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Abstract

In analogy to ordinary q-additive functions based on q-adic expansions one may
use Cantor expansions with a Cantor base Q to define (strongly) Q-additive func-
tions. This paper deals with distribution properties of multi-dimensional sequences
which are generated by such Q-additive functions. If in each component we have
the same Cantor base Q, then we show that uniform distribution already implies
well distribution and we provide an if and only if condition under which such se-
quences are uniformly distributed modulo one. For different Cantor bases in the
single coordinate directions the question for uniform distribution becomes much
more involved. We give a criterion which is sufficient and, in the case of strongly
Q-additive functions, also necessary.
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1 Introduction

A sequence (xn)n≥0 in Rs is said to be uniformly distributed modulo one if for all intervals
[a, b) ⊆ [0, 1)s we have

lim
N→∞

#{n : 0 ≤ n < N, {xn} ∈ [a, b)}
N

= λs([a, b)), (1)

where λs denotes the s-dimensional Lebesgue measure and {x} denotes the fractional part
of a vector x applied component wise. Furthermore, a sequence (xn)n≥0 in Rs is said to
be well distributed modulo one if for all intervals [a, b) ⊆ [0, 1)s we have

lim
N→∞

#{n : ν ≤ n < ν + N, {xn} ∈ [a, b)}
N

= λs([a, b)) uniformly in ν ∈ N0. (2)
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Of course, a sequence that is well distributed modulo one is also uniformly distributed
modulo one but the converse is not true in general.

Quantitative versions of (1) resp. (2) are often stated in terms of discrepancy resp.
uniform discrepancy. For a sequence ω = (xn)n≥0 in Rs the discrepancy is defined by

DN(ω) = sup
a≤b

∣∣∣∣
#{n : 0 ≤ n < N, {xn} ∈ [a, b)}

N
− λs([a, b))

∣∣∣∣ ,

where the supremum is extended over all sub-intervals [a, b) of the unit-cube [0, 1)s. The
so-called uniform discrepancy is defined as

D̃N(ω) = sup
ν∈N0

DN((xn+ν)n≥0).

A sequence is uniformly distributed modulo one if and only if its discrepancy tends to
zero as N goes to infinity and it is well distributed modulo one if and only if its uniform
discrepancy tends to zero as N goes to infinity.

An excellent introduction into these and related topics can be found in the book of
Kuipers and Niederreiter [14] or in the book of Drmota and Tichy [4]. See also [17].

In this paper we consider uniform and well distribution properties of special sequences
which are generated by so-called Q-additive functions, with respect to a Cantor digit
expansion with base Q = {q0, q1, . . .} where qi ≥ 2 are integers for all i ∈ N0.

Details about Cantor digit expansions (sometimes also called mixed-radix systems) in
general can be found, e.g., in [13]. We will call Q = {q0, q1, . . .} with integers qi ≥ 2 for
all i ∈ N0 a Cantor base and we set Q0 := 1, Qk := q0 · · · qk−1 for k ∈ N (we can, e.g.,
take Qk = (k + 1)! ). The special case of ordinary q-adic expansions, q ≥ 2 an integer,
is contained if we choose q0 = q1 = . . . = q and hence Qk = qk. The main difference
between Q-adic and ordinary q-adic expansions is that in the general case the i-th digit
can take values in {0, . . . , qi − 1}, which may vary for each i and even become arbitrarily
large. Each integer n possesses a unique finite representation

n = n0 + n1q0 + n2q0q1 + · · · =
∑

i≥0

niQi, with ni ∈ {0, . . . , qi − 1} for i ∈ N0.

We will call this the Q-adic expansion or the Cantor expansion of n. Additionally, each
real number x ∈ [0, 1) has a representation of the form

x =
x0

q0
+

x1

q0q1
+

x2

q0q1q2
+ · · · =

∑

i≥0

xi

Qi+1
, with xi ∈ {0, . . . , qi − 1} for i ∈ N0.

Let Q = {q0, q1, . . .} be a Cantor base. A function f : N0 → R is called Q-additive if
for n ∈ N0 with Cantor expansion n = n0 + n1q0 + n2q0q1 + · · · we have

f(n) = f (0)(n0) + f (1)(n1) + f (2)(n2) + · · · ,

with a sequence of functions f (i) : N0 → R, i ≥ 0. Because the domains of definition
of the f (i) exceed the ranges of the ni, the f (i) are not uniquely determined by f . If in
addition there exist f (i) and an f ∗ : N0 → R such that

f (0) = f (1) = f (2) = . . . = f ∗,

then f is called strongly Q-additive. For the q-adic case see, for example, [4, 5, 10].
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Remark 1 Note that we want the sum-of-digits function to be a strongly Q-additive
function, so we can not simply define strong Q-additivity by the condition

f(n0 + n1Q1 + . . . ) = f(n0) + f(n1) + . . . (3)

as would perhaps seem natural following the ordinary q-adic example. Indeed, consider
the example Q = {3, 5, . . .} and f equal to the sum-of-digits function, sQ. Then f ∗(n) = n
and f(3) = f(0+1·3) = f ∗(0)+f ∗(1) = f ∗(1) = 1 and similarly f(9) = f ∗(3) = 3 6= f(3),
which would lead to contradictions under condition (3). Therefore, to avoid the recursivity
which causes this contradiction we distinguish the function f from the ‘digit function’ f ∗.

