hence, we set

T = {[i, γ1, j, γ2, k] ∈ A× π(Zn)×A× π(Zn)×A; [0, i], [γ1, i], [γ2, k] are all distinct}.
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We first reduce the set of all the possible intersections.

T =





[i, γ1, j, γ2, k] ∈ T
γ1 = π(x1), γ2 = π(x2)
x1,x2 ∈ Zn

;

∣∣∣∣∣∣

0 ≤ 〈x1,vβ〉 ≤ 〈x2,vβ〉
if γ1 = 0 then i < j
if γ2 = γ1 then j < k



 .

We need to prove that the set T is enough to describe all the possible intersections of three
tiles in a tiling. The proof is a case study, it is done in the Appendix.

Lemma 5.23. We define an equivalence relation on T by: [i, γ1, j, γ2, k] 't [i′, γ′1, j
′, γ′2, k

′] if
and only if the sets {ei, ej +γ1, ek +γ2} and {ei′ , ej′ +γ′1, ek′ +γ′2} are equal up to a translation
vector. Then the set T is a quotient set for the equivalence relation 't: for every [i, γ1, j, γ2, k],
there exists a unique element in T, denoted by φT([i, γ1, j, γ2, k]) such that [i, γ1, j, γ2, k] 't

φT([i, γ1, j, γ2, k]).
We denote by e([i, γ1, j, γ2, k]) ∈ {0, γ1, γ2} the translation difference between [i, γ1, j, γ2, k]

and its representant. This vector satisfies:

〈e([i, γ1, j, γ2, k]),vβ〉 = min{0, 〈x1,vβ〉, 〈x2,vβ〉} (π(xk) = γk, xk ∈ Zn, k = 1, 2).

Coming back to the intersection between three tiles, let T [i, γ1, j, γ2, k] denote the intersec-
tion

T [i, γ1, j, γ2, k] = T (i) ∩ (T (j) + γ1) ∩ (T (k) + γ2) .

The previous lemma implies that intersections for equivalent triples are equal up to a
translation vector, in particular

(5.8) T [i, γ1, j, γ2, k] = TφT([i, γ1, j, γ2, k]) + e([i, γ1, j, γ2, k]).

Then we can reduce the study of triple intersections to the set T.

Definition 5.24 (Triple point graph). The triple point graph of σ is denoted by G(T ). It
is the largest5.5 graph such that

(1) If [i, γ1, j, γ2, k] is a node of G(T ), then [i, γ1, j, γ2, k] ∈ T and

(5.9) max{||γ1||, ||γ2||} ≤ 2max{||πl(p)||; (p, a, s) ∈ P}
1−max{|β(j)|; j = 2 . . . d} .

(2) There is an edge between two nodes [i, γ1, j, γ2, k] and [i′, γ′1, j
′, γ′2, k

′] if and only if
there exists [i, γ1, j, γ2, k] ∈ T and (p0, a0, s0), (p1, a1, s1), (p2, a2, s2) ∈ P such that





[i′, γ′1, j
′, γ′2, k

′] = ΦT[i, γ1, j, γ1, k]
a0 = i and p0a0s0 = σ(i)
a1 = j and p1a1s1 = σ(j)
a2 = k and p2a2s2 = σ(k)
hγ1 = γ1 + πl(p1)− πl(p0)
hγ2 = γ2 + πl(p2)− πl(p0).

The edge is labelled by e ∈ {πl(p0), πl(p1) + γ1, πl(p2) + γ2} defined so that

〈e,vβ〉 = min{〈l(p0),vβ〉, 〈l(p1) + x1,vβ〉, 〈l(p2) + x2,vβ〉}, with π(x1,2) = γ1,2, x1,2 ∈ Zn.

(3) Every node belongs to an infinite path starting from a node [i, γ1, j, γ2, k] such that
[γ1, j] ∈ Γsrs and [γ2, k] ∈ Γsrs.

With a treatment similar to the boundary graph, we prove that this graph is finite and
identifies triple points in the self-replicating multiple tiling (see the proof in the Appendix).

5.5The meaning of “largest” is explained in Definition 5.1.
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Figure 5.8. The triple point graph for the substitution σ0. There are 23
nodes, with the shape [i, γ1, j, γ2, k], corresponding to an intersection between
T (i), T (j) + γ1 and T (k) + γ2. In this case there are 23 infinite paths in
the triple point graph. However, notice that some triple intersections might
coincide (see Example 5.27 and Remark 5.30).

Theorem 5.25. The triple point graph is finite.
Let [i, γ1, j, γ2, k] ∈ T be such that [γ1, j] ∈ Γsrs and [γ2, k] ∈ Γsrs. The tiles T (i), T (j)+γ1

and T (k) + γ2 have a nonempty intersection if and only if φT([i, γ1, j, γ2, k]) is a node of the
triple point graph.

A point x belongs to the intersection T (i) ∩ (T (j) + γ1) ∩ (T (k) + γ2) if and only if there
exists an infinite path starting from φT([i, γ1, j, γ2, k]) and labelled by (e(k))k≥0 such that

(5.10) x = e([i, γ1, j, γ2, k]) +
∑

k≥0

hke(k).

As in the case of boundary graphs (see Definition 5.10) we need to define essentially different
paths in a triple point graph.

Definition 5.26. Two infinite paths in the triple point graph are called essentially different
if their labels correspond to different points in their h-ary expansion (5.10).

Example 5.27. The triple point graph for the substitution σ0 is depicted in Figure 5.8.
It contains 23 nodes. However, the tiling depicted in Figure 3.3 suggests that there are only
12 triple intersections. The difference between observation and computation comes from the
existence of quadruple points: if four pairwise distinct tiles T (i1), T (i2) + γ2, T (i3) + γ3,
T (i4) + γ4 intersect in the same point x, with γ2, γ3, γ4 6= 0, then three different nodes in the
triple point graph correspond to this intersection, namely φT[i1, γ2, i2, γ3, i3], φT[i1, γ2, i2, γ4, i4],
φT[i1, γ3, i3, γ4, i4]. Moreover, from each of these nodes there leads away an infinite walk corre-
sponding to x so that there are also three walks corresponding to x.

In the next section, the computation of the quadruple point graph will confirm that this
phenomenon explains why there are 23 nodes in the graph but only 12 visible triple points in
the tiling.

The triple point graph is useful to detect intersections between the parts of the boundary
of a tile T (i): according to Theorem 5.7, ∂T (i) can be represented as a finite union of pieces of
the shape T (j1) ∩ (T (j2) + γ). The boundary-connectivity graph contains information about
intersections between these pieces.
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Figure 5.9. The boundary connectivity graphs for the tiles T (1), T (2), T (3),
T (4) associated to the substitution σ0. Each node corresponds to an inter-
section T (i) ∩ T (j) + γ that appears in the decomposition of the boundary of
T (i). An edge between two nodes means that the two corresponding pieces in
the boundary intersect. Therefore, the first graph confirms that T (1) can be
described with 6 pieces that each have two adjacent pieces, as suggested in the
picture of the tile.

Definition 5.28 (Boundary-connectivity graph). Let i ∈ A. The boundary-connectivity
graph of T (i) admits for nodes the sets of the shape T (i) ∩ (T (j2) + γ) that are not reduced
to a single point and that appear in the decomposition of the boundary of T (i) according to
Theorem 5.7. Each two of them are connected by an edge if and only if they have nonempty
intersection.

According to Theorem 5.7, the nodes of the boundary-connectivity graph of T (i) are the
nodes of the shape [i, γ, j] ∈ G(B)

srs or [j,0, i] ∈ G(B)
srs , with j > i. We remove from this set the

nodes from which there is a unique outgoing path in the SR-boundary graph. To determine
whether there is an edge between [i1, γ1, j1] and [i2, γ2, j2], we notice that among the four pairs
[0, i1], [γ1, j1], [0, i2], [γ2, j2], there are exactly three different pairs, [0, i], [γ′1, j

′
1] and [γ′2, j

′
2],

say. Then we put an edge between the two nodes if and only if the triple point graph contains
the node φT[i, γ′1, j

′
1, γ

′
2, i

′
2].

Example 5.29. Let us consider again the substitution σ0. According to Example 5.11, the
boundary ∂T (1) is the union of six different pieces that are not reduced to a single point. Their
intersections are checked by using the triple point graph, issuing in the boundary-connectivity
graph of T (1) depicted in Figure 5.9 together with the boundary-connectivity graphs for T (2),
T (3) and T (4).

It is often necessary to decide whether a given intersection B[i, γ, j] contains at least two
points or not. This is equivalent to the existence of two essentially different paths leading away
from the node [i, γ, j] in the SR-boundary graph. In practice, this can often be decided very
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easily (see for instance in Example 5.34). However, we want to show that it can always be done
algorithmically.

Proposition 5.30. Consider a node N in the SR-boundary graph, the triple point graph
or the quadruple point graph.

• If an infinite number of paths lead away from the node N , then the intersection of
tiles associated with the node N contains an infinite number of different points.

• If from the node N there lead away only a finite number of paths, then each of these
paths is ultimately periodic. Consequently, the point described by each path can be
explicitly computed and compared to the others. This allows to decide in a finite time
whether the corresponding intersection is a single point or not.

The proof is given in the Appendix.

5.6. Quadruple points and connectivity of pieces of the boundary

We build a new graph to describe quadruple intersections in the self-replicating tiling. As
mentioned in Example 5.27 and in Proposition 5.30 this graph is useful in order to decide
whether two paths in the triple point graph are essentially different. Moreover, it will be used
for checking the sufficient condition for the disklikeness of subtiles of T and in the description
of their fundamental group. In order to proceed, we need a description of intersections between
four tiles in the self-replicating tiling. We set

Q = {[i, γ1, j, γ2, k, γ3, l] ∈ A× π(Zn)×A× π(Zn)×A× π(Zn)×A;
[0, i], [γ1, i], [γ2, k] [γ3, l] are all distinct}.

Similar to the triple point graph, we reduce the set of all possible intersections to a set of unique
representants (up to a translation) Q. The mapping from an intersection to its representant
is denoted by φQ. After that we define a quadruple point graph G(Q) that allows to describe
intersections between four distinct tiles in the self-replicating tiling. Precise definitions and
proofs are given in the Appendix.

Theorem 5.31. The quadruple point graph is finite. Let [i, γ1, j, γ2, k, γ3, l] ∈ Q. Then the
tiles T (i), T (j) + γ1, T (k) + γ2 and T (l) + γ3 have a nonempty intersection if and only if the
quadruple point graph contains the node φQ[i, γ1, j, γ2, k, γ3, l].

Each point of the intersection T (i)∩ (T (j) + γ1)∩ (T (k) + γ2)∩ (T (l) + γ3) corresponds to
an infinite path starting in one of these nodes.

Example 5.32. The quadruple point graph for the substitution σ0 is depicted in Fig-
ure 5.10. There are 5 quadruple intersections, as suggested by the tiling illustration in this
figure. Since a unique path starts from each node, each node corresponds to an intersection
of four tiles which contains one single point. It is easy to see that each infinite path in the
quadruple point graph corresponds to a point that is different from the others. The quadruple
points are depicted in Figure 5.10.

We use the quadruple point graph in order to decompose the pieces of the boundary of each
tile: by (5.5) the intersections B[i, γ, j] = T (i) ∩ (T (j) + γ) are the solutions of a GIFS.

Definition 5.33 (Boundary-refinement connectivity graph). Let [i, γ, j] be a node of the
SR-boundary graph such that T (i) ∩ (T (j) + γ) is not equal to a single point. The boundary-
refinement connectivity graph of T (i)∩ (T (j)+γ) admits for nodes the sets in the union on the
right hand side of (5.5) that are not equal to a single point. Each two of them are connected
by an edge if and only if they have nonempty intersection.

Concretely, the nodes of the graphs have the shape e(1) + h(T (i1) ∩ (T (j1) + γ1)), where

[i, γ, j] e(1)

−−→ [i1, γ1, j1] is an edge in the SR-boundary graph. There is an edge between e(1) +
h(T (i1)∩ (T (j1)+γ1)) and e(2) +h(T (i2)∩ (T (j2)+γ2)) if and only if φQ[i1, γ1, j1,h−1(e(2)−



48 5. SEVERAL GRAPHS THAT CONTAIN TOPOLOGICAL INFORMATION ON THE CENTRAL TILE

Figure 5.10. The quadruple point graph for the substitution σ0. There are
5 nodes, with the shape [i, γ1, j, γ2, k, γ3, l], corresponding to an intersection
between T (i), T (j) + γ1, T (k) + γ2 and T (l) + γ3. In this case there are 5
quadruple intersections. Since a unique path goes out from each node, quadru-
ple intersections are single points. They are all different and marked by black
dots on the tiling picture on the left hand side.

e(1)), i2, γ2 + h−1(e(2) − e(1)), j2)] is a node of the quadruple point graph (or the triple point
graph if two of the pairs [0, i1], [γ1, j1], [h−1(e(2)−e(1)), i2], [γ(2) +h−1(e(2)−e(1), j2] coincide).

5.7. Application of the graphs to the disklikeness criterion

According to Theorem 4.12, checking whether the tile T (i) is homeomorphic to a disk
amounts to checking the following three conditions.

(1) Each boundary-connectivity graph is a simple loop.
(2) Each boundary-refinement connectivity graph is either empty or a single node or a

line.
(3) Each intersection between three distinct tiles of the self-replicating tiling is either

empty or a single point.

Example 5.34. Let us consider again the substitution σ0(1) = 112, σ0(2) = 113, σ0(3) = 4,
σ0(4) = 1. We want to show in this example that each subtile T (i) (1 ≤ i ≤ 4) of the central
tile T of σ0 is homeomorphic to a closed disk. To this matter we have to check the Items (1),
(2) and (3) above.

Checking (1): The boundary-connectivity graphs of T (i) (1 ≤ i ≤ 4) are depicted in
Figure 5.9. Since they are all simple loops Item (1) is satisfied.

Checking(2): Checking the SR-boundary graph depicted in Figure 5.2 we verify the
following assertions.
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• The SR-boundary graph has 6 nodes having a unique outgoing path. Each of
the corresponding intersection is therefore a single point. Thus the boundary-
refinement connectivity graph is empty.

• The SR-boundary graph has 7 additional nodes having a single outgoing edge
leading to several paths some of which are pairwise different. Their boundary-
refinement connectivity graph is thus a single node.

• The SR-boundary graph has 4 nodes having two outgoing edges. Their boundary-
refinement connectivity graph is either a pair of nodes linked by a single edge, or
a single node (depending on whether the paths are essentially different or not).

