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Abstract

In this paper we give best possible lower and upper bounds on the average
distance between consecutive points of uniformly distributed sequences. The upper
bound is attained with the dyadic van der Corput sequence. Furthermore we give
a constructive proof that any element from the interval [0, 1/2] can be obtained
as the average distance between consecutive points of some uniformly distributed
sequence.
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1 Introduction

A sequence (xn)n≥0 in the unit-interval [0, 1) is said to be uniformly distributed if for all
intervals I ⊆ [0, 1) we have

lim
N→∞

A(I,N, (xn))

N
= λ(I),

where A(I,N, (xn)) = #{0 ≤ n < N : xn ∈ I}, the number of elements among the first
N elements of the sequence that belong to I, and λ(I) is the length of the interval I. An
excellent introduction into this topic can be found in the book of Kuipers and Niederreiter
[5] or in the book of Drmota and Tichy [2]. Typical examples of uniformly distributed
sequences are:

1. The van der Corput sequence in integer base b ≥ 2 for which the n-th point is given
by xn = n0

b
+ n1

b2
+ n2

b3
+ · · · for n ∈ N0 with b-adic expansion n = n0 +n1b+n2b

2 + · · · .
It is well known that the van der Corput sequence in base b is uniformly distributed
(see [5, Chapter 2, Theorem 3.5]).

2. The (nα)-sequences where the n-th element is given by xn = {nα}, and {·} denotes
the fractional part. From Weyl’s criterion one obtains immediately, that the (nα)-
sequence is uniformly distributed if and only if α ∈ R\Q (see [5, Chapter 1, Example
2.1]).

∗F.P. is supported by the Austrian Science Foundation (FWF), Project S9609, that is part of the
Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory”.
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It is well known (see [5, Chapter 1, Theorem 2.6]) that if a sequence (xn)n≥0 is uni-
formly distributed, then necessarily lim supn→∞ n|xn+1 − xn| = ∞. In this paper we
consider the average of the distances between consecutive elements of a uniformly dis-
tributed sequence (xn)n≥0 in the unit-interval, i.e., we analyze the quantity

N−1∑
n=0

|xn+1 − xn|. (1)

Trivially, this quantity is bounded above by N . On the other hand, it is also clear that
for uniformly distributed sequences (xn)n≥0 in the unit-interval the series

∑∞
n=0 |xn+1−xn|

is divergent, since otherwise we would have
∑

n>N |xn+1−xn| < 1
4

for some N ∈ N. Hence
for all m > N we would have

|xm − xN | ≤
m−1∑
n=N

|xn+1 − xn| <
1

4
,

which means that all elements xm with m > N are in the interval (xN − 1
4
, xN + 1

4
)∩ [0, 1).

Obviously, this is a contradiction to the uniform distribution property of (xn)n≥0.
A sequence (xn)n≥0 is said to be completely uniformly distributed if for any s ≥ 1

the s-dimensional sequence (x
(s)
n )n≥0, where x

(s)
n = (xn, xn+1, . . . , xn+s−1), is uniformly

distributed in [0, 1)s (the definition of uniform distribution for sequences in [0, 1) can be
generalized to uniform distribution of s-dimensional sequences in the obvious way, see [5,
Chapter 1, Section 6]). Examples for completely uniformly distributed sequences can be
found in [10]. Hence, if (xn)n≥0 is completely uniformly distributed, then from [5, Chapter
1, Theorem 6.1] we obtain

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| =
∫ 1

0

∫ 1

0

|x− y| dx dy =
1

3
.

Now it is well known that almost all random sequences in the unit interval [0, 1) are
completely uniformly distributed (this follows, for example, from [3, Theorem 4]; see also
[6]). Hence we obtain that almost all random sequences in the unit interval are uniformly
distributed with average distance of consecutive elements equal to 1

3
in the limit.

The paper is organized as follows: in Section 2 we present the main results. In
particular, we give best possible (asymptotic) upper and lower bounds on (1). Further-
more, we determine the average distance among consecutive points of the two prototypes
of uniformly distributed sequences given above, the van der Corput sequence and the
(nα)-sequence. These results lead for any γ ∈ [0, 1

2
] to the construction of a uniformly

distributed sequence whose average distance between consecutive points is in the limit
equal to γ. The proofs of the results are presented in Section 3.