An example for a Q-additive function is the function n 7→ αn, or more general, the
weighted sum-of-digits function of the Cantor expansion, defined for a sequence γ =
(γi)i≥0 by sQ,γ(n) = n0γ0 +n1γ1 + · · · if n ∈ N0 has Cantor expansion n = n0 +n1q0 + · · · .
If the weights γi are constant, then sQ,γ is even strongly Q-additive. By choosing γi = Q−1

i+1

we obtain the ‘Cantor version’ of the van der Corput radical inverse function. For γi = αQi

we obtain the function n 7→ αn and for γi = α we obtain the function n 7→ αsQ(n), where
sQ(n) is the usual (unweighted) Cantor sum-of-digits function. Hence all these functions
are examples for Q-additive functions.

For Cantor bases Q(1), . . . , Q(s) and 1 ≤ i ≤ s, let fi denote a Q(i)-additive function
and let f : N0 → Rs, f (n) = (f1(n), . . . , fs(n)). In the case of strongly Q-additive
functions we write f ∗ for (f ∗

1 , . . . , f ∗
s ). Now we consider the s-dimensional sequence

ωf := (f(n))n≥0. (4)

When f is a one-dimensional, ordinary q-additive function, then it is known, that if
the sequence (4) is of uniform distribution modulo one, then it is already well distributed.
In this paper we give a quantitative, multi-dimensional version of this fact for Q-additive
functions in terms of discrepancy. It is then the aim of this paper to give an if and
only if condition under which the sequence (4) is uniformly distributed modulo one in
the case that Q(1) = . . . = Q(s) =: Q. Such a condition was given in the case of the
weighted q-adic sum-of-digits function in [16]. For the one-dimensional q-additive case
such conditions were proved in [11]. Further more, for strongly Q-additive functions we
provide also quantitative results in terms of discrepancy.

In the case of different but pairwise coprime Cantor bases Q(1), . . . , Q(s) (meaning that

gcd(Q
(i)
k , Q

(j)
l ) = 1 for all i, j ∈ {1, . . . , s}, k, l ≥ 0) we can give a sufficient condition for

uniform distribution modulo one and, in case that for each i ∈ {1, . . . , s} we have that fi

is strongly Q(i)-additive, also a necessary one.
In [2] well distribution properties of one-dimensional sequences (αf(n))n≥0 for irra-

tional α and strongly q-additive functions f attaining only non-negative integer values
are studied in more detail. Of course, the sequences given by (4) contain such sequences
as special case. Results on one-dimensional Q-additive functions that slightly improve
ours and various special cases can be found in [9].

We close the introduction with some notation: throughout the paper let the dimension
s ∈ N be fixed. By x · y we denote the usual inner product of the vectors x and y in Rs,
⌊·⌋ denotes the integer-part function and ‖ · ‖ the distance-to-the-nearest-integer function.
Finally, if f is an s-dimensional vector of Q-additive functions with the same base Q in
each component, we set f (l) := (f

(l)
1 , . . . , f

(l)
s ), where f

(l)
i (a) = fi(aQl) (i.e., the upper

indices have the same meaning as in the definition of Q-additivity ) for l ≥ 0, a < qi,l, i ∈
{1, . . . , s}. Analogously in the case of strongly Q-additive functions for f ∗.
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2 Results for equal Cantor bases

It was first shown by Coquet [1] that a one-dimensional uniformly distributed sequence
which is generated by a q-additive function is already well distributed. Here we give a
quantitative version of this fact in terms of discrepancy. We consider the more general
multi-dimensional Cantor case.

Theorem 1 Let Q be a Cantor base and let f : N0 → Rs, f (n) = (f1(n), . . . , fs(n)),
where each function fi is Q-additive. Then we have

D̃N(ωf) ≪s

(
qkN

D⌊
√

N⌋(ωf)
) 1

s+1
,

where kN is such that QkN
≤

√
N < qkN

QkN
= QkN+1. (In the case of ordinary q-adic

expansions we simply have qkN
= q.)

Proof of Theorem 1. First we use a technique from [2]. Let ν ∈ N0 be fixed. For
N ∈ N choose k such that Qk ≤ N and m1, m2 such that (m1 − 1)Qk ≤ ν < m1Qk and
m2Qk ≤ ν + N − 1 < (m2 + 1)Qk − 1. Then for h ∈ Zs \ {0} we have

∣∣∣∣∣

ν+N−1∑

n=ν

e2πih·f(n)

∣∣∣∣∣ ≤ 2Qk +

m2−1∑

t=m1

∣∣∣∣∣∣

(t+1)Qk−1∑

n=tQk

e2πih·f(n)

∣∣∣∣∣∣

= 2Qk +

m2−1∑

t=m1

∣∣∣∣∣

Qk−1∑

n=0

e2πih·f(n+tQk)

∣∣∣∣∣

= 2Qk + (m2 − m1)

∣∣∣∣∣

Qk−1∑

n=0

e2πih·f(n)

∣∣∣∣∣ .

We have N + m1Qk − 1 ≥ N + ν − 1 ≥ m2Qk and hence m2 − m1 ≤ N/Qk. Let kN be
maximal such that QkN

≤
√

N . Therefore we find that for all h ∈ Zs \ {0},
∣∣∣∣∣
1

N

ν+N−1∑

n=ν

e2πih·f(n)

∣∣∣∣∣ ≤ min
k≤kN

(
2Qk

N
+

∣∣∣∣∣
1

Qk

Qk−1∑

n=0

e2πih·f(n)

∣∣∣∣∣

)

≪s min
k≤kN

(
2Qk

N
+ r(h)DQk

(ωf)

)

≪s qkN
r(h)D⌊

√
N⌋(ωf),

where for the second inequality we used [15, Corollary 3.17] and where for h = (h1, . . . , hs) ∈
Zs we define r(h) =

∏s
i=1 max{1, |hi|}. Now we use the Erdős-Turán-Koksma inequality

(see, for example, [4, Theorem 1.21]), from which we obtain for all H ∈ N, that

DN((f(n + ν))n≥0) ≪s
1

H
+

∑

0<‖h‖∞≤H

1

r(h)

∣∣∣∣∣
1

N

ν+N−1∑

n=ν

e2πih·f(n)

∣∣∣∣∣≪s
1

H
+ HsqkN

D⌊
√

N⌋(ωf).