• The SR-boundary graph has 4 remaining nodes that have at least three outgoing
edges. These are the nodes [1, π(0, 1,−1, 0), 1], [1, π(1,−1, 1, 0), 1], [2, π(1,−1,
0, 0), 1] and [1, π(0, 1, 0, 0), 1]. Following (5.5), we obtain the GIFS decomposition
of the boundary piece corresponding to the first node. It reads

B[1, π(0, 1,−1, 0), 1] = hB[2, π(1,−1, 0, 0), 1] ∪ hB[2, π(1,−1, 0, 0), 1] + π(1, 0, 0, 0)
∪hB[2, π(1,−1, 0, 0), 4] ∪ hB[1, π(0, 0, 1, 0), 2] + π(0, 1,−1, 0)
∪hB[1, π(0, 0, 1, 0), 1] + π(0, 1,−1, 0).

In this decomposition, the last piece hB[1, π(0, 0, 1, 0), 1] + π(0, 1,−1, 0) is a sin-
gle point. Therefore, we do not take it into account in the boundary-refinement
connectivity graph. This latter graph thus contains 4 nodes. Intersections be-
tween the corresponding pieces of the central tile are checked by using the triple
point graph and the quadruple point graph. The result is shown in Figure 5.11.
Similarly, B[1, π(1,−1, 1, 0), 1] is made of 5 distinct pieces by the GIFS equa-
tion; 2 pieces among these 5 correspond to single points and are not relevant
to the boundary-refinement connectivity graph. Finally B[1, π(0, 1, 0, 0), 1] and
B[2, π(1,−1, 0, 0), 1] have a GIFS decomposition in three pieces each; in each
case, one piece of the three pieces is reduced to a single point). Their boundary-
refinement graphs are depicted in Figure 5.11.

Summing up we get that all the boundary-refinement graphs are either empty or single
points or lines. Thus Item (2) is satisfied.

Checking (3): In order to apply Theorem 4.12, we finally have to check that each
intersection between three distinct tiles is empty or equal to a single point. Although
the triple point graph will be our main tool, we will also use quadruple intersections
as an auxiliary tool to show that this item is satisfied by σ0. Observe that each
quadruple intersection is a single point as a unique path leads away from each node
of the quadruple point graph (see Figure 5.10).

We only have to check intersections which correspond to nodes of the triple point
graph, as all the other triple intersections are empty. In the triple point graph, all
nodes but three have a unique outgoing path. These exceptional nodes are [1,0, 4,
π(0, 1, 0, 0), 1], [1, π(0, 0, 1, 0), 2, π(1,−1, 1, 0), 1] and [2, π(1,−1, 0, 0), 1, π(1,−1, 0, 0),
4]. As outlined in Proposition 5.30 we show that each of these intersections is a single
point by inspecting the quadruple point graph. Indeed, for these three nodes, we
write the GIFS decomposition of the corresponding intersection and get the following
equations.

T [1,0, 4, π(0, 1, 0, 0), 1] = hT [1,0, 3, π(0, 1,−1, 0), 1]
∪ hT [2,0, 3, π(0, 1,−1, 0), 1],

T [2, π(1,−1, 0, 0), 1, π(1,−1, 0, 0), 4] = hT [1,0, 3, π(0, 1,−1, 0), 1] + π(0, 1,−1, 0)
∪ hT [2,0, 3, π(0, 1,−1, 0), 1] + π(0, 1,−1, 0),

T [1, π(0, 0, 1, 0), 2, π(1,−1, 1, 0), 1] = hT [1, π(0, 0, 1, 0), 2, π(0, 1, 0, 0, 1]
∪ hT [1, π(0, 0, 1, 0), 1, π(0, 1, 0, 0, 1].
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Figure 5.11. Nontrivial boundary-refinement connectivity graphs for the sub-
stitution σ0. We considered the graph for the nodes of the SR-boundary graph
that have at least three targets in the graph.

Here we remark that each piece appearing in the right part of the equations is equal
to a single point, since a unique path leaves away from the corresponding node in the
triple point graph. Additionally, we have

T [1,0, 3, π(0, 1,−1, 0), 1] ∩ T [2,0, 3, π(0, 1,−1, 0), 1] = Q[1,0, 2,0, 3, π(0, 1,−1, 0), 1],

and this node appears in the quadruple point graph.
Hence the intersections T [1,0, 3, π(0, 1,−1, 0), 1] and T [2,0, 3, π(0, 1,−1, 0), 1] are e-
qual and correspond to the quadruple intersection Q[1,0, 2,0, 3, π(0, 1,−1, 0), 1]. How-
ever, as from each node in the quadruple point graph there leads away only one sin-
gle path, Q[1,0, 2,0, 3, π(0, 1,−1, 0), 1] is a single point. Thus also the intersection
T [1,0, 4, π(0, 1, 0, 0), 1] is a single point. One checks in the same way that the same is
true for the two others triple intersections that have more than one outgoing walk in
the triple point graph. Thus Item (3) is satisfied.

Summing up we see that the conditions for disklikeness are satisfied. Therefore, each of the
subtiles T (1), . . . , T (4) of σ0 is homeomorphic to a closed disk. It is not hard to check that the
same is true for the central tile T .

Example 5.35. For σ1 a similar reasoning leads to the conclusion that each of the subtiles
T (1), . . . , T (5) as well as T is homeomorphic to a closed disk. From Figure 3.1 we see that
in this case there exist even 5-tuple points. Even if, according to Proposition 5.30 the 5-tuple
graph would be needed in order to check that the triple intersections are single points, this can
be proved in practice much easier by inspecting the different representations derived from the
(finitely many) infinite paths of the triple point graph.



CHAPTER 6

Exact statements and proofs of the main results

In this chapter we give the exact statements of the main results of the present monograph
that were already announced in Chapter 4. Moreover, we provide full proofs of all the results.

6.1. Tiling properties

Theorem 4.1 is proved in [119] for the SR-boundary graph. The proof of the analogous
result using the contact graph runs along the same lines.

6.2. Dimension of the boundary of the subtiles T (i) (i ∈ A)

The GIFS description of the boundaries ∂T (i) (i ∈ A) contained in Theorems 5.7 and 5.20
allow to compute its box counting dimension as proved for the irreducible case in [124, Propo-
sition 5.7 and Theorem 5.9]. This directly implies Theorem 4.3 for the contact graph in the
irreducible case. By arguing in the same way as in [124, Section 5] one can easily see that we
can substitute the contact graph by the SR-boundary graph G(B)

SR in Theorem 4.3. The reducible
case is shown in exactly the same way. All we need in the proof is a GIFS decomposition of
the boundary. This is given by the SR-boundary graph in the irreducible as well as in the
reducible case. The formula of the box counting dimension including the contact graph works
in the reducible cases only if the contact graph is defined (see Section 5.4 for details).

6.3. Inner points of T and the geometric property (F)

We have introduced in Chapter 3.1.2 the so-called geometric property (F). Now we want to
dwell upon the relation of this property to the localization of 0 in the central tile. In particular,
we shall give the proofs of Theorems 4.5 and 4.6.

Let Int∗(T ) be the set of exclusive inner points of the patch T = T (1) ∪ . . . ∪ T (n) in the
self-replicating tiling.

Proof of Theorem 4.5. Suppose first that the geometric property (F) holds: for all
[γ, i] ∈ Γsrs, γ has a finite h-ary representation γ = h−mπl(p−m) + · · · + h−1πl(p−1), where
(pk, ik, sk)−m≤k<0 is a finite walk in the prefix-suffix graph that ends at i = i0.

Suppose now that α ∈ T (i) + γ with [γ, i] ∈ Γsrs. Then, by considering the h-ary repre-
sentation of α− γ given in (2.7), we obtain

(6.1) α ∈ T (i) + γ ⇐⇒ α =
∞∑

k=−m

hkπl(pk)

where (pk, ik, sk)k≥−m is the labelling of a walk in the prefix-suffix graph such that i0 = i.
Suppose that 0 6∈ Int∗(T ). Then 0 is not an exclusive point of the patch T = T (1) ∪ . . . ∪

T (n). Indeed, if it was an exclusive point of this patch then 0 6∈ Int∗(T ). Thus 0 ∈ ∂T . But
since T is a patch of the self-replicating multiple tiling there exists [γ, i] ∈ Γsrs with γ 6= 0 such
that 0 ∈ T (i) + γ.

In view of (6.1) the existence of [γ, i] ∈ Γsrs with γ 6= 0 and 0 ∈ T (i) + γ is equivalent to
the existence of a representation of the shape

0 =
∞∑

j=−m

hjπl(pj).

51
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Multiplying this equation by h−k yields 0 =
∑∞

j=−m hj−kπl(pj). Applying (6.1) again this

implies that 0 ∈ T (ik) +
∑m+k

`=1 h−`πl(pk−`) holds for each k ∈ N, a contradiction to the
local finiteness of self-replicating multiple-tiling Γsrs (note that the representations in (3.6) are
unique; thus each k yields a different value of the sum).

Now suppose on the contrary that the geometric property (F) does not hold. This implies
that there exists

[γ0, i0] ∈ Γsrs \
⋃

m≥0

Em
1 (U).

Note that this assures that γ0 6= 0. Since Proposition 3.5 implies that E1(Γsrs) = Γsrs we can
define a sequence ([γk, ik])k≥1 of elements of Γsrs with

[γk, ik] ∈ E1([γk+1, ik+1]) (k ≥ 0).

By the definition of E1 (recall in particular the contraction ratio (2.2) of the mapping h) this
yields

||γk+1|| ≤ max{|β(j)|; j = 2, . . . , d}||γk||+ max{πl(p); (p, a, s) ∈ P}.
Since Γsrs is a Delauney set by Proposition 3.7 there exists a K ∈ N such that

(6.2) ||γk|| ≤ max{πl(p); (p, a, s) ∈ P}
1−max{|β(j)|; j = 2, . . . , d} for k ≥ K

(note that without the Delauney property we would get a slightly weaker bound). Again because
Γsrs is a Delauney set there exist only finitely many [γ, i] ∈ Γsrs satisfying the inequality in
(6.2). For the sequence ([γk, ik])k≥0 this means that there is a K ′ > K and a p > 0 such that

(6.3) [γK′ , iK′ ] = [γK′+p, iK′+p].

Now observe the following facts. Firstly, the definition of E1 implies that γ0 admits a represen-
tation of the shape

γ0 = h−K′
γK′ + h−K′

p0 + · · ·+ h−1pK′−1.

Note that γK′ 6= 0 because otherwise γ0 ∈
⋃

m≥0 Em
1 (U) would hold contrary to our assump-

tion. Secondly, the (nonzero) element γK′ admits by (6.3) and by the definition of E1 the
representation

γ0 = h−pγK′ + h−ppK′ + · · ·+ h−1pK′+p−1.

However, by the definition of the zero-expansion graph G(0) this is equivalent to the existence
of a loop

γK′ → γK′+p−1 → · · · → γK′+1 → γK′

in G(0). In view of Proposition 5.2 this implies that 0 ∈ T (iK′)+γK′ . Since γK′ 6= 0 this yields
0 6∈ Int∗(T ) and we are ready.

¤

Proof of Theorem 4.6. The fact that the zero-expansion graph only contains nodes of
the shape [0, i] (i ∈ A) is equivalent to 0 ∈ Int∗(T ) by Proposition 5.2. But by Theorem 4.5,
0 ∈ Int∗(T ) is equivalent to the geometric property (F) and we are done. ¤

6.4. Connectivity

We need the following definitions.

Definition 6.1. Let {Q1, . . . , Qν} be a finite collection of subsets.
• We say that {Q1, . . . , Qν} (ν ≥ 1) forms a finite chain joining Q1 and Qν if Qi∩Qi+1 6=
∅ for each i ∈ {1, . . . , ν − 1}.

• We say that {Q1, . . . , Qν} (ν ≥ 1) forms a regular chain, if |Qi ∩ Qi+1| = 1 for each
i ∈ {1, . . . , ν + 1} and Qi ∩Qj = ∅ if |i− j| ≥ 2.

• We say that {Q1, . . . , Qν} (ν ≥ 2) forms a circular chain, if |Qi ∩Qi+1| = 1 for each
i ∈ {1, . . . , ν + 1}, |Qν ∩Q1| = 1 and Qi ∩Qj = ∅ if 2 ≤ |i− j| ≤ ν − 2.
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In [91] the following result on the connectivity of GIFS was shown.

Lemma 6.2 ([91, Theorem 4.1]). Let S = S1 ∪ . . . ∪ Sq be a GIFS with graph G(V,E) and
contractions Fe (e ∈ E) and set

Ei := {Fe(Sj) ; e is an edge from i to j in G(V, E)}.
Then Sj is a locally connected continuum (or a single point) for each j ∈ {1, . . . , q} if and only
if for each i ∈ {1, . . . , q} and each pair X1, X2 ∈ Ei there exists a finite chain C in Ei joining
X1 and X2.

We can use Lemma 6.2 in order to derive the criterion given in Chapter 3 for the connectivity
of T (a).

Proof of Theorem 4.8. Let i ∈ A and let Ei be the set of all tiles whose union is equal
to h−1T (i), i.e.,

Ei = {T (j) + γ; ∃ (p, s), σ(j) = pis and γ = h−1π(l(p))}.
By its definition, every pair of tiles T (j1) + γ1, T (j2) + γ2 ∈ Ei do intersect if and only if the
T (i)-connectivity graph contains an edge between hT (j1) + γ1 and hT (j2) + γ2.

Hence, a sequence of tiles T (c`) + α` ∈ Ei (1 ≤ ` ≤ k) is a finite chain in Ei if and only
if the T (i)-connectivity graph is connected. The part concerning the sets T (i) of Theorem 4.8
follows from Lemma 6.2 (note that the single point case is excluded since T (i) is the closure of
its interior).

The part concerning T is now easy. What we proved until now ensures that the T (i) are
connected. The connectivity of the T -connectivity graph ensures that the connected sets T (i)
(i ∈ A) form a finite chain. Thus their union is connected by standard plane topology. ¤

6.5. Homeomorphy to a closed disk

6.5.1. Necessary condition coming from the lattice tiling property. We start with
a very simple criterion that allows to conclude that a certain central tile T is not homeomorphic
to a closed disk. Suppose that T is homeomorphic to a closed disk. Suppose further that T
admits a tiling of R2 with respect to a lattice Γ. In Bandt and Gelbrich [27, Section 5] it is
shown in a more general context6.1 that under these conditions the intersections (T +γ)∩(T +γ′)
(γ 6= γ′) are either empty or a single point or a simple arc. To identify such intersections, we use
the lattice boundary graph G(B)

lat defined in Chapter 5.2 and Proposition 5.12. More precisely,
[27, Lemma 5.1] implies the following result.

Lemma 6.3. Let σ be a primitive unit Pisot substitution whose dominant eigenvalue has
degree 3. Suppose that the lattice multiple tiling is a tiling (see Theorem 4.1). Suppose further
that the associated central tile T is homeomorphic to a closed disk. Then the central tile T has
at most eight neighbors. Moreover, it has at most six neighbors γ with the property

|T ∩ (T + γ)| > 1.