Throughout the paper we denote by bxc the integer part of x and by {x} the fractional
part of x, i.e., x = bxc+ {x}. Furthermore, by ‖x‖ we denote the distance from x to the
nearest integer, i.e., ‖x‖ = min{x − bxc, 1 − (x − bxc)}. By log we denote the natural
logarithm.

2 The Main Results

In this section we present the main results of this paper. The proofs of these results will
be given in Section 3.
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The first theorem shows that the sum of the first N distances between consecutive
points of a uniformly distributed sequence grows faster than any positive constant times
the logarithm of N .

Theorem 1 Let (xn)n≥0 be uniformly distributed in [0, 1). Then we have

lim
N→∞

1

logN

N−1∑
n=0

|xn+1 − xn| =∞.

The result of this theorem becomes quite natural in the light of the following corollary
stating that sequences generated by increasing functions with a very slow growth are not
uniformly distributed. This result is well known and was first proved by Niederreiter [7]
(see also [10, Subsection 2.2.8]).

Corollary 1 Let f : N → R+ be an increasing function with f(n) = O(log n). Then the
sequence ({f(n)})n≥1 is not uniformly distributed.

A further consequence of Theorem 1 is the result from [5, Chapter 1, Theorem 2.6] on
the lim supn→∞ n|xn+1 − xn| for uniformly distributed sequences (xn)n≥0 as mentioned in
the Introduction to this paper. Assuming that lim supn→∞ n|xn+1 − xn| < ∞ we would
obtain

∑N−1
n=0 |xn+1 − xn| = O(logN) which contradicts Theorem 1. Hence we must have

lim sup
n→∞

n|xn+1 − xn| =∞.

The result from Theorem 1 is best possible in the sense that there exist (arbitrary
slowly) growing functions h which generate uniformly distributed sequences for which
the first N distances between consecutive points of the sequences are bounded above by
h(N) logN .

Theorem 2 Let h : [1,∞) → R+ be an increasing, continuously differentiable function
such that:

1. limx→∞ h(x) =∞,

2. h(x)/x tends monotonically to 0 as x→∞ and

3. h′(x) log x tends monotonically to 0 as x→∞.

Then there exists a uniformly distributed sequence (xn)n≥0 in [0, 1) for which we have

N−1∑
n=0

|xn+1 − xn| ≤ h(N) logN.

Such a sequence is, for example, given by xn =
{

1
2
h(n) log n

}
for n ≥ 1.

Now we turn to an asymptotic upper bound on the average of distances between
consecutive points of a uniformly distributed sequence.
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Theorem 3 Let (xn)n≥0 and (yn)n≥0 be two uniformly distributed sequences in [0, 1).
Then we have

lim sup
N→∞

1

N

N−1∑
n=0

|xn − yn| ≤
1

2
.

In particular, we have

lim sup
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| ≤
1

2
.

Again, this result is best possible. The value 1
2

is obtained, for example, by the van
der Corput sequence in base 2.

Theorem 4 Let (xn)n≥0 be the van der Corput sequence in base 2. Then we have

N−1∑
n=0

|xn+1 − xn| =
N

2
− 1

2
xbN2 c.

In particular, limN→∞
1
N

∑N−1
n=0 |xn+1 − xn| = 1

2
.

Hence the van der Corput sequence in base 2 is an example for a uniformly distributed
sequence with the largest possible average distance between consecutive points.

Remark 1 With a much simpler argumentation as in the proof of Theorem 4, but less
accurate, we can show that for the van der Corput sequence in arbitrary base b we have

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| =
2(b− 1)

b2
. (2)

Namely, from the construction of the van der Corput sequence in base b we find that
xn+1− xn = 1

b
whenever n 6≡ b− 1 (mod b) and xn+1− xn = − bk−b−1

bk
whenever n is of the

form n = mbk + βbk−1 + bk−1 − 1 with m ∈ N0, β ∈ {0, . . . , b− 2} and k ≥ 2. Therefore
we have

N−1∑
n=0

|xn+1 − xn| =
b− 1

b

⌊
N

b

⌋
+

∑
k≥2,m≥0
0≤β≤b−2

mbk+βbk−1+bk−1−1≤N−1

bk − b− 1

bk

= N
b− 1

b2
+N(b− 1)

blogNc∑
k=2

bk − b− 1

b2k
+O(logN)

= N
b− 1

b2
+N(b− 1)

(bblogNc+1 − bblogNc − 1)(bblogNc − b)
(b− 1)b2(blogNc+1)

+O(logN).