Choosing H =
⌊
(qkN

D⌊
√

N⌋(ωf))−1/(s+1)
⌋

we get DN((f (n+ν))n≥0) ≪s

(
qkN

D⌊
√

N⌋(ωf)
) 1

s+1

uniformly in ν ∈ N0 and hence the result follows. 2
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We give a full characterization of Q-additive functions f : N0 → Rs for which the
sequence (4) is uniformly (resp. well) distributed modulo one. The proof is based on
estimates for exponential sums and Weyl’s criterion for uniform distribution modulo one
(see, for example, [4, 14]).

Theorem 2 Let Q be a Cantor base and let f : N0 → Rs, f (n) = (f1(n), . . . , fs(n)),
where each function fi is Q-additive. Then the sequence ωf is uniformly distributed modulo
one if and only if for every h ∈ Zs \ {0} one of the following properties holds:

Either
∞∑

k=0

1

q2
k

qk−1∑

a=1

‖h · f (k)(a)‖2 = ∞

or there exists at least one k ∈ N0 such that

qk−1∑

a=0

e2πih·f(k)(a) = 0.

Before we give the proof of this result we state a corollary for strongly Q-additive
functions and we give some examples.

Corollary 1 Let Q = {q0, q1, . . .} be a Cantor base such that
∑

k≥0 1/q2
k = ∞. Set

qAP equal to the maximal finite accumulation point of the sequence qi if one exists and
qAP := ∞ else, i.e., if there are either zero or infinitely many finite accumulation points.
Let

q∗ :=





qAP if qAP < ∞,
∑

k≥0,
qk>qAP

1/q2
k < ∞,

∞ if qAP < ∞,
∑

k≥0,
qk>qAP

1/q2
k = ∞ or if qAP = ∞.

(5)

Now let f : N0 → Rs, f (n) = (f1(n), . . . , fs(n)), where each function fi is strongly
Q-additive. Then the sequence ωf is uniformly distributed modulo one if for every h ∈
Zs \ {0} there is an a, 1 ≤ a < q∗, such that h · f ∗(a) 6∈ Z.

For all Cantor bases Q such that

either qk is bounded or ∀a ≥ 0 :
∑

k≥0,
qk>a

1

q2
k

= ∞ holds, (6)

the statement can be sharpened to an equivalence. (Of the cases considered in the first
part this excludes Q such that qAP < ∞, lim supk≥0 qk = ∞. See also Example 3.)

The proof of Corollary 1 will be given subsequent to the proof of Theorem 2.

Example 1 Let Q be a Cantor base with
∑

k>0 1/q2
k = ∞. Consider the two-dimensional

sequence ωQ,α where the first component is the Q-adic van der Corput sequence and the
second component is the sequence (αsQ(n))n≥0 with α ∈ R \ Q, where sQ(n) denotes the
sum-of-digits function with respect to the Cantor expansion Q. Hence f1(n) = n0/Q1 +
n1/Q2 + · · · and f2(n) = n0α + n1α + · · · whenever n = n0 + n1Q1 + n2Q2 + · · · .
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Both functions are Q-additive and we have f (k)(a) =
(
a/Qk+1, aα

)
. For h = (h1, h2) ∈

Z2 \ {(0, 0)} we consider two cases. If h2 = 0, then h1 6= 0. Choose k ∈ N0 maximal such
that Qk|h1. Then we have

∑qk−1
a=0 e2πih1a/Qk+1 = 0. If h2 6= 0 we have

∞∑

k=0

1

q2
k

qk−1∑

a=1

∥∥∥∥h1
a

Qk+1
+ h2aα

∥∥∥∥
2

= ∞.

Hence the sequence ωQ,α is uniformly distributed modulo one for irrational α.

Example 2 Let f , Q, q∗ be as in Corollary 1. If there is an a, 1 ≤ a < q∗ such that
1, f ∗

1 (a), . . . , f ∗
s (a) are linearly independent over Q, then the sequence ωf is uniformly

distributed modulo one.

Example 3 Consider the Cantor base Q = {2, 4, 2, 8, 2, 16, 2, . . .} together with the
strongly Q-additive one-dimensional function f given through f ∗ by

f ∗ =

〈
0, 0,

1

2
,
1

2
,
1

4
,
1

4
,
1

4
,
1

4
,
1

8
, . . .

〉
, i.e., f ∗(n) :=

{
0 if 0 ≤ n < 2,

2−⌊log2 n⌋ if n ≥ 2.

Then by the second condition of Theorem 2, f(n) is uniformly distributed modulo 1,
however there is no a, 1 ≤ a < q∗ = 2, such that hf ∗(a) 6∈ Z.

Note that this function is closely related to the binary van der Corput radical in-
verse function which itself is only q-additive but not strongly. Similar f ∗ and f can be
constructed with respect to arbitrary Cantor bases Q′ and any q∗.

Proof of Theorem 2. Let h ∈ Zs \ {0}. For fixed k ∈ N0 and u ∈ {0, . . . , qk − 1} we have

∣∣∣∣∣

qk−1∑

a=0

e2πih·f(k)(a)

∣∣∣∣∣ ≤ qk − 4‖h · f (k)(u)‖2

and hence ∣∣∣∣∣

qk−1∑

a=0

e2πih·f(k)(a)

∣∣∣∣∣ ≤ qk −
4

qk

qk−1∑

a=1

‖h · f (k)(a)‖2 =: qk − νk(h).