Now we may apply Proposition 5.12 in order to get the following simple criterion for a
central tile to be not homeomorphic to a closed disk.

Theorem 6.4. Let σ be a primitive unit Pisot substitution whose dominant eigenvalue has
degree 3. Suppose that the lattice multiple tiling is a tiling (see Theorem 4.1).

The central tile T is not homeomorphic to a closed disk as soon as at least one of the
following assertions is true.

• There exist pairwise disjoint γ1, . . . , γ9 such that the lattice boundary graph contains
states of the shape [ik, γk, jk] with [γk, jk] ∈ Γlat.

6.1In fact the arguments there are a bit heuristic. However, they can be made exact with little effort.



54 6. EXACT STATEMENTS AND PROOFS OF THE MAIN RESULTS

• There exist pairwise disjoint γ1, . . . , γ7 each of which satisfies the following property:
there exist at least two essentially different walks in the lattice boundary graph that
start in nodes of the shape [i, γk, j] with [γk, j] ∈ Γlat.

These conditions can obviously be checked algorithmically. Theorem 4.10 follows naturally.
Examples of application are given in Example 5.13. Note that in general Remark 5.30 is needed
in order to decide whether a given intersection contains more than one point.

6.5.2. Preliminary results on GIFS. In a next step we wish to give a criterion for a
GIFS to be homeomorphic to a closed disk. To this matter we need some preparations.

Let S1, . . . , Sq be solutions of a GIFS directed by a graph G(V, E) with V := {1, . . . , q}.
To each edge e ∈ E there is associated a contraction Fe. By Wi(ν) (i ∈ V , ν ∈ N) we denote
the set of walks in G starting at i and having length ν. Let w = e1 . . . eν ∈ Wi(ν). Then we set

Fw := Fe1 ◦ · · · ◦ Feν
.

We start with a variant of [71, Theorem 5.3] for GIFS.

Lemma 6.5. Let S1, . . . , Sq be solutions of a GIFS with injective contractions directed by
a graph G with set of vertices {1, . . . , q} and set of edges E. Let Ei be the set of edges in G
starting at i. Then

Si =
⋃

e:i
`−→j∈Ei

Fe(Sj)

with some injective contractions Fe (e ∈ E). Assume that the collection

Ci :=
{

Fe(Sj) ; e : i
`−→ j ∈ Ei

}

forms a regular chain for each i ∈ V . Then Si does not separate the plane.

Proof. Suppose that Si separates the plane for some i ∈ V . Since by Lemma 6.2 the set
Si is a locally connected continuum, there exists a simple closed curve C ⊂ Si which separates
the plane (cf. [82, §62, VI, Theorem 1]). Since C has positive diameter, there exists a maximal
ν ∈ N such that C ⊂ Fw(Sj) for some w ∈ Wi(ν). Fix this w. Since Fw is injective, we conclude
that D := F−1

w (C) is a simple closed curve satisfying

D ⊂ Sj .

By the assumptions we know that
Sj =

⋃

e∈Ej

Fe(Sk)

where the sets in the union form a regular chain. However, by the maximality of ν there exist
two different sets Fe1(Sk1) and Fe2(Sk2) with the property that

D ∩ (Fe1(Sk1) \ Fe2(Sk2)) 6= ∅ and D ∩ (Fe2(Sk2) \ Fe1(Sk1) 6= ∅) .

Thus there exist two different paths leading from a point in Fe1(Sk1) to a point in Fe2(Sk2)
contradicting the fact that Cj forms a regular chain. ¤

Furthermore, we need the following simple result about the refinement of circular chains.

Lemma 6.6. Let {Q1, . . . , Qν} be a circular chain. Suppose that Q1 can be represented as

(6.4) Q1 = R1 ∪ . . . ∪Rm,

where {R1, . . . , Rm} is a regular chain.
Then (possibly after reverting the order of the Ri) there exist 1 ≤ i ≤ j ≤ m such that

(6.5) {Ri, . . . , Rj , Q2, . . . , Qν}
forms a circular chain. Moreover, if i > 1 then

(6.6) |R1 ∩ (R2 ∪ . . . ∪Rm ∪Q2 ∪ . . . ∪Qν)| = 1
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and if j < m then
|Rm ∩ (R1 ∪ . . . ∪Rm−1 ∪Q2 ∪ . . . ∪Qν)| = 1.

Proof. From (6.4) we conclude that

∃i, j ∈ {1, . . . , m} : Ri ∩Qν 6= ∅, Rj ∩Q2 6= ∅.
If i and j are not unique choose them in a way such that the subchain {Ri, . . . , Rj} is as short
as possible. Furthermore, assume that {R1, . . . , Rm} is ordered in a way that i ≤ j holds.

It is now a routine matter to check that (6.5) is a circular chain. Firstly, it is clear that
Ri ∩ Qν , R` ∩ R`+1 (1 ≤ ` ≤ m − 1), Rj ∩ Q2 and Q` ∩ Q`+1 each contain exactly one point.
Furthermore, the unions Rk ∩ R` and Qk ∩Q` are empty if the indices differ by more than 1.
Since Rk ⊂ Q1 holds for each k ∈ {1, . . . , m} we have Q` ∩Rk = ∅ for ` 6∈ {2, ν}. It remains to
check

Q2 ∩R` = ∅ (` 6= j) and Qν ∩R` = ∅ (` 6= i).

If one of these unions were nonempty, this would contradict the fact that we have chosen i and
j in a way that the subchain {Ri, . . . , Rj} is as small as possible.

For the second assertion assume that i > 1. Then, since {R1, . . . , Rm} forms a regular chain,
R1 ∩ R2 = {p} and R1 ∩ R` = ∅ for ` > 2. Because R1 ⊂ Q1 we conclude that R1 ∩Q` = ∅ if
` ∈ {3, . . . ν − 1}. It remains to check the intersections R1 ∩Q2 and R1 ∩Qν .

Suppose that the intersection R1 ∩Q2 is nonempty. Then it can contain at most one point
q, say. Because Ri ∩Q2 6= ∅ for some i > 1 and |(R1 ∪Ri)∩Q2| ≤ |Q1 ∩Q2| = 1 we must have

q ∈ (R1 ∩Q2) ∩ (Ri ∩Q2).

Thus R1 ∩ Ri 6= ∅ which implies that i = 2. Hence, q ∈ R1 ∩ R2 and thus q = p because this
intersection contains only one point. The intersection R1 ∩Qν is treated likewise by observing
that j ≥ i > 1. Thus p is the only point contained in the intersection (6.6).

Finally, the third assertion is proved in the same way as the first one. ¤

We now establish a criterion for the solution of a GIFS to be a simple closed curve. To
this matter we will use regular and circular chains, already used in [92, 94]. We will use the
following results from topology.

Lemma 6.7 (Janiszewski’s first theorem, see [82, §61, I, Theorem 7]). Suppose that M1 and
M2 are two subsets of R2 with |M1 ∩M2| = 1. If M1 ∪M2 separates the plane then the same
is true for M1 or M2.

Lemma 6.8 (cf. [82, §52, IV, Theorem 1]). If X ⊂ R2 is a locally connected continuum
containing no separating point and no θ-curve, then X is a simple closed curve (unless it is a
single point).

6.5.3. A sufficient condition for the subtiles T (i) (i ∈ A) to be homeomorphic
to a disk. We first give some preliminaries on GIFS. Because R2 is a Janiszewski Space (this
follows immediately from [82, §61, I, Theorem 2]) we get the following result.

Lemma 6.9. Let T ⊂ R2 be a set having the following properties.
• T is the closure of its interior.
• ∂T = S1 ∪ . . .∪ Sq where S1, . . . , SQ (Q ≥ q) are the solution of a GIFS directed by a

graph G(V,E) with V = {1, . . . , Q}.
• {S1, . . . , Sq} is a circular chain.
• The elements of the union

(6.7) Si =
⋃

e:i
`−→j

Fe(Sj) (1 ≤ i ≤ Q)

form a regular chain.
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Then
Kν1,...,νq

:= {Fw(Si) ; i ∈ V, w ∈ Wνi
(i)}

is a circular chain.

Remark 6.10. Note that iteration of the GIFS equation for S1, . . . , Sq yields

∂T :=
⋃

Z∈Kν1,...,νq

Z.

Proof. The proof is done by induction on ν :=
∑q

i=1 νi. Let

Kν :=

{
Kν1,...,νq

;
q∑

i=1

νi = ν

}
.

The induction start is simple as the assertion is true for the only element {S1, . . . , Sq} of K0 by
assumption.

To perform the induction step assume from now that the assertion has already been proved
for all elements of Kν . We need to show that it is also true for all elements of Kν+1. Note that
each element K ∈ Kν+1 emerges from a circular chain K ′ ∈ Kν by replacing an

Fw(Si) ∈ K ′

by the collection

(6.8) {Fw◦e(Sj) ; e : i
`−→ j is an edge in G(V,E)}.

In view of Lemma 6.6 there are two possibilities for K.
(i) K is a circular chain. In this case we are ready.
(ii) There is a set X := Fw◦e0(Sj0) in the collection (6.8) such that, setting Y :=⋃

Z∈K\{X} Z we have
∂T = X ∪ Y

with X ∩ Y = {p}, a single point. Let x ∈ X \ Y . Since Y is a compact set there
exists ε > 0 such that

(6.9) Bε(x) ∩ Y = ∅.
Because T is the closure of its interior, x ∈ ∂T implies the existence of x1, x2 ∈ Bε(x)
with x1 ∈ int(T ) and x2 ∈ R2 \ T . Thus ∂T separates x1 and x2. Lemma 6.7 now
implies that X or Y separates x1 and x2. From (6.9) we immediately see that X
separates x1 and x2.

On the other hand, X ⊂ Si holds for some i ∈ V . Since the union in (6.7) forms
a regular chain, Lemma 6.5 implies that Si does not separate the plane. Thus also X
does not separate the plane, a contradiction.

So only case (i) can occur and, hence, Kν+1 contains only circular chains. This concludes the
induction proof. ¤

The following proposition is of interest in its own right. It provides a criterion for the
homeomorphy to a disk that is usable for large classes of IFS tiles as well as GIFS tiles. We will
use it to derive a criterion for the homeomorphy to a disk of the subtiles T (i) (i ∈ A) which
can be checked algorithmically by using the graphs we introduced in the previous chapter.

Proposition 6.11. Let T ⊂ R2 be a set having the following properties.
• T is the closure of its interior.
• ∂T = S1 ∪ . . .∪ Sq where S1, . . . , SQ (Q ≥ q) are the solution of a GIFS directed by a

graph G(V,E) with V = {1, . . . , Q}.
• {S1, . . . , Sq} is a circular chain.
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• The elements of the union

Si =
⋃

e:i
`−→j

Fe(Sj) (1 ≤ i ≤ Q)

form a regular chain.
Then ∂T is a simple closed curve and T is homeomorphic to a closed disk.

Remark 6.12. Let C′ be the subcollection of C = {S1, . . . , Sq} consisting of all Si with
#Si > 1. Lemma 6.11 and Proposition 6.9 remain true if we replace the condition C forms a
circular chain by the condition C′ forms a circular chain. This is true by the same arguments
as in the proof of Lemma 5.8.

Proof. We prove the result in three steps.
(i) Si is a locally connected continuum for each i ∈ V . This is a consequence of

Lemma 6.2.
(ii) ∂T = S1 ∪ . . . ∪ Sq contains no separating point. To see this assume on the contrary

that there exist p1, p2 ∈ ∂T which are separated by s ∈ ∂T . According to Lemma 6.9
there is a circular chain K ∈ Kν such that

diam C < ε

holds for each C ∈ K with

ε <
1
2

min(|p1 − p2|, |p1 − s|, |p2 − s|).
Thus there exist different sets Cp1 , Cp2 , Cs ∈ K with

p1 ∈ Cp1 \ (Cp2 ∪ Cs), p2 ∈ Cp2 \ (Cp1 ∪ Cs), s ∈ Cs \ (Cp1 ∪ Cp2).

Since K is a circular chain, Cp1 and Cp2 can be connected by elements of K \ {Cs}.
Because all elements of K are locally connected continua this implies that p and q can
be connected by an arc avoiding Cs and, hence, avoiding s, a contradiction.

(iii) ∂T contains no θ-curve. Let a1, a2, a3 be the simple arcs that form the θ-curve and
let pi ∈ int ai and s ∈ a1 ∩ a2 ∩ a3. Choose

ε <
1
2

min
i6=j

(|pi − pj |, |pi − s|).
By Lemma 6.9 there is a circular chain K ∈ Kν with

diam C < ε for all C ∈ K.

Choose C1, C2, C3, D ∈ K such that pi ∈ Ci and s ∈ D (by the choice of ε the sets
C1, C2, C3, D have pairwise empty intersection). Since K is a circular chain there exist
the subchains

C1 = E1 ↔ E2 ↔ · · · ↔ E`1 ↔ D,

C2 = F1 ↔ F2 ↔ · · · ↔ F`2 ↔ D,

C3 = G1 ↔ G2 ↔ · · · ↔ G`3 ↔ D.

Suppose first that Ei, Fj , Gk are pairwise distinct elements of K. Then D has nonemp-
ty intersection with each of the sets E`1 , F`2 , G`3 which is impossible for the elements
of a circular chain.

If these elements are not pairwise distinct elements of K we may assume w.l.o.g.
that there exist j, k > 1 minimal, such that Ej = Fk. In this case the set Ej has
(setting E`1+1 := D if necessary)

Ej−1 ∩ Ej 6= ∅, Fk−1 ∩ Ej 6= ∅, Ej+1 ∩ Ej 6= ∅.
By the minimality of j and k this means that Ej intersects three distinct elements
of K, a contradiction to the fact that K is a circular chain. Thus ∂T contains no
θ-curve.
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By (i), (ii) and (iii) we conclude from Lemma 6.8 that ∂T is a simple closed curve. The fact
that T is homeomorphic to a closed disk now follows from the Jordan Curve Theorem (cf. [82,
§61, II, Theorem 1]). ¤

From this result we deduce the following algorithmic criterion for the subtiles T (i) to be
homeomorphic to a disk.

Theorem 6.13. Let σ be a primitive unit Pisot substitution whose dominant eigenvalue has
degree 3. Suppose that the self-replicating multiple tiling is a tiling (see Theorem 4.1). Then
each of the subtiles T (i) (i ∈ A) are homeomorphic to a closed disk as soon as the following
conditions are satisfied.

(1) The boundary-connectivity graph of T (i) is either a single node or a circle for each
i ∈ A.

(2) For each i ∈ A each edge of the boundary-connectivity graph of T (i) corresponds to
an intersection containing exactly one point.