From this the result (2) follows, since limN→∞
(bblogNc+1−bblogNc−1)(bblogNc−b)

(b−1)b2(blogNc+1) = 1
b2

.

The next theorem shows, that for any (nα)-sequence we have that the average distance
between consecutive points is in the limit < 1

2
where again 1

2
is best possible.
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Theorem 5 Let (xn)n≥0 be the (nα)-sequence with α ∈ R \Q. Then we have

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| = 2{α}(1− {α}).

Hence for α ∈ R \ Q the values limN→∞
1
N

∑N−1
n=0 |xn+1 − xn| are dense in

[
0, 1

2

]
.

Especially, every real γ ∈ (0, 1
2
) which is of the form γ = 2α(1− α) for some irrational α

can be obtained as the average distance between consecutive points of the (nα)-sequence.
(Note also that choosing randomly a irrational α ∈ (0, 1) leads to a (nα)-sequence with
expected average distance between consecutive points of 1

3
in the limit.) By constructing

a more general sequence, we finally obtain that even any γ ∈ [0, 1
2
] can be obtained as the

average distance between consecutive points of a uniformly distributed sequence. This
result should be compared with the fact that almost all random sequences have average
distance between consecutive points of 1

3
in the limit (see Section 1).

Corollary 2 For each γ ∈ [0, 1
2
] there exists a uniformly distributed sequence (xn)n≥0 in

[0, 1) such that

lim
N→∞

1

N

N−1∑
i=0

|xn+1 − xn| = γ.

We remark here, that for each γ ∈ [0, 1
2
] we can give an explicit example for a uniformly

distributed sequence with average distance between consecutive points equal to γ in the
limit (see the proof of Corollary 2 in the subsequent section).

3 The Proofs

In this section we provide the proofs of the results from Section 2. For the proof of
Theorem 1 we need the following lemmas.

Lemma 1 Let f : N→ N be a function and let (xn)n≥0 be uniformly distributed in [0, 1).
Assume there is a constant c = c(f) > 0 such that there exists a y = y(c) ∈ R with the
property that for all x > y we have f(x)

(
1
2
− 3c

)
> 2cx. Then there is an integer N ∈ N

such that for all n > N we have

n+f(n)∑
i=n

|xi+1 − xi| >
1

2
. (3)

Proof. Let us assume that the inequality is false for infinitely many numbers n ∈ N. We
now choose an arbitrary ε ∈ (0, c). Since the sequence (xn)n≥0 is uniformly distributed
modulo one, there is a constant M ∈ N such that for all m > M and for all intervals
I ⊆ [0, 1) we have ∣∣∣∣A(I,m, (xn))

m
− λ(I)

∣∣∣∣ ≤ ε. (4)
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By assumption, there are infinitely many numbers m > M such that Eq. (3) does not
hold. We choose one such m > M for which the inequality f(m)

(
1
2
− 3ε

)
> 2εm is true

as well. Then for all m ≤ j < k ≤ m+ f(m) + 1 we have

|xk − xj| ≤
k−1∑
i=j

|xi+1 − xi| ≤
m+f(m)∑
i=m

|xi+1 − xi| ≤
1

2

Hence the elements xm, xm+1, ..., xf(m)+m+1 can be found within an interval I∗ ⊆ [0, 1) of
length at most 1

2
. From (4) we conclude that∣∣∣∣A(I∗,m+ f(m), (xn))

m+ f(m)
− A(I∗,m, (xn))

m

∣∣∣∣ ≤ 2ε. (5)

On the other hand

A(I∗,m+ f(m), (xn))

m+ f(m)
=
A(I∗,m, (xn))

m+ f(m)
+

f(m)

m+ f(m)

Inserting this into Eq. (5) yields∣∣∣∣ f(m)

m+ f(m)

(
1− A(I∗,m, (xn))

m

)∣∣∣∣ ≤ 2ε

The expression within the brackets is strictly positive, therefore

2ε ≥ f(m)

m+ f(m)

(
1− A(I∗,m, (xn))

m

)
≥ f(m)

m+ f(m)
(1−λ(I∗)−ε) ≥ f(m)

m+ f(m)

(
1

2
− ε
)
.