For h ∈ Zs \ {0} and k ∈ N0 we say ‘∗k holds’, if
∑qk−1

a=0 e2πih·f(k)(a) = 0.
For j ∈ N0 we have

∣∣∣∣∣∣
1

Qj

Qj−1∑

n=0

e2πih·f(n)

∣∣∣∣∣∣
=

1

Qj

j−1∏

k=0

∣∣∣∣∣

qk−1∑

a=0

e2πih·f(k)(a)

∣∣∣∣∣ ≤
j−1∏

k=0

qk − νk(h)

qk

j−1∏

k=0∗k holds

0,

where here and later on an empty product is considered to be one.
Let N ∈ N with Cantor base Q representation N = N0 + N1Q1 + · · · + NmQm with

Nm 6= 0. As in [16] for the special case of q-adic weighted sum-of-digits function we can
show that

∣∣∣∣∣

N−1∑

n=0

e2πih·f(n)

∣∣∣∣∣ ≤
r−1∑

j=0

NjQj +
m∑

j=r

NjQj

j−1∏

k=0

qk − νk(h)

qk

j−1∏

k=0
∗k holds

0.
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for any r ∈ N0.
If there exists a k ∈ N0 such that ∗k holds, then let k0 be minimal with this property.

Then we have
∣∣∣∣∣

N−1∑

n=0

e2πih·f(n)

∣∣∣∣∣ ≤
k0∑

j=0

NjQj

j−1∏

k=0

qk − νk(h)

qk
≤

k0∑

j=0

(qj − 1)Qj = Qk0+1 − 1.

If for all k ∈ N0 the condition ∗k does not hold, then we have

∣∣∣∣∣

N−1∑

n=0

e2πih·f(n)

∣∣∣∣∣ ≤ Qr + N

r−1∏

k=0

qk − νk(h)

qk
. (7)

Define xr := Qr/
(∏r−1

k=0
qk−νk(h)

qk

)
≥ Qr and choose r such that xr ≤ N < xr+1. Then we

have

Qr ≤ N

r−1∏

k=0

qk − νk(h)

qk
. (8)

Since νk(h) ≤ 4
qk

qk−1
4

< 1 we have on the other hand that

r∏

k=0

qk − νk(h)

qk
≥

r∏

k=0

1

qk
=

1

Qr+1

and hence

N < Qr+1/

(
r∏

k=0

qk − νk(h)

qk

)
≤ Q2

r+1.

Thus we have r > rN , where rN is minimal such that QrN
≥ ⌊

√
N⌋. Hence

r−1∏

k=0

qk − νk(h)

qk

≤
rN−1∏

k=0

qk − νk(h)

qk

. (9)

From (7), (8) and (9) we find

∣∣∣∣∣

N−1∑

n=0

e2πih·f(n)

∣∣∣∣∣ ≤ 2N exp

(
−

rN−1∑

k=0

4

q2
k

qk−1∑

a=1

‖h · f (k)(a)‖2

)
. (10)

In both of the above cases we obtain 1
N

∑N−1
n=0 e2πih·f(n) → 0 as N → ∞. Hence the

result follows by Weyl’s criterion.
Assume now that there is a h ∈ Zs \ {0} such that

∑∞
k=0

1
q2
k

∑qk−1
a=1 ‖h · f (k)(a)‖2 < ∞

and for all k ∈ N0 we have that ∗k does not hold, i.e.,
∑qk−1

a=0 e2πih·f(k)(a) 6= 0. Then for
j ∈ N0 we have

∣∣∣∣∣∣
1

Qj

Qj−1∑

n=0

e2πih·f(n)

∣∣∣∣∣∣
=

1

Qj

j−1∏

k=0

∣∣∣∣∣

qk−1∑

a=0

e2πih·f(k)(a)

∣∣∣∣∣ 6= 0.
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Using [16, Lemma 1] we obtain
∣∣∣∣∣

qk−1∑

a=0

e2πih·f(k)(a)

∣∣∣∣∣ ≥ qk

(
1 − π2νk(h)

)
.

Let 0 < c < 1 and let l ∈ N be large enough such that 1− π2
∑

k>l νk(h) > c > 0. For
j > l we have

∣∣∣∣∣∣
1

Qj

Qj−1∑

n=0

e2πih·f(n)

∣∣∣∣∣∣
≥

l∏

k=0

1

qk

∣∣∣∣∣

qk−1∑

a=0

e2πih·f(k)(a)

∣∣∣∣∣

j−1∏

k=l+1

(
1 − π2νk(h)

)

≥ c′

(
1 − π2

∑

k>l

νk(h)

)
> c′ · c > 0.

and by Weyl’s criterion ωf is not uniformly distributed modulo one. 2

Proof of Corollary 1. If each fi, 1 ≤ i ≤ s, is strongly Q-additive, then the condition from
Theorem 2 reads as follows: for every h ∈ Zs \ {0} one of the following properties holds:

Either
∞∑

k=0

1

q2
k

qk−1∑

a=1

‖h · f ∗(a)‖2 = ∞

or there exists a k ∈ N0 such that
∑qk−1

a=0 e2πih·f∗(a) = 0.
Assume that for every h ∈ Zs\{0} there exists an a′, 1 ≤ a′ < q∗, such that h·f∗(a′) 6∈

Z. We want to show equidistribution and distinguish two cases:

1. q∗ = qAP < +∞. Then

∞∑

k=0

1

q2
k

qk−1∑

a=1

‖h · f∗(a)‖2 ≥ 1

(q∗)2

∞∑

k=0
qk=q∗

q∗−1∑

a=1

‖h · f∗(a)‖2

≥ ‖h · f ∗(a′)‖2

(q∗)2

∞∑

k=0
qk=q∗

1

and the last sum diverges since there are infinitely many values for k ∈ N0 such that
qk = q∗.