(3) For each node [i, γ, j] of G(B)
srs , the boundary-refinement connectivity graph of B[i, γ, j]

is either empty or a line (that may degenerate to a single node).
(4) For each node [i, γ, j] of G(B)

srs each edge of the boundary-refinement connectivity graph
of B[i, γ, j] corresponds to an intersection containing exactly one point.

Remark 6.14. If we consider also the case contained in Remark 4.13 one could show
with some effort that the above criterion is necessary and sufficient for the subtiles to be
homeomorphic to a closed disk.

Proof. The proof follows immediately from Proposition 6.11 and Remark 6.12 after it.
The first two conditions of this proposition are fulfilled by each subtile T (i). The third condition
follows from (1) and (2) and the forth condition is true because of (3) and (4). ¤

It remains to explain how to check the conditions of Theorem 6.13 algorithmically using
the graphs we have at our disposal.

Checking (1) and (3): corresponds to building the boundary-connectivity graph and
the boundary-refinement connectivity graph.

Checking (2) and (4): We successively consider each edge of the boundary-connectivi-
ty graph and the boundary-refinement connectivity graph. We consider the node of
the triple of quadruple point graph that was computed in order to check that the
considered edge did exist. And we check that the walks leading away from this node
are pairwise not essentially different (see Remark 5.30). This is especially true when
the node and all its successors have degree 1 (see Theorem 5.25).

6.6. The fundamental group

In this section we want to establish criteria that allow to conclude that a given central tile
has nontrivial or even uncountable fundamental group. The proof of these criteria relies on the
following topological lemmas.

Lemma 6.15 ([93, Lemma 6.1]). Let B0, B1, B2 ⊂ R2 be locally connected continua with
the following properties.

(i) int(Bi) ∩ int(Bj) = ∅ for i 6= j.
(ii) Bi is the closure of its interior (0 ≤ i ≤ 2).
(iii) S2 \ int(Bi) is a locally connected continuum (0 ≤ i ≤ 2).
(iv) There exist x1, x2 ∈ B0 ∩B1 ∩B2 with x1 ∈ int(B0 ∪B1 ∪B2).

Then there is an i ∈ {0, 1, 2} such that Bi ∪ Bi+1 has a bounded complementary component U
with U ∩ int(Bi+2) 6= ∅ (the indices are to be taken modulo 3).

Lemma 6.16. [93, Proposition 4.1] Let K ⊂ S2 be a locally arcwise connected set. If S2 \K
is disconnected then K contains a non-trivial loop.
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Lemma 6.17. [93, Proposition 4.2] Let K ⊂ S2 be a locally arcwise connected continuum.
Suppose that S2 \K has infinitely many components. Then the following assertions hold.

(i) π1(K) is not free.
(ii) π1(K) is uncountable.
(iii) K is not locally simply connected.
(iv) K has no universal cover.

We now state the first result on the fundamental group. After that we discuss how it can
be checked by using the graphs we defined in Chapter 5.

Theorem 6.18. Suppose that σ is a primitive unit Pisot substitution whose dominant
eigenvalue has degree 3. Suppose that T (j) is connected for each j ∈ A and that the self-
replicating multiple tiling associated to σ is a tiling (see Theorem 4.1). Then the subtile T (i)
(i ∈ A) has nontrivial fundamental group as soon as there exist [γ1, i1], [γ2, i2] ∈ Γsrs such that
[0, i], [γ1, i1], [γ2, i2] are pairwise disjoint and the following conditions are satisfied.

(1) The intersection T (i)∩(T (i1)+γ1)∩(T (i2)+γ2) contains at least two elements x1,x2.
The point x1 is contained in int(T (i) ∪ (T (i1) + γ1) ∪ (T (i2) + γ2)).

(2) Let [γ0, i0] := [0, i] for convenience. Then there exists an integer N such that for all
` ∈ {0, 1, 2} one can find v` ∈ π(Zd) such that [γ` + v`, i`] ∈ Γsrs and (indices are to
be taken mod 3)

[γ` + v`, i`] 6∈ EN
1 [0, i], [γ`+1 + v`, i`+1] ∈ EN

1 [0, i], [γ`+2 + v`, i`+2] ∈ EN
1 [0, i].

see [93, Proposition 6.2] for the lattice tile analogue. We first prove that B0 :=
T (i), B1 := T (i1) + γ1 and B2 := T (i2) + γ2 satisfy the conditions of Lemma 6.15. Indeed
all are locally connected continua by Theorem 4.8 (connectivity of each T (i) implies the local
connectivity of each of them).

Condition (i) of Lemma 6.15 is true because we assume the tiling property in the statement
of the theorem and Condition (ii) follows because each tile T (j), j ∈ A, as well as each of their
translates is the closure of its interior by Theorem 2.6. Condition (iii) is true because the closed
connected set R2 \ int(T (j)) can be written as a locally finite union of translates of the tiles by
the tiling property. Thus it is also locally connected and its closure in S2, the set S2 \ int(T (j)),
is a locally connected continuum. The same holds for each translate of T (j). Condition (iv) of
Lemma 6.15 is just the same as condition (1) of the theorem.

Thus we may apply Lemma 6.15 and therefore assume that for some ` ∈ {0, 1, 2} there
is a point z ∈ int(T (i`) + γ`) which is contained in a bounded complementary component of
(T (i`+1) + γ`+1)∪ (T (i`+2) + γ`+2). In view of condition (2) we know that T (i`) + γ` + v` is a
piece of the self-replicating tiling but it is not a piece of h−NT (i) since

h−NT (i) =
⋃

[γ,k]∈EN
1 [0,i]

(T (k) + γ).

By the tiling assumption, we deduce that int(T (i`) + γ` + v`) has nonempty intersection with
h−NT (i). This means that z + v` is contained in a complementary component of h−NT (i).

But condition (2) also implies that both (T (i`+1)+v` +γ`+1) and (T (i`+2)+v` +γ`+2) are
subsets of h−NT (i). We deduce that the complementary component of h−NT (i) that contains
z+v` is included in the bounded complementary component of (T (i`+1)+v`+γ`+1)∪(T (i`+2)+
v` + γ`+2) that contains z + v`; therefore it is bounded.

Thus h−NT (i) and therefore also T (i) has a least one bounded complementary component.
The result now follows from Lemma 6.16. ¤

It remains to explain how to check the conditions of Theorem 6.18 algorithmically using
the graphs we have at our disposal.

Checking (1) algorithmically: The existence of at least two points x1,x2 ∈ T (i) ∩
(T (i1)+γ1)∩ (T (i2)+γ2) can be checked with help of the triple point graph by using
Theorem 5.25 and Proposition 5.30.
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The fact that the point x1 is contained in int(T (i) ∪ (T (i1) + γ1) ∪ (T (i2) + γ2))
means that x is a triple point but not a quadruple point. Thus in view of Theorems 5.25
and 5.31 such a point exists if a certain infinite walk which exists in the triple point
graph does not exist in the quadruple point graph.

Checking (2): This is done by exhaustively checking the composition of EN
1 [0, i] for

increasing N . More precisely, we consider [0, i], [γ1, i1], [γ2, i2] that satisfy (1). We fix
N . For every v whose modulus is bounded by the sum of the maximal modulus of a
vector in EN

1 [0, i] (` = 1, 2, 3) and the maximal modulus of the vectors γ`, we shift the
three faces [γ`, i`] (0 ≤ ` ≤ 2) by v and check whether the condition is satisfied for a
given ` = 0, 1, 2. If this is possible for all three `’s we are done. If not, it may help to
repeat the procedure for a different choice of N . We will illustrate this procedure in
two examples (see Examples 6.19 and 6.20 below).

Example 6.19. We consider the substitution σ5(1) = 123, σ5(2) = 1, σ5(3) = 31. Our
goal is to show that T (2) has nontrivial fundamental group for this example. We will prove
Conditions (1) and (2) of Theorem 6.18 for the elements [0, 2], [0, 3], [π(1, 0,−1), 1] of Γsrs.

Checking Condition (1): First observe that [2,0, 3, π(1, 0,−1), 1] is a node of the
triple point graph from which there start infinitely many infinite walks (this can be
checked easily by looking at the loop structure of the triple point graph in Figure 6.2).
Thus the intersection

T (2) ∩ T (3) ∩ (T (1) + π(1, 0,−1))

contains infinitely many points by Proposition 5.30. Since the quadruple point graph
contains only finitely many infinite paths (see Figure 6.3) there is certainly a walk
in the triple point graph starting at [2,0, 3, π(1, 0,−1), 1] that does not occur in the
quadruple point graph. This shows that Condition (1) holds.

Checking Condition (2): Take N = 4, v1 = π(1, 0,−1), v2 = π(2, 1,−3) and v3 =
π(2, 0,−2). First, by iterating E1 four times for the argument [0, 2] we obtain

E4
1[0, 2] = {[π(2, 1,−3), 1], [π(2, 1,−3), 2], [π(2, 0,−2), 1], [π(2, 0,−2), 2],

[π(2, 0,−2), 3], [π(2, 2,−3), 1], [π(2, 1,−2), 1], [π(1, 0,−1), 3], [π(3, 1,−4), 1],
[π(3, 1,−4), 2], [π(3, 0,−3), 3], [π(2,−1,−1), 3], [π(2,−1,−1), 1], [π(1,−2, 0), 3]}.

Looking at this list of values we notice that

[π(1, 0,−1), 2] 6∈ E4
1[0, 2], [π(1, 0,−1), 3], [π(2, 0,−2), 1] ∈ E4

1[0, 2],

[π(2, 1,−3), 3] 6∈ E4
1[0, 2], [π(2, 1,−3), 1], [π(3, 1,−4), 1] ∈ E4

1[0, 2],
[π(3, 0,−3), 1] 6∈ E4

1[0, 2], [π(2, 0,−2), 2], [π(2, 0,−2), 3] ∈ E4
1[0, 2].

Checking the conditions in the definition of Γsrs in (3.1) for all occurring vectors we
see that they all belong to Γsrs. Thus Condition (2) is satisfied.

Now we may apply Theorem 6.18, in order to conclude that the subtile T (2) has nontrivial
fundamental group.

Notice that we can check the condition on E4
1 by projecting each element of the self-

replicating translation set Γsrs to the anti-diagonal space with equation x + y + z = 0. Each
piece [x, i] is represented by a rhombus; the rhombi occur in three different shapes depending
on the letter i. We then have to place a given patch (consisting of three different rhombi) in
three different places of the projection of Γsrs such that the patch intersects the projection of
E4

1[0, 2] on exactly two pieces (in each of the three places the rhombus that does not intersect
E4

1[0, 2] has to be of a different shape so that each letter once corresponds to a rhombus lying
outside E4

1[0, 2]). An illustration of this procedure is depicted in Figure 6.1.

Example 6.20. In this example we outline hoe to prove that the subtile T (1) has non-
trivial fundamental group. Indeed, the substitution σ6 also satisfies the conditions of The-
orem 6.18. This can be seen in the same way as in Example 6.19 when considering the
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Figure 6.1. The substitution is σ5(1) = 123, σ5(2) = 1, σ5(3) = 31. The
left figure contains a geometric representation of E4

1[0, 2] in the self-replicating
translation set Γsrs. Each piece [x, i] is represented as a rhombus in the plane
x+y+z = 0; the shape of the rhombus depends of the letter used. In the right
figure, we see that the shape [(0, 0, 0), 2], [(0, 0, 0), 3], [π(1, 0,−1), 1] (depicted
in the middle) can be translated such that two pieces of the shape belong
to E4

1[0, 2] and the third belongs to Γsrs \ E4
1[0, 2]. This proves the second

condition of Theorem 6.18.

elements [0, 1], [π(−1, 0, 2), 2] and [π(−1, 1, 1), 2] of Γsrs, the 7-th iteration E7
1[0, 1] and the

translation vectors v1 = π(−1, 4,−4), v2 = π(−4, 4, 2) and v3 = π(1, 3,−5). Since the node
[1, π(−1, 0, 2), 2, π(−1, 1, 1), 2] is the starting point of infinitely many infinite walks in the triple
point graph and the quadruple point graph contains only finitely many infinite walks (see Fig-
ures 6.6 and 6.7), Theorem 6.18 applies and the central tile has a nontrivial fundamental group.

We can even do more and give the following result on uncountable fundamental groups.

Theorem 6.21. Let the same setting as in Theorem 6.18 be in force but assume that the
following conditions hold.

(1) The intersection T (i)∩(T (i1)+γ1)∩(T (i2)+γ2) contains at least two elements x1,x2.
The point x1 is contained in int(T (i) ∪ (T (i1) + γ1) ∪ (T (i2) + γ2)).

(2) Let [γ0, i0] := [0, i] for convenience. Then there exists an integer N such that for all
` ∈ {0, 1, 2} one can find v` ∈ Zd and [t`, j`] ∈ Γsrs with [t`, j`] 6= [0, i] such that
(indices are to be taken mod 3)
(i) [i, t`, j`] is a node of the SR-boundary graph;
• ((ii)) [γ` + v`, i`] ∈ EN

1 [t`, j`], [γ`+1 + v`, i`+1] ∈ EN
1 [0, i], [γ`+2 + v`, i`+2] ∈

EN
1 [0, i].

(iii) For each ` ∈ {0, 1, 2}, there exists a node in the SR-boundary graph of the shape
[i, t`, j`] such that an infinite number of paths with an even number of edges of
type 2 lead from [i, t`, j`] to [i, t`, j`].

Then the fundamental group π1(T (i)) is uncountable and not free. Moreover, T (i) is not locally
simply connected and admits no universal cover.

Proof. Since [t`, j`] ∈ Γsrs and [t`, j`] 6= [0, i], the sets EN
1 [t`, j`] and EN

1 [0, i] are disjoint
(see Proposition 3.5). From [γ`+v`, i`] ∈ EN

1 [t`, j`] we deduce that [γ`+v`, i`] 6∈ EN
1 [0, i] and the

proof of Theorem 6.18 applies. This yields a complementary component U0 of T (i) containing
an inner point of hN (T (i`) + γ` + v`) for some ` ∈ {0, 1, 2}. From [γ` + v`, i`] ∈ EN

1 [t`, j`] and
the GIFS equation T (j`) + t` =

⋃
[λ,k]∈EN

1 [t`,j`]
T (k) + λ it follows that hN (T (i`) + γ` + v`) ⊂

T (j`) + t` so that U0 intersects the interior of T (j`) + t`. Let us denote by z a point contained
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Figure 6.2. The triple point graph for the substitution σ5(1) = 123, σ5(2) =
1, σ5(3) = 31. There are three internal loops in this graph, implying that
some intersections between three tiles are infinite. This is especially true for
[2,0, 3, π(1, 0,−1), 1] and [1, π(−1, 1, 1), 3, π(0, 1, 0), 1]. This is used to prove
that the associated central tile has a non-trivial and even uncountable funda-
mental group (Theorems 6.18 and 6.21).
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Figure 6.3. The quadruple point graph for the substitution σ5(1) = 123,
σ5(2) = 1, σ5(3) = 31. The graph has two independent connected components.
Loops appear only at the end of path, therefore each intersection between four
tiles is a single point. This is needed in order to apply Theorems 6.18 and 6.21.

in this intersection, i.e.,

(6.10) z ∈ U0 ∩ Int(T (j`) + t`), U0 bounded complementary component of T (i).