However, the inequality f(m)
(

1
2
− 3ε

)
> 2εm gives

2ε ≥ f(m)

m+ f(m)

(
1

2
− ε
)
> 2ε,

and this contradiction completes the proof. 2

Lemma 2 Let m ∈ N be arbitrary and let T : R→ R be defined as T (x) := x+
⌊
x
m

⌋
+ 1.

For n ∈ N we define T (n) := T (T (n−1)) with T (0)(x) := x. If x > m, then we have

T (n)(x) ≤ x

(
1 +

2

m

)n
Proof. The result follows by induction on n. 2
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Proof of Theorem 1. Let m > 2 be a fixed integer. It is easy to see that the function
f(x) =

⌊
x
m

⌋
satisfies the requirements of Lemma 1. Therefore there exists a number

M ∈ N such that for all k > M we have

k+b kmc∑
n=k

|xn+1 − xn| >
1

2
.

Let now N > max(M,m), we then estimate

N−1∑
n=0

|xn+1 − xn| ≥
M+bMm c∑
n=M

|xn+1 − xn|+

M+bMm c+1+

$
M+bMm c+1

m

%
∑

n=M+bMm c+1

|xn+1 − xn|+ · · · ,

where the sums are being added while the upper index is still smaller than N . From
our Lemma 2 we know that the upper index of the kth sum will be ≤ M(1 + 2

m
)k. By

making use of the elementary inequality log(1 + x) ≤ x we see that there are at least
m
2

(logN − logM) sums on the right side of the inequality. Each sum contributes at least
1
2
, therefore

N−1∑
n=0

|xn+1 − xn| ≥
m

4
(logN − logM)

for N sufficiently large. Since m was an arbitrary integer, the result follows. 2

Proof of Corollary 1. The result follows from Theorem 1 together with the subsequent
lemma which is also required for the proof of Theorem 2. 2

Lemma 3 Let f : N→ R+ be an increasing function. Then for any N ∈ N we have

N−1∑
n=0

|{f(n+ 1)} − {f(n)}| ≤ 2f(N).

Proof. We have

|{f(n+ 1)} − {f(n)}| ≤
{
f(n+ 1)− f(n) if bf(n)c = bf(n+ 1)c,
1 otherwise.

Therefore we obtain

N−1∑
n=0

|{f(n+ 1)} − {f(n)}| ≤
N−1∑
n=0

bf(n)c=bf(n+1)c

(f(n+ 1)− f(n)) +
N−1∑
n=0

bf(n)c6=bf(n+1)c

1

≤ f(N) + #{0 ≤ n < N : bf(n)c 6= bf(n+ 1)c}.

For the increasing sequence f(n), n = 0, 1, . . . , N−1, it can occur at most f(N) times that
bf(n)c 6= bf(n + 1)c (the worst case is that each interval [i, i + 1), i ∈ {0, . . . , bf(N)c},
contains exactly one element f(n)). Hence the result follows. 2
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Proof of Theorem 2. The proof is based on Fejér’s theorem (see, for example, [5,
Chapter 1, Corollary 2.1]). Let f(x) = 1

2
h(x) log x, then f : [1,∞)→ R+ is an increasing,

differentiable function with

x|f ′(x)| = x

2

(
h′(x) log x+

h(x)

x

)
≥ 1

2
h(x)

and hence limx→∞ x|f ′(x)| =∞.
Since by assumption h(x)/x and h′(x) log x both converge to 0 monotonically as x→

∞ we find that

f ′(x) =
1

2

(
h′(x) log x+

h(x)

x

)
converges to 0 monotonically as x→∞.