2. q∗ = ∞. Note that in all cases, either if qAP < ∞ and the required sum diverges
or if qAP = ∞, i.e., qk has no or infinitely many accumulation points the second
condition of (6),

∑
qk>a q−2

k = ∞ for all a ≥ 0, holds. Hence

∞∑

k=1

1

q2
k

qk−1∑

a=1

‖h · f∗(a)‖ ≥
∞∑

k=1
qk>a′

1

q2
k

‖h · f ∗(a′)‖ = ∞.

In any of the two cases the sequence ωf is uniformly distributed modulo one.
Now assume that ωf is uniformly distributed modulo one but there exists an h ∈

Zs \ {0} such that for every a, 1 ≤ a < q∗, we have h · f∗(a) ∈ Z. We distinguish the
same two cases, slightly enhancing the requirements in the first case for this direction:

8



1. q∗ = qAP = lim supk≥0 qk < +∞, i.e., the case of bounded qk remains. Since
for a uniformly distributed sequence each coordinate sequence has to be uniformly
distributed as well it is enough to consider the case s = 1 only. Fix the integer h 6= 0
such that for all a, 1 ≤ a < q∗ we have h · f ∗(a) ∈ Z. W.l.o.g. we may assume that
h > 0. Define the union of intervals

I :=

h−1⋃

z=0

[z
h
,
z

h
+ ǫ
)

with ǫ > 0 small enough to be determined later. The set J := {k ∈ N0 : qk > q∗}
is finite. We distinguish two cases:

(a) If J is empty, then for any n ≥ 0 with Cantor expansion
∑

i≥0 niQi we get
hf(n) = hf ∗(n0) + hf ∗(n1) + · · · = z ∈ Z, hence {f(n)} ∈ I for all n ∈ N0.
But λ(I) = hǫ < 1 for ǫ > 0 small enough it follows that (f(n))n≥0 is not
uniformly distributed modulo one.

(b) If 1 ≤ |J | < ∞, then J contains a maximal element k. For l > k we define
Nl = Ql. and will deduce

#{n : 0 ≤ n < Nl, f(n) ∈ I} ≥ Nl∏
k∈J qk

. (11)

For any n =
∑

i≥0 niQi with nj = 0 for all j ∈ J we have hf(n) ∈ Z and
{f(n)} ∈ I as in the case above.

Since #{n : 0 ≤ n < Nl : nj = 0 for all j ∈ J} = Nl
Q

k∈J qk
the inequality (11)

holds true for all Nl with l > k. So for ǫ chosen appropriately we have

#{n : 0 ≤ n < N, {f(n)} ∈ I}
N

≥ 1∏
k∈J qk

6= hǫ = λ(I) (12)

for infinitely many N ∈ N. Thus (f(n))n≥0 is not uniformly distributed modulo
one.

2. q∗ = ∞. Then h · f ∗(a) ∈ Z for all a ≥ 1. Hence we have

∞∑

k=0

1

q2
k

qk−1∑

a=1

‖h · f∗(a)‖2 = 0

and
∑qk−1

a=0 e2πih·f∗(a) = qk for all k ∈ N0. This contradicts the uniform distribution
modulo one of the sequence ωf by Theorem 2.

In both cases we obtained a contradiction hence there exists an a′, 1 ≤ a′ < q∗, such
that h · f∗(a′) 6∈ Z. 2

We close this section with a quantitative result for strongly Q-additive functions.
A vector α = (α1, . . . , αs) with irrational components αi is said to be of approximation

type η, if η is the infimum over all reals σ for which there exists a positive constant
c = c(σ, α) such that ‖h · α‖ ≥ c

r(h)σ for all h ∈ Zs \ {0}. Here r(h) is as in the proof of
Theorem 1.

9



Theorem 3 Let Q be a Cantor base and let f : N0 → Rs, f (n) = (f1(n), . . . , fs(n)),
where each function fi is strongly Q-additive and q∗ := lim infk≥0 qk ≤ ∞. If there exists
an integer a, 1 ≤ a < q∗, such that f ∗(a) is of approximation type η, then for every ε > 0
we have

DN(ωf) ≪s,f,ε
1

L
1
s(

1
2η

−ε)
N

where LN := 4

rN−1∑

k=0

q−2
k

and rN is minimal such that QrN
≥

√
N . (In the special case q0 = q1 = . . . = q we have

1/LN ≪q 1/ log N .)

Proof. From the Erdős-Turán-Koksma inequality (see, for example, [4, Theorem 1.21]),
we obtain for all H ∈ N,

DN(ωf) ≪s
1

H
+

∑

0<‖h‖∞≤H

1

r(h)

∣∣∣∣∣
1

N

N−1∑

n=0

e2πih·f(n)

∣∣∣∣∣

≪s,f
1

H
+

∑

0<‖h‖∞≤H

1

r(h)
exp(−cLN (r(h))−2(η+ε))

≪s,f
1

H
+ (1 + log H)s exp(−cLNH−2s(η+ε)),

where we have used inequality (10). With the choice H =

⌊
L

1
s(

1
2η

−ε)
N

⌋
we obtain

(1 + log H)s exp(−cLNH−2s(η+ε)) ≪s

(
1

2sη
log LN

)s

exp

(
−cL

2ε2− ε
η
+2εη

N

)

≪s

(
1

2sη
log LN

)s

exp
(
−cL2ε2+ε

N

)
≪s,ε

1

H

and hence the result follows.
For the special case q1 = q2 = . . . = q we note that rN ≥ log

√
N

log q
and hence LN ≥ 2 log N

q2 log q
.