Now, comparing the definition of the edges in the SR-boundary graph (Definition 5.4) with
the dual substitution E1 (Definition 3.4), we get the following. If there is an edge of type 1 from
[i, γ, j] to [i′, γ′, j′] labelled by e, we have e = πl(p1) with σ(i′) = p1is1. From Definition 3.4 we
deduce that [h−1e, i′] ∈ E1[0, i]. We also have hγ′ = γ+π(l(p2)−l(p1)) with σ(j′) = p2js2. This
implies that [h−1(γ + πl(p2), j′] ∈ E1[γ, j] and h−1(γ + πl(p2)) = γ′ + h−1πl(p1) = γ′ + h−1e.
Hence,

[h−1e, i′] ∈ E1[0, i], [γ′ + h−1e, j′] ∈ E1[γ, j].

If the edge is of type 2, we have e = πl(p2) + γ with σ(i′) = p2js2, σ(j′) = p1is1 and
−hγ′ = γ + πl(p2)− πl(p1) = e− πl(p1). From σ(j′) = p1is1 we have [h−1πl(p1), j′] ∈ E1[0, i].
From σ(i′) = p2js2 we have [h−1(πl(p2) + γ), i′] ∈ E1[γ, j]. We deduce that

[γ′ + h−1e, j′] ∈ E1[0, i], [h−1e, j′] ∈ E1[γ, j].

From these equations and the definition of E1, we deduce that if a path of length n leads from
[i, γ, j] to [i′, γ′, j′] with labels e(1), . . . , e(n) with an even number of edges of type 2, we have

[h−ne(1) + · · ·+ h−1e(n), i′] ∈ En
1 [0, i], [γ′ + h−ne(1) + · · ·+ h−1e(n), j′] ∈ E1[γ, j]

(if the number of edges of type 2 was odd, we simply had to reverse [0, i] and [γ, j] in the
equation).

Let us apply this result to the paths from [i, t`, j`] to [i, t`, j`] that are supposed to exist
by the hypotheses. We classify each path by its length L

(n)
` and we denote by w(n)

` the sum
h−L

(n)
` e(1) + · · ·+ h−1e(L

(n)
` ). This implies that

[w(n)
` , i] ∈ EL

(n)
`

1 [0, i] and [w(n)
` + t`, j`] ∈ EL

(n)
`

1 [t`, j`].
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Since [i, t`, j`] is a node of the SR-boundary graph, the pair [t`, j`] belongs to Γsrs therefore

EL
(n)
`

1 [t`, j`] is disjoint from EL
(n)
`

1 [0, i]. Hence,

[w(n)
` , i] ∈ EL

(n)
`

1 [0, i] and [w(n)
` + t`, j`] 6∈ EL

(n)
`

1 [0, i].

We now consider the GIFS equation of T (i) at different ranks M , i.e.,

h−MT (i) =
⋃

[λ,k]∈E1
M [0,i]

T (k) + λ.

From the tiling assumption we deduce that

hL
(n)
` (T (i) + w(n)

` ) ⊂ T (i) and Int
(
hL

(n)
` (T (j`) + w(n)

` + t`)
)
∩ T (i) = ∅.

From (6.10) we have that hL
(n)
` (z + w(n)

` ) ∈ hL
(n)
` (U0 + w(n)

` ) and that hL
(n)
` (z + w(n)

` ) ∈
Int

(
hL

(n)
` (T (j`) + t`)

)
, implying hL

(n)
` (z + w(n)

` ) 6∈ T (i). This yields that hL
(n)
` (U0 + w(n)

` )
intersects a complementary component of T (i), say Un.

Since hL
(n)
` (T (i) + w(n)

` ) ⊂ T (i), each complementary component of T (i) is a subset of
exactly one complementary component of hL

(n)
` (T (i) +w(n)

` ), among which we find hL
(n)
` (U0 +

w(n)
` ). We deduce that

Un ⊂ hL
(n)
` (U0 + w(n)

` ).

We have exhibited a sequence of complementary components to T (i) whose diameter tends
to zero. Thus, there is an infinite subsequence of (Uk) consisting of pairwise disjoint comple-
mentary components of T (i). So S2 \ T (i) has infinitely many components. The result now
follows from Lemma 6.17. ¤

Items (1), (2.i) and (2.ii) of Theorem 6.21 can be checked in the same way as for Theo-
rem 6.18. Item (2.iii) can be checked by inspecting the loops of the SR-boundary graph.

Remark 6.22. Note that we get analogues of Theorems 6.18 and 6.21 for T instead of T (i)
by replacing EN

1 [0, i] by EN
1 U . The proof remains exactly the same.

Example 6.23. In this example we deal with the substitution σ6(1) = 12, σ6(2) = 31,
σ6(1) = 1. We want to apply Theorem 6.21 for showing the uncountability of π1(T (1)).

To this matter take i = 1 and consider the elements [0, 1], [π(−1, 1, 1), 1] and [π(0, 0, 1), 1]
of Γsrs. We will now check the items of Theorem 6.21.

Item (1): First observe that Proposition 5.30 implies that

T (1) ∩ T (1) + π(−1, 1, 1) ∩ T (1) + π(0, 0, 1)

has infinitely many elements. Indeed, the node [1, (−1, 1, 1), 1, (0, 0, 1), 1] of the triple
point graph from which infinitely many infinite paths lead away (see Figure 6.6). At
least one of these elements is contained in the interior of

T (1) ∪ T (1) + π(−1, 1, 1) ∪ T (1) + π(0, 0, 1)

because the quadruple point graph accepts only a finite number of walks (see Fig-
ure 6.7).

Item 2.(i): Take

[t, j] = [t0, j0] = [t1, j1] = [t2, j2] = [π(0, 0, 1), 2].

We check that [1, π(0, 0, 1), 2] appears in the SR-boundary graph.
Item 2.(ii): Take the translation vectors v1 = [π(−2, 6,−5), 1], v2 = [π(−2, 4,−1), 1]

and v3 = [π(0, 5,−6), 1]. This item holds for these vectors with N = 7. An illustration
is given in Figure 6.4.
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Figure 6.4. Consider the substitution σ6(1) = 12, σ6(2) = 31, σ6(1) = 1.
The figure contains a geometric representation of E1

7[0, 1] (dark grey) and
E1

7[π(0, 0, 1), 2] (light grey) among the self-replicating translation set Γsrs.
The shape [(0, 0, 0), 1], [(−1, 1, 1), 1], [π(0, 0, 1), 1] (depicted in the left hand
side) can be translated such that two pieces of the shape belong to E1

7[0, 1]
and the third only belongs to E1

7[π(0, 0, 1), 2]. The appropriate translation
vectors are the ones given in Example 6.23. This proves Item (2.ii) of Theo-
rem 6.21.

: the node [1, π(0, 0, 1), 2] appears in the SR-boundary graph and belongs to a loop,
implying that an infinite number of paths with an even number of edges of type 2
start and end at this node (see Figure 6.5). Taking

[i, t0, j0] = [i, t1, j1] = [i, t2, j2] = [i, t, j] = [1, π(0, 0, 1), 2]

this item is shown to hold.
Hence the conditions of Theorem 6.21 are satisfied and we deduce that the fundamental group
of T (1) is uncountable and not free.

Example 6.24. Theorem 6.21 also applies to σ5(1) = 123, σ5(2) = 1, σ5(3) = 31. For
instance, we can show that T (1) has uncountable fundamental group in the following way.

First take i = 0, [γ1, i1] = [π(−1, 1, 1), 3] and [γ2, i2] = [π(0, 1, 0), 1]. For the elements
[t`, j`] and [t`, j`] (0 ≤ ` ≤ 2) always take [(0, 0, 0), 3]. Moreover, choose v1 = [π(1, 2,−2), 1],
v2 = [π(1, 1,−1), 3] and v3 = [π(1, 1,−1), 1] for the translation vectors and take N = 7, i.e.
look at the patches in E7

1. By considering the SR-boundary graph, the triple point graph and
the quadruple point graph (see Figures 6.2, 6.3, and 6.8) one easily checks that Theorem 6.21
applies.
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Figure 6.5. SR-boundary graph for the substitution σ6(1) = 12, σ6(2) = 31,
σ6(3) = 1. Dotted edges stand for edges of type 2. To apply Theorem 6.21,
we notice that [1, π(0, 0, 1), 2] belongs to a loop, so that an infinite number of
paths with an even number of type 2 edges reach this node.
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Figure 6.6. The triple point graph for the substitution σ6(1) = 12, σ6(2) =
31, σ6(3) = 1. There are three internal loops in this graph (boxes with dot-
ted nodes) and two terminal loops (also rounded by a box). To apply Theo-
rems 6.18 and 6.21, we check that an infinite number of paths lead away from
[1, π(−1, 0, 2), 2, π(−1, 1, 1), 2] and [1, π(−1, 1, 1), 1, π(0, 0, 1), 1].
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Figure 6.7. The quadruple point graph for the substitution σ6(1) = 12,
σ6(2) = 31, σ6(3) = 1. Loops appear only at the end of path, therefore
each intersection between four tiles is a single point. To apply Theorems 6.18
and 6.21, we check that the number of recognized paths, corresponding to
quadruple points, is finite.
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Figure 6.8. The SR-boundary graph for the substitution σ5(1) = 123,
σ5(2) = 1, σ5(3) = 31. To apply Theorem 6.21, we notice that [1, (0, 0, 0), 3]
belongs to a loop, hence an infinite number of finite paths join this node.





CHAPTER 7

Perspectives

In the present monograph we show many topological results for central tiles of primitive
unit Pisot substitutions. The main objects used in our study are different kinds of graphs. We
consider these graphs as powerful tools that can be used in order to derive various results on
substitutions, their associated Dumont-Thomas numeration as well as their tiles and tilings. In
this chapter we want to give some perspectives for future work in this direction.

7.1. Topology

A first direction of research consists in pursuing the research on the topological structure
of the central tiles corresponding to primitive unit Pisot substitutions. In the examples we
considered throughout this monograph, we exhibited compact subsets of the plans whose fun-
damental groups are uncountable and not free. Such sets are “pathological” from a topological
point of view. Describing explicitly the structure of the fundamental group in such cases is a
first task for future research. The fact that a central tile has uncountable fundamental group
has the consequence that it is not locally simply connected. Fundamental groups of such spaces
are studied in the literature. The easiest example of a space with this property is the so-called
Hawaiian Earring (see for instance [56]). Its fundamental group has been studied in great detail
in [47], where it has been described by means of words. Another example for a non-locally con-
nected space whose fundamental group has been described is the Sierpiński gasket (see [13]).
Structural results on fundamental groups of non-locally simply connected spaces can be found
for instance in [52, 59]. The main challenge in calculating the fundamental group of a central
tile in the plane comes from the fact that its topological dimension is 2. All the other examples
for that calculations that have been performed so far have topological dimension 1. And this
fact is heavily used in the calculations.

Other questions in this context are related to components of the interior of a central tile.
There are several connected Rauzy fractals whose interior is disconnected. It would be interest-
ing to get results on the structure of the components of their interior. Is the closure of a compo-
nent of the interior a graph directed self-affine set (see [87], where this question has been studied
for an example of a self-similar lattice tile)? Is it homeomorphic to a closed disk? Similar ques-
tions have been studied in the setting of self-affine tiles (see for instance [93, 101, 102, 103]).
However, the fact that the central tile and its subtiles are graph directed self-affine sets makes
things much more complicated. In view of Torhorst’s theorem (see [82, §61, II, Theorem 4])
and the tiling property, the disklikeness of the components of the interior of the central tile is
linked with the question whether this tile has cut points or not. Therefore, a criterion for cut
points in terms of our graphs would be a desirable tool in this circle of problems.

Another direction is concerned with topological properties of higher dimensional central
tiles. Most of our topological properties are obtained for substitutions whose corresponding
central tiles are subsets of the plane. The reason for restricting to this case is that we based our
proofs on separation properties of the Euclidean plane; such properties (like the Jordan curve
theorem) are no longer satisfied in higher dimensions. However, the definition of boundary
or contact graphs is independent from the dimension that is considered. The challenge here
would be to obtain for instance connectivity or simple-connectivity criteria in dimension 3,
that are based on the self-affinity of the central tile and that can be checked by using contact
and boundary graphs. One theorem which could be useful in this context is the Moore-van
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Kampen-Zippin Theorem (see for instance [125]). This theorem gives a characterization of S2

in terms of properties of cut sets. For the case of boundaries if three dimensional central tiles
these properties can probably be checked with help of our graphs in order to exhibit a three
dimensional central tile whose boundary is homeomorphic to a sphere.

7.2. Number theory

As mentioned in the introduction, one historical reason for introducing central tiles refers to
the study of number systems [123]. Let us detail now the potential applications of our methods
in this field.

When studying a numeration system, the first questions one may ask is to characterize
the set of admissible expansions, then identifying which numbers have a finite, an eventually
periodic or a purely periodic expansion. For number systems with integer basis or continued
fractions, these questions are completely solved. For beta-numeration, however, the question
of purely periodic expansions is not clearly understood. A classical method to study numbers
with a purely periodic expansion is to build a suitable natural extension of the dynamics; in this
natural extension periodic expansion correspond to finite orbits and thus can be identified. In
this setting, the central tile plays a crucial role regarding to beta-numeration since Ito and Rao
[77] proved that a suitable natural extension is obtained by adding an expanding component
to the central tile of the corresponding beta-substitution. This geometrical characterization
builds a bridge between number theory and topology. As an example, based on our geometrical
characterization, the geometric property (F) implies that all rational number sufficiently near
to zero have a purely periodic beta-expansion in the primitive unit Pisot case [9, 77]. In other
words, the topology of the central tiles (in particular, the question whether 0 is an inner point
or not) relates to unexpected properties of beta-numeration (note that the behavior of rational
numbers with respect to purely periodic beta-expansion is far from random). A challenging
question is now: does connectivity, or simple-connectivity of central tile have an influence on
the structure of the subset of real numbers with a purely periodic expansion?

To go further, we know that when β is still Pisot but not a unit, a suitable natural extension
is not built from the central tile itself but it requires additional p-adic components (see [9, 39]).
In spite of that, the construction of the natural extension remains very similar to the unit case
and boundary graphs can be defined as well in this situation. However, the previous relation
between the geometric property (F) and purely periodic expansions of all rationals near to zero
becomes false: The geometric property (F) still implies that 0 is an inner point of the central
tile, but for instance for β = 2+

√
7, there exists a sequence of rationals converging to zero and

having non-purely periodic expansion. The proof of this fact is based on boundary graphs (see
[9]). Then a challenging question is to find good topological conditions characterizing purely
periodic expansions near zero in the non-unit case.