Thus, by Fejér’s theorem the sequence (f(n))n≥0 is uniformly distributed. From
Lemma 3 we obtain that

N−1∑
n=0

|xn+1 − xn| =
N−1∑
n=0

|{f(n+ 1)} − {f(n)}| ≤ 2f(N) = h(N) logN,

as claimed. 2

Proof of Theorem 3. 1 We consider an arbitrary distribution function (d.f.) g :
[0, 1]2 → [0, 1] of the two-dimensional sequence (xn, yn)n≥0. Hence there exists an increas-
ing sequence of natural numbers N1, N2, . . . such that

lim
k→∞

1

Nk

Nk−1∑
n=0

|xn − yn| =
∫ 1

0

∫ 1

0

|x− y| dx dyg(x, y).

Integration by parts yields∫ 1

0

∫ 1

0

|x− y| dx dyg(x, y) =

∫ 1

0

g(1, y) dy +

∫ 1

0

g(x, 1) dx− 2

∫ 1

0

g(x, x) dx.

Since the sequences (xn)n≥0 and (yn)n≥0 are both uniformly distributed, we have that
g(1, y) = y and g(x, 1) = x for all x, y ∈ [0, 1]. Such a distribution function is called a
copula (see [9, p. 55] for basic properties of copulas). Now we obtain∫ 1

0

∫ 1

0

|x− y| dx dyg(x, y) = 1− 2

∫ 1

0

g(x, x) dx.

It is known (see [9, p. 56]) that for every copula g(x, y) we have max(x + y − 1, 0) ≤
g(x, y) ≤ min(x, y) and from this we find that∫ 1

0

∫ 1

0

|x− y| dx dyg(x, y) ≤ 1

2
.

Since g is an arbitrary d.f. the result follows. 2

The proof of Theorem 4 is based on the following result.

1We are geatful to Oto Strauch who proposed this proof which is much shorter and more general than
our initial proof of Theorem 3.
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Proposition 1 Let (xn)n≥0 be the van der Corput sequence in base 2. For 2m ≤ N <
2m+1 we have

N−1∑
n=0

xn =
N

2
− 1

2

(
1 +

m∑
r=1

∥∥∥∥N2r
∥∥∥∥
)

(6)

and
N−1∑
n=0

n≡0 ( mod 2)

xn =
N

8
+ ρN −

1

4

m∑
i=1

∥∥∥∥N2i
∥∥∥∥− 1

8

m−1∑
i=1

δN,i
2i
, (7)

with ρN = 0 when N is odd and ρN = −1/4 when N is even and δN,i = 0 when N is even
and δN,i = (−1)Ni when N is odd.

The following lemma is required for the proof of Proposition 1.

Lemma 4 Let 0 ≤ U < 2m be an integer and for any integer 0 ≤ n ≤ U − 1 let
n = n0 + n12 + · · · + nm−12

m−1 be the binary representation of n. Then for any integer
0 ≤ r < m we have

U−1∑
n=0

(−1)nr = 2r+1

∥∥∥∥ U

2r+1

∥∥∥∥ , (8)

and for 1 ≤ r < m we have

U−1∑
n=0

n≡0 ( mod 2)

(−1)nr = 2r
∥∥∥∥ U

2r+1

∥∥∥∥+
δU,r
2
, (9)

where δU,r = 0 when U is even and δU,r = (−1)Ur when U is odd.

Proof. Eq. (8) is a special case of [8, Lemma 4.1] (or [1, Lemma 3]). Hence we just deduce
Eq. (9) from Eq. (8). We have

2r+1

∥∥∥∥ U

2r+1

∥∥∥∥ =
U−1∑
n=0

(−1)nr =
U−1∑
n=0

n≡0 ( mod 2)

(−1)nr +
U−1∑
n=1

n≡1 ( mod 2)

(−1)nr .

If n is odd and r ≥ 1 we have nr = (n− 1)r where (n− 1)r is the r-th digit in the binary
representation of n− 1. Hence

U−1∑
n=1

n≡1 ( mod 2)

(−1)nr =
U−1∑
n=1

n≡1 ( mod 2)

(−1)(n−1)r =
U−2∑
n=0

n≡0 ( mod 2)

(−1)nr =
U−1∑
n=0

n≡0 ( mod 2)

(−1)nr − δU,r,

where δU,r = 0 when U is even and δU,r = (−1)(U−1)r = (−1)Ur when U is odd (note that
r 6= 0). Together we obtain

2r+1

∥∥∥∥ U

2r+1

∥∥∥∥ = 2
U−1∑
n=0

n≡0 ( mod 2)

(−1)nr − δU,r

and the result follows. 2
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Now we give the proof of Proposition 1.