2

3 Results for different, pairwise coprime Cantor bases

Now we turn to the case that Q(1) = {q1,0, q1,1 . . . }, . . . , Q(s) = {qs,0, qs,1, . . . } are different,

but pairwise coprime, which we define for Cantor bases by the condition gcd(Q
(u)
k , Q

(v)
l ) =

1 for all u, v ∈ {1, . . . , s}, k, l ≥ 0. We provide an upper bound for Weyl sums, from
which we deduce distribution properties of ωf .

We need some further notations: for u ∈ {1, . . . , s}, l ≥ 0, a ≥ 0 we define

θ(l)
u (a) := f (l)

u (a + 1) − f (l)
u (a) − f (l)

u (1),

δ(l)
u (hu) := max{4‖huθ

(l)
u (a)‖2 : 1 ≤ a ≤ qu,l − 2}, (we set δ(l)

u (hu) := 0 for qu,l = 2)

and then

τ (l)
u (hu) :=

{
max{δ(l)

u (hu)/q
2
u,l, δ

(l+1)
u (hu)/q

2
u,l+1} if this expression is 6= 0,

1
4
‖hu(f

(l+1)
u (1) − qu,lf

(l)
u (1))‖2 else.

10



Note that unless Q reduces to the ordinary q-adic case we can not omit the superscript
(l) for strongly Q-additive fu in δ

(l)
u , τ

(l)
u since the values over which a ranges may vary

with l.
For strongly Q-additive functions we set in addition θ∗u(a) := f ∗

u(a+1)−f ∗
u(a)−f ∗

u(1).

Proposition 1 Let Q(1), . . . , Q(s) be pairwise coprime Cantor bases and let f : N0 → Rs,
f(n) = (f1(n), . . . , fs(n)), where each function fu is Q(u)-additive.

For all h = (h1, . . . , hs) ∈ Zs \ {0}, if for all 1 ≤ u ≤ s with hu 6= 0 we have

∞∑

l=0

τ (l)
u (hu) = ∞, then

1

N

N−1∑

n=0

e2πih·f(n) = o(1). (13)

In particular, the sequence ωf is uniformly distributed modulo one.

Remark 2 In a way, the first line in the definition of τ
(l)
u (h) measures how much the

functions fu are locally additive, modulo (1/h)Z: the first line covers the additivity local
to the digit ranges while the second considers additivity with respect to the consecutive
digit functions.

In view of Proposition 1 this means that for good equidistribution convergence we are
looking for fu that are Q-additive without being ‘too much’ additive overall.

Proposition 1 generalizes [7, Theorem 1], which deals with the special case of ordinary
weighted qu-ary sum-of-digits functions. We will prove the proposition at the end of this
section. First, we use it to show the following theorem.

Theorem 4 Let Q(1), . . . , Q(s) be pairwise coprime Cantor bases and let f : N0 → Rs,
f(n) = (f1(n), . . . , fs(n)), where each function fu is strongly Q(u)-additive. For each
u ∈ {1, . . . , s} assume for the Cantor base Q(u) that (6) holds and that there is at least
one finite accumulation point. Then ωf is uniformly distributed modulo one if and only
if for all u ∈ {1, . . . , s} the u-th coordinate sequence (fu(n))n≥0 is uniformly distributed
modulo one.

Proof. Necessity is obvious because each component of a uniformly distributed sequence
has to be uniformly distributed.

Now assume, that for all 1 ≤ u ≤ s the sequence (fu(n))n≥0 is uniformly distributed
modulo one. Set q∗ as in (5) (infinity is allowed as a value). By Corollary 1, for all
1 ≤ u ≤ s and for all integers h 6= 0 there exists some j, 1 ≤ j < q∗u, such that
hf ∗

u(j) 6∈ Z. We will show that the divergence condition in (13) is fulfilled.
First we argue that for this it is sufficient that there exists some a, 1 < a + 1 < q∗u,

such that hθ∗u(a) 6∈ Z or, alternatively that there is a finite accumulation point q′u ≤ q∗u
with h(q′u − 1)f ∗

u(1) 6∈ Z. Either of those two conditions consequently means there is an

l0 with τ
(l0)
u (hu) 6= 0 and qu,l0 ≤ q∗.

Now in case the first condition holds, since δ
(l)
u (hu) is increasing as a function in qu,l

(though not necessarily as a function in l) there is a q′u = qu,l0 such that for all l with

qu,l ≥ q′u we get δ
(l)
u (hu) ≥ δ

(l0)
u (hu), and by our assumption of (6),

∑

l≥0

τ (l)
u (hu) ≥

∑

l≥l0,
qu,l≥q′u

max

{
δ
(l)
u (hu)

q2
u,l

,
δ
(l+1)
u (hu)

q2
u,l+1

}
≥ δ(l0)

u (hu)
∑

l≥l0,
qu,l≥q′u

1

q2
u,l

= ∞.

11



In the second case, we have
∑

l≥0

τ (l)
u (hu) ≥ τ (l0)

u (hu)
∑

l≥0
qu,l=q′u

1 = ∞.

We are now going to prove that one of these two conditions is always true.
If q∗u = 2 we have by Corollary 1 that hf ∗

u(1) /∈ Z for all nonzero integers h and we are
done in view of the second condition.

On the other hand, if q∗u ≥ 3 we choose j, 1 ≤ j < q∗u, minimal such that hf ∗
u(j) 6∈ Z

and distinguish the following cases:

• The case j > 1 yields hθ∗u(j−1) = h(f ∗
u(j)−f ∗

u(j−1)−f ∗
u(1)) /∈ Z since hf ∗

u(j−1) ∈ Z

and hf ∗
u(1) ∈ Z and we are done as we fulfill the first condition.