We then can turn to understanding better the expansion of some specific points. For
instance, what is the expansion of the infimum of all rationals with a non-purely periodic
expansion. Computations showed for β3 = β + 1 that this number is close to 2/3 but differs
from it [14]. Is this number rational? Does it belong to Q(β)? Is it transcendental? The
technical purpose is to describe properly the intersection of a fractal curve with a line. Another
example of interest is to compute the largest ball centered at zero which is contained in the
central tile, in relation with diophantine approximation [72, 73]. Here the challenge is to
describe and compute the exact intersection between a fractal curve and a circle.

In order to check the associativity of the so-called Fibonacci multiplication (see for in-
stance [33]) one needs to consider the set T · T = {xy ; x,y ∈ T } and its boundary (here
T ⊂ C denotes e.g. the tile associated to the Tribonacci substitution). Also in this context
versions of our graphs might be useful to get further results.

Another topic is to generalize those approaches to other numeration systems. We present
two types of dynamical systems that are close and deserve a specific study.
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The first class of dynamical systems are shift radix systems (see [10]). We recall their
definition. For r ∈ Rd define the function

τr :Zd → Zd,

z = (z0, . . . , zd−1) 7→ (z1, . . . , zd−1,−brzc),
where rz is the scalar product of the vectors r and z. The mapping τr is called a shift radix
system (SRS) if for each z ∈ Zd there exists a k ∈ N such that τk

r (z) = 0. These dynamical
systems form a generalization of beta-numeration (see [10]). Their arithmetic properties have
been studied thoroughly (see for instance [10, 11, 12]). One can also attach central tiles to
SRS, however, in general they are not graph directed self-affine. For this reason the topology
as well as the tiling properties of them are much harder to study. A first step here would be
to describe their boundary by means of (possibly infinite) graphs related to the SR-boundary
graph of our paper. Moreover, tiling and connectivity properties of such tiles deserve to be
investigated. As the parameter r varies in a compact subset of Rd (related to the Schur-Cohn
region defined in terms of coefficients of contracting polynomials) this would lead to new types
of Mandelbrot sets.

The second family of related number systems is Dumont-Thomas numeration [58]; it can
be seen as an extension of beta-numeration to the substitutive case [28, 38]. We expect that
this kind of numeration can be studied with help of our graphs. The SR-boundary as well as the
contact graph should be related to addition of certain quantities to h-ary representations. We
think that these graphs can act as odometers for these number systems. For number systems
related to full shifts a correspondence between boundary graphs and addition automata has been
observed for instance in [34, 115]. Moreover in the framework of β-numeration the structure
of pure periods occurring in β-expansions with respect to quadratic Pisot numbers as bases
has been investigated (see [107]). Our graphs might be the appropriate tools to extend these
considerations to Dumont-Thomas numeration.

7.3. Invariants in dynamics and geometry

A second and independent historical reason for the introduction of central tiles refers to
the study of dynamical systems. This story started with Rauzy [110] who aimed at building
an example of a domain exchange in R2 that generalized the theory on interval exchange
transformations [79, 126]. This tile was proved to generate a Markov partition for the action of
the incidence matrix of the substitution on a torus [75, 105]. Notice that the Markov partition
is nothing else but the natural extension mentioned above to recover purely periodic beta-
expansions. This story can be revisited in the framework of hyperbolic attractors as detailed
in [30]: from the considerations in [17, 31, 127] it follows that every orientable hyperbolic
one-dimensional attractor is either a substitution tiling space or a classical solenoid. It is thus
proposed to study the topology of tiling spaces in order to understand the flow acting on an arc
component of the attractor. The relation with central tiles is that the Markov partition, build
from the central tile, is also a suitable geometric representation of the substitution tiling space.
The substitutive dynamical system appears here to be an expanding foliation in the space tiling
[31]. In [30], the authors prove that branch loci in tiling spaces are invariant for homeomorphic
tiling spaces. A natural question is then how to characterize branch loci in the central tile as
intersections of tiles and to derive from SR-boundary or contact graphs an explicit criterion for
orientable hyperbolic one-dimensional attractors.

This question can be seen from a more general point of view. Indeed, branch loci or other
topological invariants concern the substitutive tiling flow; whereas the Rauzy fractal represents
the substitutive dynamical system, or, in other words, a section of the substitutive tiling flow.
Then, if branch loci are invariants of the full tiling flow, they should appear in each section of the
flow, hence, in several Rauzy fractals. A natural question then becomes to identify substitutions
that produce (i.e, they are sections of) the same tiling flow. However, several pictures showed
that the central tiles for substitutions that are conjugate to each other look globally the same
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(see [22]). Therefore, a related challenge is to check which topological properties are invariant
under the action of invertible substitutions. We assume that some (local) topological properties
of central tiles are invariant under conjugacy, such as the existence of (local) cut points or
connectivity. To go further in that direction, we need both to propose a topological criterion
to characterize the existence of cut points (as already mentioned in Section 7.1) and to make
explicit how boundary and contact graphs change when applying an invertible substitution to
a given substitution.

A motivation is to generate new invariants for automorphisms of the free group. It is obvious
that any substitution naturally extends to an endomorphism of the free group, and those that
extend to an automorphism are called invertible substitutions. Although invertibility does not
play a significant role in the case of substitutions, it does in the case of morphisms of the free
group mainly because most geometric constructions lead to automorphisms. A specific case is
given by homeomorphisms of orientable surfaces with nonempty boundary: the homeomorphism
of the surface can be coded into an automorphism of the homotopy group of the surface, which
is called geometrical. Notice that even if all automorphisms of the group free group of rank two
F2 are geometrical, most automorphisms of free groups are not: for instance, the Tribonacci
automorphism 1 7→ 12, 2 7→ 13, 3 7→ 1 is not geometrical in the free group of rank three
and more generally, no irreducible automorphism on a free group of odd rank comes from a
homeomorphism of an orientable surface [22].

When considering automorphisms, the free group FN of rank N plays the role of the alpha-
bet A in the terminology of substitutions. The equivalent of infinite sequences as considered
in this paper is given by the Gromov boundary of the free group. It is a Cantor set which
compactifies FN . Any automorphism of FN extends to the boundary of FN [53]. The analogue
to a minimal symbolic dynamical system is then given by algebraic laminations. An attractive
algebraic lamination of an automorphism is a set of geodesic lines in the free group which is
closed (for the topology induced by the boundary topology), invariant under the action of the
group and flip-invariant (i.e., orientation-invariant); therefore it is the analog to a substitutive
dynamical system [54]. However, explicitly building such an attractive algebraic lamination is
far from trivial; indeed, the constructions used for substitution cannot be used since iterations
of automorphisms of free groups produce cancellations so that infinite fixed words cannot be
generated easily.

An impressive achievement was obtained by Bestvina, Feighn and Handel [41]; the idea is
to represent an automorphism of FN by a homotopy equivalence of a marked group G with fun-
damental group FN . In [42], the authors consider irreducible automorphisms with irreducible
power (iwip): they are the algebraic equivalent of pseudo-Anosov homeomorphisms of surfaces.
They describe an algorithmic process to build a representative for the automorphism, called
an improved relative train-track map, which takes care of cancellations so that one can build a
reduced two-sided recurrent infinite word on which the automorphism acts without cancellation
and which is fixed by some power of the automorphism. From this, one deduces a symbolic
dynamical system that is proved to be a representation of the attractive algebraic lamination
[22].

Introducing the symbolic representation of an attractive lamination by means of a train
track allows to geometrically represent the lamination by a central tile, as soon as the auto-
morphism has a unit Pisot dilation coefficient [22]. However, the construction depends on the
train-track used to represent the automorphism; additionally automorphisms are considered in
this context up to conjugacy by inner automorphisms. This is natural since a basic difference
between the free monoid and the free group is that the free monoid has a canonical basis, which
is not the case for the free group. Hence, although the attractive lamination is intrinsic, there
exist several symbolic codings for it. It seems that deciding to choose a specific coding, hence
a specific symbolic dynamical system, corresponds in particular to choosing a discrete time to
move on the leaf of the formal lamination. The challenge here is to understand which topo-
logical and metric properties of the central tile is invariant through conjugacy and the choice
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of the train-track representative. This will lead to the definition of a topological or metric
invariant for free group automorphisms. The ultimate goal would be to propose a metric on
the full lamination of an automorphism of the free group. In this direction, preliminary results
in [18, 19] are of great interest: they illustrate why and how the central tile of the Tribonacci
substitution is covered by an explicit Peano curve.

7.4. Effective constructions and generalizations

To finish these perspectives, let us mention some concrete applications of substitutive dy-
namical systems. As already mentioned, central tiles are the fundament of an explicit Markov
partition for the action of the incidence matrix of σ on the torus. Let us consider this ques-
tion in the reverse way. We consider a toral automorphism with a unit Pisot Perron-Frobenius
eigenvalue and we look for a Markov partition. From the theory, we could actually choose as
many partitions as we can build substitutions with the given matrix. In other words, we can
build a substitution with the given matrix, then permute letters in the image of any letter,
and we shall generate another Markov partition. At this stage, the crucial point is to propose
criterions to choose a good Markov partition. By analogy with transformations of the interval,
good Markov partitions shall be the ones for which two points located at a small distance have
a quite long future in common. From this point of view, Markov partitions based on a central
tile with a non trivial fundamental group are not useful, since in this case many points of a piece
of the partition are located at a small distance from another piece. Therefore, the remaining
question is: given a unit matrix with a Pisot expanding eigenvalue, can we find a substitution
corresponding to this matrix such that the pieces of the central tile are homeomorphic to a
disk, or at least simply connected?

Similar considerations can be made in the field of discrete geometry. Let us consider a
hyperplane P in Rn. The discrete approximation of P is defined as the union of faces of
unit cubes with integral coordinates that intersect P [21]. A specific case occurs when the
hyperplane is orthogonal to the dominant eigenvector of a matrix with positive entries and
with a Pisot unit of degree n as eigenvalue. In this case, any substitution with the matrix
as incidence matrix is an irreducible unit Pisot substitution. Therefore, following the results
stated in Chapter 3, the map E1 defined in Definition 3.4 stabilizes the discrete approximation
of P. From this we can derive a process to generate the discrete approximation of P: as soon
as the substitution satisfies the property (F), applying Ek

1 to the unit cube produces increasing
pieces of the approximation. However, in order to obtain suitable approximations, we need to
check that the pieces are uniform [68]. This suggests that the choice of a good generator of a
discrete surface (that is, a substitution with the suitable incidence matrix) should be guided by
topological considerations on the central tile, such as simple connectivity and the fact that 0 is
an inner point. To go further in that direction, a first strategy is to exhibit a relation between
the topological properties of the finite approximations and their renormalized limit, that is the
central tile. A second strategy is to generalize the topological characterizations described in
this monograph in the context of the finite approximations. In other words, does there exist a
graph that describes the connectivity of a finite approximation or its disklikeness?

A final motivation of this work is to control the production of any discrete plane. This refers
to what is called Rauzy program in [36]: “find generalizations of the Sturmian/rotation interac-
tion which would naturally generate approximation algorithms”. Revisited with the Arnoux-IO
formalism [25], this means to start from a n-dimensional vector u in Rn and to decompose this
vector with a continued fraction algorithm, u = M1M2 . . .Mkuk, say. By construction, the
matrices Mk are in finite number, and we can choose a substitution σk for each matrix. Then,
from [23], we know that the iterations of dual substitutions E1(σ1)E1(σ2) . . .E1(σk)(U) 7.1 gen-
erate increasing pieces of the discrete approximation for the hyperplane orthogonal to u. Many
questions remain on this topic: can we cover the whole discrete plane with these iterations

7.1U is defined in (3.4).
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[76]? Can we renormalize the approximations and associate a central tile to the vector u? Is
such a central tile useful to produce simultaneous rational approximations of the coordinates of
u? Coming back to discrete geometry, two main questions appear. The first is how to use this
process to decide whether a discrete piece is indeed a part of a discrete approximation of an
hyperplane. This question was tackled in [37, 65] by using modified Jacobi-Perron algorithm.
The second question is how to ensure that the pieces that are produce by iterations have a
suitable shape? As explained in the substitutive case, we expect that approximation contain
no holes and are quite uniform. To answer this question, we need to build boundary graphs for
the successive discrete approximations, considering that the substitution may change at each
step and then take benefit of the structure of such (infinite) graph.



CHAPTER 8

Appendix: several technical proofs and definitions

This appendix is devoted to detailed technical proofs of results we stated throughout this
monograph.

8.1. A technical proof from Chapter 3

Proof of Proposition 3.13. We introduce the lattice L =
∑d

k=2 Z(π(eB(k))− π(eB(1))
and the quotient map φ : Hc → T = Hc/L. In order to apply the scheme of the proof of
Proposition 3.10, we first need to check that the quotient map condition implies the following
assertions.

(1) L is indeed a lattice, that is, the generating family of L has rank d− 1 in Hc.
(2) φ({π(ei); 1 ≤ i ≤ n}) is reduced to a single point denoted by t.
(3) The addition of t is minimal on the torus T. The Kroneker theorem implies that this

is true as soon as t is rationally independent from the generators of L.
Let πe+c denote the projection of Rn on the beta-expanding and contracting spaces Hc⊕He

along the beta-supplementary space Hs. We know that the left expanding eigenvector vβ of M
is orthogonal to both the beta-contracting and the beta-supplementary space. Then an explicit
formula for πe+c is the following:

(8.1) ∀x ∈ Rn, πe+c(x) = π(x) + 〈x,vβ〉uβ =
d∑

i=1

〈x,vβ(i)〉uβ(i) .

From the quotient map condition (see (3.10)) we know that

〈ej ,vβ〉 ∈
d∑

k=1

Z〈eB(k),vβ〉 (j ∈ A).

By applying the Galois morphisms this implies that also

〈ej ,vβi〉 ∈
d∑

k=1

Z〈eB(k),vβi〉 (j ∈ A)

holds for each conjugate βi of β. We now apply (8.1) and deduce from this that πe+c(ei) ∈∑d
k=1 Zπe+c(eB(k)). Hence the family πe+c(eB(1)), . . . , πe+c(eB(d)) is a generating family of

the d-dimensional space Hc ⊕He so that it is a basis of this space.
(8.1) also implies that the coordinates of each πe+c(ei) are invariant by the application of

any Galois morphism of β, hence these points have rational coordinates. We denote by z1,
. . . , zd the dual basis in Hc ⊕ He of the family πe+c(eB(1)), . . . , πe+c(eB(d)). Linear algebra
considerations imply that z1, . . . , zd exist and have rational coordinates.