Proof of Proposition 1. We just give the (more involved) proof of Eq. (7) (Eq. (6) can be
shown in the same way or, alternatively, follows from [1, Proposition 1]).

For ξ ∈ {0, 1} we have ξ = 1−(−1)ξ

2
. Let x ∈ [0, 1) with canonical binary representation

x =
∑∞

i=1
ξi
2i

. Then we have

x =
∞∑
i=1

1− (−1)ξi

2i+1
=

1

2
−
∞∑
i=1

(−1)ξi

2i+1
. (10)

For n = n0 + n12 + n22
2 + · · · the n-th point of the van der Corput sequence is given by

xn = n0

2
+ n1

22 + n2

22 + · · · . Hence, using (10) we may write xn as xn = 1
2
−
∑∞

i=0
(−1)ni

2i+2 . Now
we have

N−1∑
n=0

n≡0 ( mod 2)

xn =
N−1∑
n=0

n≡0 ( mod 2)

1

2
−
∞∑
i=0

1

2i+2

N−1∑
n=0

n≡0 ( mod 2)

(−1)ni .

For any m ∈ N we have

2m−1∑
n=0

n≡0 ( mod 2)

(−1)ni =

{
0 if 1 ≤ i < m,
2m−1 if i = 0 or if i ≥ m.

Choosing m such that 2m ≤ N < 2m+1 we obtain

N−1∑
n=0

n≡0 ( mod 2)

xn =
N−1∑
n=0

n≡0 ( mod 2)

1

2
−
∞∑
i=0

1

2i+2

2m−1∑
n=0

n≡0 ( mod 2)

(−1)ni −
∞∑
i=0

1

2i+2

N−1∑
n=2m

n≡0 ( mod 2)

(−1)ni .

We have
∞∑
i=0

1

2i+2

2m−1∑
n=0

n≡0 ( mod 2)

(−1)ni = 2m−3 +
∞∑
i=m

2m−1

2i+2
=

2m

8
+

1

4

and (splitting up the summation over i and invoking Lemma 4)

∞∑
i=0

1

2i+2

N−1∑
n=2m

n≡0 ( mod 2)

(−1)ni

=
N−1∑
n=2m

n≡0 ( mod 2)

1

4
+

m−1∑
i=1

1

2i+2

N−1∑
n=2m

n≡0 ( mod 2)

(−1)ni +
1

2m+2

N−1∑
n=2m

n≡0 ( mod 2)

(−1) +
∞∑

i=m+1

1

2i+2

N−1∑
n=2m

n≡0 ( mod 2)

1

=
N−1∑
n=2m

n≡0 ( mod 2)

1

4
+

m−1∑
i=1

1

2i+2

N−1∑
n=2m

n≡0 ( mod 2)

(−1)ni

=
N−1∑
n=2m

n≡0 ( mod 2)

1

4
+

m−1∑
i=1

1

2i+2

N−2m−1∑
n=0

n≡0 ( mod 2)

(−1)ni

10



=
N−1∑
n=2m

n≡0 ( mod 2)

1

4
+

m−1∑
i=1

1

2i+2

(
2i
∥∥∥∥N − 2m

2i+1

∥∥∥∥+
δN−2m,i

2

)

=
N−1∑
n=2m

n≡0 ( mod 2)

1

4
+

1

4

m∑
i=2

∥∥∥∥N2i
∥∥∥∥+

1

8

m−1∑
i=1

δN,i
2i
.