• For the case j = 1 we assume that none of the two conditions holds, which implies

hθ∗u(a) = h(f ∗
u(a + 1) − f ∗

u(a) − f ∗
u(1)) ∈ Z for all a, 1 < a + 1 < q∗u, and

h(q′u − 1)f ∗
u(1) ∈ Z for all finite acc. points q′u ≤ q∗u.

Therefore we have exp(2πih(f ∗
u(a+1)−f ∗

u(a)−f ∗
u(1))) = 1, and, through induction,

exp(2πihf ∗
u(a)) = exp(2πihaf ∗

u(1)) for all a, 0 ≤ a < q∗u. We now consider h′ =
h(q′u − 1), where q′u is any of the finite accumulation points. Then also h′θ∗u(a) ∈ Z

and hence again exp(2πih′f ∗
u(a)) = exp(2πiah′f ∗

u(1)), for all a, 0 ≤ a < q∗u, which
equals 1 in consequence of h(q′u − 1)f ∗(1) ∈ Z. But this contradicts our assumption
that for all nonzero integer h′ there exists some j, 0 ≤ j < q∗u, such that h′f ∗

u(j) 6∈ Z.

2

Remark 3 That one finite accumulation point is needed in the condition for the Cantor
base can be seen with the following f(n) as counterexample that sabotages the second case
of the ‘sufficient’ direction. Consider f(n) = sQ(n)λ, λ =

∑
k≥0 2−k!, where Q is chosen

such that it contains enough ql of the form 2k! + 1 to fulfill the divergence condition in
(13).

Now we give the Proof of Proposition 1.
We use a technique developed by Kim [12], advanced by Drmota and Larcher [3] and

further generalized by Hofer [7, 8]. To present the proof in convenient units we will
highlight the main steps in several lemmas.

Our goal is to prove the convergence to zero of the Weyl sum given in the proposition.
We fix an h ∈ Zs\{0} and introduce the notations gu(n) := exp(2πihufu(n)) for 1 ≤ u ≤ s
and g(n) :=

∏s
u=1 gu(n).

The first step is to apply the following lemma, a version of the Weyl-van der Corput
inequality, to g(n). The appropriate choice for the quantity K will be determined at the
end of the proof.

Lemma 1 For integers N ≥ K ≥ 1 and a sequence an of complex numbers with |an| ≤ 1
we have

∣∣∣∣∣

N−1∑

n=0

an

∣∣∣∣∣

2

≤ 2N2

K
+

4N

K

K∑

k=1

∣∣∣∣∣

N−k+1∑

n=0

anan+k

∣∣∣∣∣ .
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Proof. A proof of the inequality can be found in [6, pp.10–11]. 2

Terms of the form c(k) =
∑

n anan+k as they appear in Lemma 1 are called correlation
functions. We will use several of them, sometimes based on other correlation functions.
(To relieve notation we will omit the bracketing of single upper indices of functions since a
confusion with powers can be ruled out, i.e., f i(x) can be clearly distinguished from f(x)i.
We will keep the brackets for constants, however.) For every coordinate u ∈ {1, . . . , s}
we set

ΦR
1,u(k) :=

1

R

R−1∑

n=0

gu(n) gu(n + k) for 0 ≤ k ≤ R ≤ N,

ΦK,R
2,u (r) :=

1

K

K−1∑

k=0

ΦR
1,u(k) ΦR

1,u(k + r) for r ∈ {0, 1} and 0 ≤ K ≤ R ≤ N,

and ΨR(k) :=

R∑

n=1

g(n) g(n + k) for 0 ≤ R ≤ N.

Furthermore, an additional upper index l ≥ 0 shall denote a shift by l digits, e.g.,
ΦR,l

1,u(k) := ΦR
1,u(k Q

(u)
l ).

Observe that in applying Lemma 1 to g(n) the innermost sum ranges over terms of
the form

∏
u gu(n)gu(n + k). Our aim will be to move the product over all u ∈ {1, . . . , s}

outside of all sums. For this we will use recursions holding for the correlation functions
ΦK,N

2,u . To formulate them we will define several more correlation type functions α
(l)
j , β

(l)
j ,

which are simpler in that they only are local to a digit range {0, . . . , qu,l − 1} (for some
u, l ≥ 0). For any u, the actual coefficients of the recursion are then defined in terms of

α
(l)
j and β

(l)
j and also of a shape similar to correlation functions. With a fixed digit place

l ≥ 0 and fixed u ∈ {1, . . . , s}, we set

α
(l)
j :=

1

qu,l

qu,l−j−1∑

i=0

gl
u(i) gl

u(i + j),

β
(l)
j :=

1

qu,l

qu,l−1∑

i=qu,l−j

gl
u(i) gl

u(i + j − qu,l), 0 ≤ j ≤ qu,l;

λ(l)
r :=

1

qu,l

qu,l−1∑

i=0

(
α

(l)
i α

(l)
i+r + β

(l)
i β

(l)
i+r

)
,

µ(l)
r :=

1

qu,l

qu,l−1∑

i=0

α
(l)
i β

(l)
i+r, ν(l)

r :=
1

qu,l

qu,l−1∑

i=0

β
(l)
i α

(l)
i+r, r ∈ {0, 1}.