To prove item (1), assume that a combination of π(eB(2))−π(eB(1)), . . . , π(eB(d))−π(eB(1))
equals zero. Then we have

∑d
k=1 λkπ(eB(k)) = 0 with

∑d
k=1 λk = 0. Extending to the space

Hc⊕He, we deduce that
∑d

k=1 λkπe+c(eB(k)) = νuβ . Let us compute the scalar product of uβ

with the sum of the dual basis vectors z = z1 + · · ·+zd. Then we have ν〈uβ , z〉 =
∑d

k=1 λk = 0.
If 〈uβ , z〉 = 0, we apply Galois morphisms to this relation. Since z is rational, we obtain that
each uβ(i) is orthogonal to z, hence z is orthogonal to the full space Hc⊕He which is impossible.
Hence ν = 0 and each λk = 0, implying (1).

77
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Item (2) is a direct consequence of Galois morphisms applied on the quotient map con-
dition combined with (8.1). We have for instance t = φ(π(eB(1)) (actually, it is also equal
to any φ(π(ei)). Item (3) is equivalent to proving a rational independency between π(eB(1))
and π(eB(2)) − π(eB(1)), . . . , π(eB(d)) − π(eB(1)). Assume that

∑d
k=2 λkπ(eB(k)) = (λd +∑d−1

k=1 λk)π(eB(1)) with λk ∈ Q. By using (2.5), we extend this relation to a rational depen-
dency between πe+c(eB(1)), . . . , πe+c(eB(d)). Since these vectors are linearly independent, we
deduce that λk = 0 for every k and (3) is proved.

Let us now introduce ψ(x) to denote the number of tiles that contain a given point x. By
minimality, ψ(x) is constant almost everywhere so that the covering is a multiple tiling (see the
proof of Host in the irreducible case which is detailed in [66, Exercise 7.5.14]). ¤

8.2. Technical proofs from Chapter 5

Proof of Proposition 5.2. The nodes of G(0) are elements of Γsrs. Since this set is a
Delaunay set, the graph has to be finite by condition (1) of its definition.

Consider a node [γ, i] of G(0). There exists an infinite walk ([γk, ik])k≥0 starting from
[γ0, i0] = [γ, i]. Let (pk, ik, sk) with σ(ik+1) = pkiksk (k ≥ 0) be the labelling of this walk. By
considering the definition of the edges, we obtain an expansion of γ as

γ = −πl(p0)− hπl(p1)− · · · − hkπl(pk) + hk+1γk+1 (k ≥ 0).

Since all γk’s are bounded and h is a contraction, for k → ∞ the power series is convergent
and γ = −∑

k≥0 hkπl(pk). This means that −γ can be expanded as the prefix-suffix expansion
of a path of the prefix-suffix graph starting in the node i. By Corollary 2.7 this implies that
−γ ∈ T (i) and, hence, 0 ∈ T (i) + γ.

Suppose conversely that 0 ∈ T (i) + γ with [γ, i] ∈ Γsrs. Then −γ can be expanded as
−γ =

∑
k≥0 hkπl(pk), with (pk, ik, sk)k≥0 a suitable walk in the prefix-suffix graph starting

in i by Corollary 2.7. Let γ` = −(
∑

k≥0 hkπl(pk+`)). Each γ` obviously satisfies (5.1) and
hγ`+1 = γ` + πl(p`).

We now deduce by induction that [γ`+1, i`+1] ∈ Γsrs. Indeed, γ`+1 = π(x`+1) with x`+1 =
M−1(l(p) + x`) and, hence, γ`+1 ∈ π(Zn) by the unimodularity of M. It remains to show that
0 ≤ 〈x`+1,vβ〉 < 〈ei`+1 ,vβ〉 (assuming that this relation is satisfied at rank `). Indeed, we have
(note that ea = l(a) for each a ∈ A)

〈x`+1,vβ〉 = 〈M−1(l(p`) + x`),vβ〉 = β−1〈l(p`) + x`,vβ〉 < β−1〈l(p`) + ei`
,vβ〉

= β−1〈l(p`) + l(i`),vβ〉 ≤ β−1〈l(σ(i`+1)),vβ〉
= β−1〈Ml(i`+1),vβ〉 = 〈l(i`+1),vβ〉 = 〈ei`+1 ,vβ〉

and

〈x`+1,vβ〉 = 〈M−1(l(p`) + x`),vβ〉 = β−1〈l(p`) + x`,vβ〉 ≥ β−1〈l(p`),vβ〉 ≥ 0.

Hence ([γk, ik])k≥0 is an infinite walk in the zero-expansion graph starting from [γ, i]. We
deduce that [γ, i] belongs to the zero-expansion graph. ¤

Proof of Proposition 5.5. We first prove that every set of points [i, γ, j] that satisfies
conditions (1) and (3) of Definition 5.4 is finite. If [i, γ, j] satisfies these conditions, there exists
a finite path [i0, γ0, j0] → [i1, γ1, j1] → . . . [ik, γk, jk] → [i, γ, j], with γ0 ∈ S, i.e., in a finite set.
For each ` ∈ {0, . . . , k}, let x` ∈ Zn be such that γ` = π(x`). Moreover, let x be such that
γ = π(x).

From the definition of the edges of the boundary graph, we deduce that hγ = π(Mx) =
±γk + πl(p(k)

2 )− πl(p(k)
1 ) = π(±xk + l(p(k)

2 )− l(p(k)
1 )). By iterating this procedure and setting

l(p(`)) = l(p(`)
2 )− l(p(`)

1 ), we obtain a representation of γ as

γ = π(x) = π(±M−1l(p(k))± · · · ±M−kl(p(1))±M−k−1l(p(0))±M−k−1x0)
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(note that the signs ± are independent from each other).
From (2.5) we deduce that

〈x,vβ〉 = ±〈M−1l(p(k)),vβ〉 ± . . . 〈M−kl(p(1)),vβ〉 ± 〈M−k−1l(p(0)),vβ〉 ± 〈M−k−1x0,vβ〉
= ±β−1〈l(p(k)),vβ〉 ± · · · ± β−k〈l(p(1)),vβ〉 ± β−k−1〈l(p(0)),vβ〉 ± β−k−1〈x0,vβ〉.

Since x0 is taken from a finite set, we deduce that 〈x,vβ〉 is bounded. In view of Condition
(5.2) and by the definition of the norm (2.1), 〈x,vβ(i)〉 is also bounded for each contracting
eigenvalue βi.

Thus 〈x,vβ〉 belongs to a bounded subset of Z[β] all whose Galois conjugates are bounded.
This subset has to be finite which implies that there are only finitely many possibilities for
〈x,vβ〉. Since in view of (2.5) γ = π(x) is uniquely determined by 〈x,vβ〉 there are only finitely
many possibilities for γ and we are done.

Now each set of nodes that satisfies conditions (1) and (3) is finite with a uniform bound.
So the union of two sets that satisfy the conditions also satisfies the conditions, hence it is
finite. We conclude that the largest graph exists. ¤

Proof of Theorem 5.6. Suppose that [i, γ, j] is a node of the boundary graph. By
definition, [i, γ, j] is the starting point of an infinite path in the graph G(B)(S) Let [i, γ, j] =
[i0, γ0, j0] → · · · → [ik, γk, jk] → . . . be this path and let [i, γ, j] = [m0, α0, n0] → · · · →
[mk, αk, nk] → . . . be its type one analogue. From this we build two sequences in the prefix-
suffix graph (pk, ak, sk)k≥0 and (qk, bk, rk)k≥0 such that

hαk = αk−1 + πl(qk−1)− πl(pk−1).

This yields

hkαk = γ0 +
k−1∑

i=0

hiπl(qi)−
k−1∑

i=0

hiπl(pi).

Since αk belongs to a finite set and h is strictly contracting on Hc, we deduce

γ0 = −
∑

i≥0

hiπl(qi) +
∑

i≥0

hiπl(pi).

But
∑

i≥0 hiπl(qi) is build from a path of the prefix-suffix graph that starts in j0, hence∑
i≥0 hiπl(qi) ∈ T (j0). Similarly,

∑
i≥0 hiπl(pi) ∈ T (i0). Hence T (i0) ∩ (T (j0) + γ0) is

nonempty.
Conversely, if the intersection is nonempty, we build an explicit infinite path of the bound-

ary graph starting in [i, γ, j] in view of Corollary 2.7. More precisely, there exist two walks
(pk, ik, sk)k≥0 and (p′k, i′k, s′k)k≥0 in the prefix-suffix graph starting in i and j such that γ =∑

k≥0 hkπl(pk)−∑
k≥0 hkπl(p′k). We build inductively as follows an infinite path of the bound-

ary graph starting in [i, γ, j].
Let γ1 =

∑
k≥0 hkπl(pk+1) −

∑
k≥0 hkπl(p′k+1). The points γ1 and −γ1 obviously satisfy

(5.2). It remains to choose the one that belongs to the set D. We know that γ = π(x),
x ∈ Zn. From the definition of γ1 we deduce that γ1 = π(x1) with Mx1 = x + l(p0) − l(p′0).
If 〈x1,vβ〉 > 0 then [i1, γ1, j1] belongs to D and there is an edge of type 1 from [i, γ, j] to
[i1, γ1, j1]. If 〈x1,vβ〉 < 0, then [j1, γ1, i1] belongs to D and there is an edge of type 2 from
[i, γ, j] to [i1,−γ1, j1]. If 〈x1,vβ〉 = 0 and i1 ≤ j1, there is an edge of type 1 from [i, γ, j] to
[i1, γ1, j1]. If 〈x1,vβ〉 = 0 and i1 > j1, there is an edge of type 2 from [i, γ, j] to [j1,−γ1, i1].

The process can continue and we obtain an infinite walk in the graph starting in [i, γ, j].
Hence [i, γ, j] is a node of the boundary graph. ¤
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Proof of Theorem 5.7. To prove the first assertion we need to check that for every
node [i, γ, j] of SR-boundary graph, [γ, j] belongs to the self-replicating set. This is done by
induction on the length of the path leading to a node from a starting node contained in Ssrs.
Assume that [γ, j] ∈ Γsrs and that there exists an edge from [i, γ, j] to [i1, γ1, j1]. If the edge is
of type 1 we have γ1 = h−1(γ + πl(p2)− πl(p1)) with σ(j1) = p2js2. Since [i1, γ1, j1] is a node
of the graph, it belongs to D, hence, 〈γ1,vβ〉 ≥ 0. Since [γ, j] ∈ Γsrs, we also have γ = π(x)
with 0 ≤ 〈x,vβ〉 < 〈vβ , ej〉. We deduce that γ1 = π(x1) with x1 = M−1(x + l(p2) − l(p1)).
Then

〈x1,vβ〉 = 〈M−1(x + l(p2)− l(p1)),vβ〉 = β−1〈x + l(p2)− l(p1),vβ〉
< β−1〈ej + l(p2),vβ〉 ≤ β−1〈l(σ(j1)),vβ〉 = 〈ej1 ,vβ〉.

Hence [γ1, j1] ∈ Γsrs.
Assume now that the edge from [i, γ, j] to [i1, γ1, j1] is of type 2. Then γ1 = π(x1) with

x1 = M−1(−x + l(p1) − l(p2)) and σ(j1) = p1is1. We already know that 〈x1,vβ〉 ≥ 0, and
〈x,vβ〉 ≥ 0. Then

〈x1,vβ〉 ≤ β−1〈l(p1),vβ〉 = β−1〈l(p1),vβ〉 < β−1〈l(p1is1),vβ〉 = β−1〈l(σ(j1)),vβ〉 = 〈ej1 ,vβ〉.
Hence [x1, j1] ∈ Γsrs which concludes the proof.

The second assertion is proved as follows. Let B[i, γ, j] = T (i)∩(T (j)+γ) for the moment.
By (2.6), we know that

B[i, γ, j] = T (i) ∩ (T (j) + π(γ))

=


 ⋃

σ(i1)=p1is1

hT (i1) + πl(p1)


 ∩


γ +

⋃

σ(j1)=p2js2

hT (j1) + πl(p2)


 .

It remains to express each term hT (i1) + πl(p1)) ∩ (γ + hT (j1) + πl(p2)) in terms of B[·].
The two following equalities hold:

hT (i1) + πl(p1)) ∩ (γ + hT (j1) + πl(p2))=πl(p1) + hB[i1,h−1(γ + πl(p2)− πl(p1)), j1]

=πl(p2) + γ + hB[j1,h−1(−γ − πl(p2) + πl(p1)), i1].

By the definition of the boundary graph, if [i1,h−1(x+πl(p2)−πl(p1)), j1] ∈ D, there is an edge
of type 1 from [i, γ, j] to [i1,h−1(γ + πl(p2) − πl(p1)), j1] in the graph. But the node belongs
to D if and only if 〈πl(p1),vβ〉 ≤ 〈x + πl(p2),vβ〉, hence the label of the graph is e = πl(p1).

The second possibility is [j1,h−1(−γ−πl(p2)+πl(p1)), j1] ∈ D and there is an edge of type
2 from [i, γ, j] to [j1,h−1(−γ−πl(p2)+πl(p1)), i1] in the graph. The label is then e = πl(p2)+γ.
In each case, we then have

B([i, γ, j]) =
⋃

[i,γ,j]
e−→[i1,γ1,j1]∈G(B)

SRT

h(B([i1, γ1, j1])) + e.

Since the solutions of a GIFS are uniquely defined we deduce that the intersections T (i) ∩
(T (j) + γ) are solutions of the GIFS.

The third assertion allows follows from the tiling property: we have

∂T (i) :=
⋃

[γ,j]6=[0,i]∈Γsrs

T (i) ∩ (T (j) + γ).

Assume that γ 6= 0 and T (i) ∩ (T (j) + γ) 6= 0. Then γ satisfies (5.2). From γ 6= 0 and
[γ, j] ∈ Γsrs we deduce γ = π(x) with 〈x,vβ〉 > 0. Hence [i, γ, j] ∈ Ssrs. Since T (i)∩ (T (j)+γ)
is nonempty, [i, γ, j] is a node of the boundary graph. Assume now that γ = 0. If i < j, by the
definition of the boundary graph, T (i) ∩ T (j) 6= 0 if and only if [i,0, j] is a node of the graph.
If i > j, the set T (i) ∩ T (j) is nonempty if and only if [j,0, i] is a node of the graph. ¤
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Proof of Proposition 5.17. This proof is extracted from [124]. We only give a sketch
for the sake of completeness. Let [i, γ, j] be a node of a contact graph. Then γ can be written as
γ = hkπ[l(qk)− l(pk)]+ · · ·+h0π[l(q0)− l(p0)]+ γ0 with γ0 in a finite set. Hence γ is bounded.