Now we obtain

N−1∑
n=0

n≡0 ( mod 2)

xn =
N−1∑
n=0

n≡0 ( mod 2)

1

2
−

N−1∑
n=2m

n≡0 ( mod 2)

1

4
− 2m

8
− 1

4
− 1

4

m∑
i=2

∥∥∥∥N2i
∥∥∥∥− 1

8

m−1∑
i=1

δN,i
2i

=
N

8
+ ρ̃N −

1

4
− 1

4

m∑
i=2

∥∥∥∥N2i
∥∥∥∥− 1

8

m−1∑
i=1

δN,i
2i
,

where ρ̃N = 0 when N is even and ρ̃N = 1
8

when N is odd. For even N we have ‖N/2‖ = 0
and for odd N we have 1

4
‖N/2‖ = 1/8 = 1/4− ρ̃N . Hence we have

N−1∑
n=0

n≡0 ( mod 2)

xn =
N

8
+ ρN −

1

4

m∑
i=1

∥∥∥∥N2i
∥∥∥∥− 1

8

m−1∑
i=1

δN,i
2i
,

with ρN = 0 when N is odd and ρN = −1/4 when N is even. 2

Proof of Theorem 4. For even n we have xn+1 − xn > 0 and for odd n we have
xn+1 − xn < 0. Hence together with Proposition 1 we get

N−1∑
n=0

|xn+1 − xn| =
N−1∑
n=0

n≡0 ( mod 2)

(xn+1 − xn) +
N−1∑
n=0

n≡1 ( mod 2)

(xn − xn+1)

= 2

 N−1∑
n=0

n≡1 ( mod 2)

xn −
N−1∑
n=0

n≡0 ( mod 2)

xn

+ (−1)N+1xN

= 2

N−1∑
n=0

xn − 2
N−1∑
n=0

n≡0 ( mod 2)

xn

+ (−1)N+1xN

=
N

2
− 1− 4ρN +

1

2

m−1∑
i=1

δN,i
2i

+ (−1)N+1xN .

For even N we have ρN = −1/4 and δN,i = 0 and 0 ≤ xN < 1/2, and hence

−1− 4ρN +
1

2

m−1∑
i=1

δN,i
2i

+ (−1)N+1xN = −xN .
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From this it follows that for even N

N − 2
N−1∑
n=0

|xn+1 − xn| = 2xN = xN
2
.

For odd N we know that xN = xN−1 + 1
2
, therefore

N − 2
N−1∑
n=0

|xn+1 − xn| = (N − 1)− 2
N−2∑
n=0

|xn+1 − xn| = xN−1
2
.

2

Finally, we give the proof of Theorem 5.

Proof of Theorem 5. W.l.o.g. we may assume that α ∈ (0, 1). From the construction
of the sequence one can see that

|xn+1 − xn| =
{
α if xn ∈ [0, 1− α),
1− α if xn ∈ [1− α, 1).

Therefore and since (xn)n≥0 is uniformly distributed, for N →∞ we obtain

1

N

N−1∑
n=0

|xn+1 − xn| =
1

N

N−1∑
n=0

xn∈[0,1−α)

α +
1

N

N−1∑
n=0

xn∈[1−α,1)

(1− α)

= α(1− α + o(1)) + (1− α)(α + o(1))

and the result follows. 2

Proof of Corollary 2. For γ = 1
2

we can take the van der Corput sequence in base 2
and for γ = 0 we can take the sequence given in Theorem 2.

Each γ ∈ (0, 1
2
) can be written as γ = 2α(1−α) for some α ∈ (0, 1

2
). This is equivalent

to α = 1
2
(1−

√
1− 2γ). If α is irrational, then by Theorem 5 the (nα)-sequence has the

demanded properties.
Otherwise γ itself has to be rational. For a fixed irrational 0 < c < min{γ, 1

2
− γ} the

numbers γ− c and γ+ c are irrational, and hence there exist irrational α and β such that

lim
N→∞

1

N

N−1∑
n=0

|{(n+ 1)α} − {nα}| = γ − c and lim
N→∞

1

N

N−1∑
n=0

|{(n+ 1)β} − {nβ}| = γ + c.