Let [i, γ, j] ∈ D with γ = π(x) and 0 ≤ 〈x,vβ〉 < 〈ej ,vβ〉. Suppose that [i, γ, j] → [i1, γ1, j1]
satisfies condition (2) of Definition 5.19 with γ1 = π(x1). Then by the definition of edges, one
can show that 0 ≤ 〈x1,vβ〉 < 〈ej1 ,vβ〉 (see the proof of Theorem 5.7 or [124] for details).

For every node [i, γ, j] of the contact graph, with γ = π(x), the projection πe(x) on the
expanding line is bounded since h [γj ] ∈ Γsrs. Since we have also proved that γ = π(x) is
bounded, there are only a finite number of possibilities (by the same arguments as in the proof
of Proposition 5.5). ¤

Proof of Proposition 5.18. This result is proved in [124]. The main idea is the fol-
lowing: If there is a path of length n between a node [i, γ, j] and [i0, γ0, j0], then the polygons
Tn(i0) and Tn(j0) + γ0 share a common edge related to [i, γ, j]. ¤

Proof of Lemma 5.23. To preserve the set {ei, ej + γ1, ek + γ2} associated with [i, γ1, j,
γ2, k] we can act either by translation or by reversing the order. Then {ei, ej + γ1, ek + γ2} is
equal to {ei, ek + γ2, ej + γ1}, γ1 + {ej , ei − γ1, ek + γ2 − γ1},γ1 + {ej , ek + γ2 − γ1, ei − γ1},
γ2 +{ek, ei−γ2, ej +γ1−γ2}, γ2 +{ek, ej +γ1−γ2, ei−γ2, }. We deduce that the equivalence
class of [i, γ1, j, γ2, k] contains the six following elements (depending on the value of the node,
some of them can be equal):

[i, γ1, j, γ2, k] 't [i, γ2, k, γ1, j] 't [j,−γ1, i, γ2 − γ1, k]
't j, γ2 − γ1, k,−γ1, i] 't [k,−γ2, i, γ1 − γ2, j] 't [k, γ1 − γ2, j,−γ2, i].

In order to choose a unique candidate, we set γ0 = 0 and we denote a0 = i, a1 = j, a2 = k.
For each γi there exists xi ∈ Zn such that γi = π(xi). By (2.5), 〈xi,vβ〉 depends only on γi.
We choose a permutation µ on {0, 1, 2} such that the quantities 〈xi,vβ〉 are ordered and, when
there is an ambiguity, the associated letters ai are also ordered:{ 〈xµ(0),vβ〉 ≤ 〈xµ(1),vβ〉 ≤ 〈xµ(2),vβ〉

〈xµ(α),vβ〉 = 〈xµ(β),vβ〉 =⇒ aµ(α) < aµ(β).

A unique permutation satisfies these conditions. The unique equivalent node to [i, γ1, j, γ2, k] in
T is then obtained by translating the smallest quantity 〈xµ(0),vβ〉 to zero, that is, [aµ(0), γµ(1)−
γµ(0), aµ(1), γµ(2) − γµ(0), aµ(2)]. ¤

Proof of Theorem 5.25. The proof of finiteness is the same as in Proposition 5.5. Con-
sider a node [i, γ1, j, γ2, k] that satisfies (1) and (3). Then γ1 and γ2 can be expanded as

γ1,2 = π(x1,2) = π(±M−1l(p(k)
1,2)± · · · ±M−kl(p(1)

1,2)±M−k−1l(p(0)
1,2)±M−k−1x(0)

1,2).

By the argument used in Proposition 5.5, γ1 and γ2 are in contained in a finite set, so that the
triple point graph is finite.

We mimic the proof of Theorem 5.6 to demonstrate the assertion about intersections of
tiles. Consider a path [i(n), γ

(n)
1 , j(n), γ

(n)
2 , k(n)] in the graph. By the definition of edges, there

exist three walks in the prefix-suffix graph respectively starting in i0, j0 and k0 such that

γ
(0)
1 = −

∑

n≥0

hnπl(p(n)
1 ) +

∑

n≥0

hnπl(p(n)
0 ),

γ
(0)
2 = −

∑

n≥0

hnπl(p(n)
2 ) +

∑

n≥0

hnπl(p(n)
0 ).

We deduce that T (j0) + γ
(0)
1 and T (k0) + γ

(0)
2 both contain the point

∑
n≥0 hnπl(p(n)

0 ) that

belongs to T (i0). This yields a nonempty intersection T (i) ∩ (T (j) + γ
(0)
1 ) ∩ (T (k) + γ

(0)
2 ).

Conversely, assume that T (i)∩(T (j)+γ1)∩(T (k)+γ2) is nonempty, with [i, γ1, j, γ2, k] ∈ T

and [γ1, j] ∈ Γsrs, [γ2, k] ∈ Γsrs. Set [i(0), γ(0)
1 , j(0), γ

(0)
2 , k(0)] = φT[i, γ1, j, γ2, k]. By the

definition of φT, we also have [γ(0)
1 , j(0)] ∈ Γsrs and [γ(0)

2 , k(0)] ∈ Γsrs.
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Since the intersection is nonempty we exhibit three walks in the prefix-suffix graph (starting
in i0, j0, k0) with γ

(0)
1 = −∑

n≥0 hnπl(p(n)
1 )+

∑
n≥0 hnπl(p(n)

0 ) and γ
(0)
2 = −∑

n≥0 hnπl(p(n)
2 )+∑

n≥0 hnπl(p(n)
0 ). We define γ

(k)
1,2 = −∑

n≥0 hnπl(p(n+k)
2 ) +

∑
n≥0 hnπl(p(n+k)

0 ).

Then the nodes φT[i(n), γ
(n)
1 , j(n), γ

(n)
2 , k(n)] belong to T; they satisfy condition (1) and they

give rise to an infinite path in the graph, hence they belong to the triple point graph.

As in the proof of Theorem 5.7, we deduce a GIFS equation between the triple intersections:

T [i, γ1, j, γ2, k] =
⋃

[i,γ1,j,γ2,k]
e−→[i′,γ′1,j′,γ′2,k′]∈G(T )

SRT

hT [i′, γ′1, j
′, γ′2, k

′] + e.

This implies that any point in T [i, γ1, j, γ2, k] can be expanded by using the labels of a path of
the triple point graph starting from [i, γ1, j, γ2, k]. ¤

Proof of Proposition 5.30. The proof is given in the case of the SR-boundary graph.
The cases of triple or quadruple point graphs are similar.

Assume that a point x corresponds to infinitely many different walks starting from a node

N0 = [i(0), γ(0), j(0)] of the SR-boundary graph. We denote these walks by wk = N0
e
(1)
k−−→

N
(1)
k

e
(2)
k−−→ N

(2)
k

e
(3)
k−−→ · · · with N

(l)
k = [i(l)k , γ

(l)
k , j

(l)
k ]. By the local finiteness of the self-replicating

multiple tiling (see Remark 3.8), there exists a positive integer P such that each point of Hc is
covered at most P times by the tiles of this multiple tiling. Since the walks wk are all distinct,
there exists a positive integer n and P + 1 walks, say w1, . . . , wP+1, such that the prefixes of
length n of w1, . . . , wP+1 are pairwise distinct. From Theorem 5.7 we have that

T (i(0)) ∩ (T (j(0)) + γ(0)) =
⋃

(hnT (i(n)) ∩ (T (j(n)) + γ(n))) + e(1) + he(2) + · · ·+ hn−1e(n),

where the union is extended over all walks

N (0) e(1)

−−→ N (1) e(2)

−−→ N (2) e(3)

−−→ · · · e(n)

−−→ N (n)

of length n in the SR-boundary graph. In particular, the tiles e(1)
k + he(2)

k + · · · + hn−1e(n)
k +

hn
kT (i(n)

k ) are pairwise distinct tiles of the self-replicating multiple tiling. However, by Corol-
lary 5.9, the point x belongs to each of these P + 1 tiles, which is impossible by the choice of
P , a contradiction.

Consider now a path w : N (0) e(1)

−−→ N (1) e(2)

−−→ N (2) e(3)

−−→ · · · in the SR-boundary graph
that is not ultimately periodic. Since the SR-boundary graph is finite, two nodes in this path
are equal, i.e., there exist positive integers n and p such that N (n) = N (n+p). Thus w contains
a piece

v : N (n) e(n+1)

−−−−→ · · · e(n+p)

−−−−→ N (n+p).

Thus there is a prefix w1 of length n and an infinite suffix w2 such that w = w1vw2. Denote
the r-fold repetition of the walk v by vr. Since w is not ultimately periodic, the walks

wk = w1v
kw2 (k ≥ 1)

are infinitely many different walks starting at N (0).
Consequently, if only a finite number of paths lead away from a given node N of the

SR-boundary graph, these paths all have to be ultimately periodic. This implies that the
corresponding points can be calculated exactly from the formula x =

∑
n≥0 hne(n), since the

ultimate periodicity of the sequence (e(n))n≥1 makes this formula to a “rational function” in
h. ¤
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8.3. Details for the quadruple point graph

To deal with quadruple intersections, we reduce the set of all possible intersections defined
in (5.11).

Q =





[i, γ1, j, γ2, k, γ3, l] ∈ Q
γ1 = π(x1), γ2 = π(x2), γ3 = π(x3)
x1,x2,x3 ∈ Zn

;

∣∣∣∣∣∣∣∣

0 ≤ 〈x1,vβ〉 ≤ 〈x2,vβ〉 ≤ 〈x3,vβ〉
if γ1 = 0 then i < j
if γ2 = γ1 then j < k
if γ3 = γ2 then k < l





.

As for the triple point graph, the set Q provides a unique representant of intersections between
four tiles.

Lemma 8.1. Let us define the following equivalence relation on Q. 4-tuples are equivalent,
i.e.,

[i, γ1, j, γ2, k, γ3, l]) 'q [i′, γ′1, j
′, γ′2, k

′, γ′3, l
′]

if and only if the sets {ei, ej + γ1, ek + γ2, el + γ3} and {ei′ , ej′ + γ′1, ek′ + γ′2, el′ + γ′3} are
equal up to a translation. The set Q is a quotient set for the equivalence relation 'q: for every
[i, γ1, j, γ2, k, γ3, l], there exists a unique element in Q, denoted by φQ([i, γ1, j, γ2, k, γ3, l]) ∈ Q
such that [i, γ1, j, γ2, k, γ3, l] 'q φQ([i, γ1, j, γ2, k, γ3, l]).

Proof. As in the case of intersection between three tiles, we reorder the labels of tiles
and use translation process. We deduce that there are a-priori 24 sets being equivalent to
[i, γ1, j, γ2, k, γ3, l] (some of them can be equal):

[i, γ1, j, γ2, k, γ3, l]'q [i, γ2, k, γ1, j, γ3, l] and all permutations between j, k, l
'q [j,−γ1, i, γ2 − γ1, k, γ3 − γ1, l] and all permutations between i, k, l
'q [k,−γ2, i, γ1 − γ2, j, γ3 − γ2, l] and all permutations between i, j, l
'q [l,−γ3, i, γ1 − γ3, j, γ2 − γ3, k] and all permutations between i, j, k.

We fix γ0 = 0 and we consider integer pre-images for γ’s: γi = π(xi), xi ∈ Zn. Then we
consider a permutation of {0, 1, 2, 3} such that the quantities 〈xi,vβ〉 are ordered and, when
there is an ambiguity, the associated letters ai are also ordered. There exists a unique permu-
tation µ like that. We translate all γi by −γµ(0) to get the representant of [i, γ1, j, γ2, k, γ3, l] in
Q. ¤

As for the triple intersection, we deduce that if Q[i, γ1, j, γ2, k, γ3, l] denotes the intersection
between the four associated tiles, i.e.,

Q[i, γ1, j, γ2, k, γ3, l] = T (i) ∩ (T (j) + γ1) ∩ (T (k) + γ2) ∩ (T (l) + γ3)) ,

then Q[i, γ1, j, γ2, k, γ3, l] and QφQ[i, γ1, j, γ2, k, γ3, l] are equal up to a translation vector.
The quadruple point graph is then defined as follows.

Definition 8.2 (Quadruple point graph). The quadruple point graph of σ is denoted by
G(Q). It the largest8.1 graph such that

(1) If [i, γ1, j, γ2, k, γ3, l] is a node of G(Q), then [i, γ1, j, γ2, k, γ3, l] ∈ Q and

(8.2) max{||γ1||, ||γ2||, ||γ3||} ≤ 2max{||πl(p)||; (p, a, s) ∈ P}
1−max{|β(j)|; j = 2 . . . d} .

(2) There is an edge from a node [i, γ1, j, γ2, k, γ3, l] to the node [i′, γ′1, j
′, γ′2, k

′, γ′3, k
′] if

and only if there exists [i, γ1, j, γ2, k, γ3, l] ∈ Q and (p0, a0, s0), (p1, a1, s1), (p2, a2, s2),

8.1The meaning of “largest” is explained in Definition 5.1.
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(p3, a3, s3) such that




[i′, γ′1, j
′, γ′2, k

′] = ΦQ[i, γ1, j, γ1, k, γ3, l]
a0 = i and p0a0s0 = σ(i)
a1 = j and p1a1s1 = σ(j)
a2 = k and p2a2s2 = σ(k)
a3 = l and p3a3s3 = σ(l)
hγ1 = γ1 + πl(p1)− πl(p0)
hγ2 = γ2 + πl(p2)− πl(p0)
hγ3 = γ3 + πl(p3)− πl(p0).

The edge is labelled by e ∈ {πl(p0), πl(p1) + γ1, πl(p2) + γ2, , πl(p3) + γ3} such that
〈e,vβ〉 = min{〈l(p0),vβ〉, 〈l(p1) + x1,vβ〉, 〈l(p2) + x2,vβ〉, 〈l(p3) + x3,vβ〉}. Here
π(x`) = γ`, x` ∈ Zn (` ∈ {1, 2, 3}).

(3) Every node belongs to an infinite path starting from a node [i, γ1, j, γ2, k, γ3, l] such
that [γ1, j] ∈ Γsrs, [γ2, k] ∈ Γsrs and [γ3, l] ∈ Γsrs.

With a treatment similar to the triple point graph, we prove that this graph is finite and
identifies quadruple points in the self-replicating tiling.

Proof of Theorem 5.31. The proof is exactly the same as in Theorem 5.25. Finiteness
property is deduced from Condition (8.2). Then, if [i, γ1, j, γ2, k, γ3, l] ∈ Q is a node of the
quadruple point graph, we can express as a power series a point that lies at the intersection of
the four tiles. ¤

Remark 8.3. It is now clear how to define n-tuple graphs for n ≥ 5 also.
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[20] P. Arnoux, V. Berthé, H. Ei, and S. Ito. Tilings, quasicrystals, discrete planes, generalized substitutions,

and multidimensional continued fractions. In Discrete models: combinatorics, computation, and geometry
(Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., AA, pages 059–078 (electronic). Maison Inform.
Math. Discrèt. (MIMD), Paris, 2001.
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