By Theorem 5 we have 2α(1− α) = γ − c and 2β(1− β) = γ + c.
We now consider the sequence (xn)n≥0 given by 0, {α}, {α+β}, {α+2β}, {2α+2β}, . . .

where, beginning with the element 0 we add consecutively α once, then β twice, α three
times and so forth. The resulting sequence can be written as x0 = 0 and for k ∈ N and
k(k−1)

2
< n ≤ k(k+1)

2
we have

xn =


{(
n− k2−1

4

)
α + k2−1

4
β
}

if k is odd,{
k2

4
α +

(
n− k2

4

)
β
}

if k is even.
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Using Weyl’s criterion we show that the sequence (xn)n≥0 is uniformly distributed

whenever α and β are irrational. For N ∈ N choose M ∈ N such that M(M−1)
2

< N ≤
M(M+1)

2
and hence M = O(

√
N). Then for any integer h 6= 0 we have

N−1∑
n=0

e2πihxn =
M−1∑
k=0

k≡0 ( mod 2)

k(k+1)
2∑

n=
k(k−1)

2
+1

e
2πih

“
k2

4
α+
“
n− k

2

4

”
β
”

+
M−1∑
k=0

k≡1 ( mod 2)

k(k+1)
2∑

n=
k(k−1)

2
+1

e
2πih

““
n− k

2−1
4

”
α+ k2−1

4
β
”

+O(M). (11)

Since β ∈ R \Q and h 6= 0 for even k ∈ N we have∣∣∣∣∣∣∣
k(k+1)

2∑
n=

k(k−1)
2

+1

e
2πih

“
k2

4
α+
“
n− k

2

4

”
β
”∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
k2

4
+ k

2∑
n= k2

4
− k

2
+1

e2πihnβ

∣∣∣∣∣∣∣ ≤
2

|e2πihβ − 1|
.

An analogous bound holds for the second sum in (11) over n with odd k. Hence it follows
with Eq. (11) that for any h 6= 0 we have

∑N−1
n=0 e2πihxn = O(M) = O(

√
N) and hence

Weyl’s criterion implies that the sequence (xn)n≥0 is uniformly distributed.
Now we turn to the sum of the distances between consecutive points of (xn)n≥0. For

N ∈ N choose again M ∈ N such that M(M−1)
2

< N ≤ M(M+1)
2

and hence M = O(
√
N)

and M2

2
∼ N for N →∞. We write

N−1∑
n=0

|xn+1 − xn| =
∑

r∈{0,1}

M−1∑
k=0

k≡r ( mod 2)

k(k+1)
2
−1∑

n=
k(k−1)

2

|xn+1 − xn|+O(M)

=
M−1∑
k=0

k≡0 ( mod 2)

k(k+1)
2
−1∑

n=
k(k−1)

2
xn∈[0,1−α)

α +
M−1∑
k=0

k≡0 ( mod 2)

k(k+1)
2
−1∑

n=
k(k−1)

2
xn∈[1−α,1)

(1− α)

+
M−1∑
k=0

k≡1 ( mod 2)

k(k+1)
2
−1∑

n=
k(k−1)

2
xn∈[0,1−β)

β +
M−1∑
k=0

k≡1 ( mod 2)

k(k+1)
2
−1∑

n=
k(k−1)

2
xn∈[1−β,1)

(1− β) +O(
√
N).

For any interval J ⊆ [0, 1) for k →∞ we have

k(k+1)
2
−1∑

n=
k(k−1)

2
xn∈J

1 = #

{
k(k − 1)

2
≤ n <

k(k + 1)

2
: xn ∈ J

}

=

(
k(k + 1)

2
(λ(J) + o(1))− k(k − 1)

2
(λ(J) + o(1))

)
= kλ(J) + o(k).

Hence we obtain
N−1∑
n=0

|xn+1 − xn| = 2α(1− α)
M−1∑
k=0

k≡0 ( mod 2)

k + 2β(1− β)
M−1∑
k=0

k≡1 ( mod 2)

k +
M−1∑
k=0

o(k) +O(
√
N).
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Since
M−1∑
k=0

k≡r ( mod 2)

k = M2

4
+O(M) for r ∈ {0, 1} and since

∑M−1
k=0 o(k) = o(M2) = o(N) and

since M2

2
∼ N for N →∞ we obtain

N−1∑
n=0

|xn+1 − xn| = (α(1− α) + β(1− β))N + o(N).

Now by construction, 2α(1− α) = γ − c and 2β(1− β) = γ + c and the result follows. 2
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