Lemma 2 For fixed u ∈ {1, . . . , s}, any l ≥ 0, r ∈ {0, 1}, and q := qu,l we have the
recursion in l,

ΦqK, qR,l
2,u (r) = λ(l)

r ΦK,R,l+1
2,u (0) + µ(l)

r ΦK,R,l+1
2,u (0) + ν(l)

r ΦK,R,l+1
2,u (0) + El+1

K,R(r), (14)
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where |El+1
K,R(r)| ≤ 2/K. Furthermore, for the two-step recursion in l, with q′ := qu,lqu,l+1,

we get the bound

∣∣∣Φq′K,q′R,l
2,u (r)

∣∣∣ ≤ ρ(l)
r |ΦK,R,l+2

2,u (0)| + σ(l)
r |ΦK,R,l+2

2,u (1)| + 7

K
,

where

ρ(l)
r := |λ(l)

r λ
(l+1)
0 + µ(l)

r λ
(l+1)
1 + ν(l)

r λ
(l+1)
1 |,

σ(l)
r := |λ(l)

r µ
(l+1)
0 + µ(l)

r µ
(l+1)
1 + ν(l)

r ν
(l+1)
1 | + |λ(l)

r ν
(l+1)
0 + µ(l)

r ν
(l+1)
1 + ν(l)

r µ
(l+1)
1 |,

and

ρ(l)
r + σ(l)

r ≤ 1 − τ (l)(hu)/q
2
u,l.

Proof. In view of the locality of the correlation function Φ2 to the digit range {0, . . . ,
qu,l−1} it is tedious but not difficult to convince oneself that the proofs of this recursions
can be carried out with only minor adaption in the same way as the ones found in [7] for
the ordinary q-adic case. In particular, this also applies to the two-step recursion.

Since the very last inequality, the estimate of ρ
(l)
r + σ

(l)
r , is crucial to the proof we go

our aim is now here. We have

ρ(l)
r + σ(l)

r ≤ |λ(l)
r |(|λ(l+1)

0 | + |µ(l+1)
0 | + |ν(l+1)

0 |)+
+ (|µ(l)

r | + |ν(l)
r |)(|λ(l+1)

1 | + |µ(l+1)
1 | + |ν(l+1)

1 |)

and

|λ(l)
r | + |µ(l)

r | + |ν(l)
r | ≤ 1

qu,l

qu,l−1∑

i=0

(
|α(l)

i | + |β(l)
i |
)(
|α(l)

i+r| + |β(l)
i+r|
)
≤ 1, for r = 0, 1.

There are two cases to distinguish, either at least one of δ
(l)
u (hu) 6= 0, δ

(l+1)
u (hu) 6= 0

holds, or both quantities are zero. We are assuming the former — without limitation,
δ
(l)
u (hu) 6= 0 — here, so there exists at least one a, 1 ≤ a ≤ qu,l − 2 such that hθ

(l)
u (a) 6∈ Z.

This, together with the inequality

|r + se2πiθ| ≤ r + s − 4s‖θ‖2 for 0 ≤ s ≤ r,

leads to a bound on |α(l)
1 |.

|α(l)
1 | =

1

qu,l

∣∣∣∣∣

qu,l−2∑

i=0

e2πih(f
(l)
u (i+1)−f

(l)
u (i))

∣∣∣∣∣

≤ 1

qu,l

∣∣∣e2πih(f
(l)
u (1)−f

(l)
u (0)) + e2πih(f

(l)
u (a+1)−f

(l)
u (a))

∣∣∣ +
qu,l − 3

qu,l

=
1

qu,l

∣∣∣1 + e2πih(f
(l)
u (a+1)−f

(l)
u (a)−f

(l)
u (1))

∣∣∣ +
qu,l − 3

qu,l

≤ qu,l − 1

qu,l
− 4

‖hθ
(l)
u (a)‖2

qu,l
.
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Inserting this into the above formula and using trivial estimates for the other exponential
sums αi, βi gives

∣∣λ(l)
r

∣∣+
∣∣µ(l)

r

∣∣+
∣∣ν(l)

r

∣∣ ≤ 1 − 4
‖hθ

(l)
u (a)‖2

q2
u,l

so that after minimizing over l, l + 1 and all a ∈ {0, . . . , qu,l − 1} we get

ρ(l)
r + σ(l)

r ≤ 1 − max{δ(l)
u (hu), δ

(l+1)
u (hu)}

q2
u,l

= 1 − τ
(l)
u (hu)

q2
u,l

for this case of δ(l)(hu). For the second case, proceeding analogously to [7, p.42] finishes
the proof. 2

In order to be able to apply the recursions in Lemma 2, the next result shows that we
can replace K, R by their nearest multiples of Q

(u)
z for any z ≥ 0, introducing an error

term.

Lemma 3 Let R ≥ K, fix u ∈ {1, . . . , s}, z ≥ 0, so that Q
(u)
z ≤ K. Then, setting

Q := Q
(u)
z , L := ⌊K/Q⌋, M := ⌊R/Q⌋, we have

ΦK,R
2,u (0) = ΦQL,QM

2,u (0) + O

(
Q

K

)
.

Proof. This can be shown quite easily by applying the triangle inequality and trivial
estimates to |ΦR

1,u(k)−ΦQM
1,u (k)| and |ΦK,R

2,u (k)−ΦQL,QM
2,u (k)| (cf. the first part of the proof

of [12, Prop.1]). 2

At the end of the proof we will for each u ∈ {1, . . . , s} choose appropriate Q
(u)
t = Ru

for ΦRu

1,u, etc. Dependent on them and K (which we will also determine at that time) we
set

F1 :=

s∏

u=1

Ru, F2 :=

s∑

u=1

K

Ru
.

We now return to the Weyl sum of f(n). Using Lemma 1 and our notation we obtain
the inequality

K

∣∣∣∣∣

N−1∑

n=0

g(n)

∣∣∣∣∣

2

≤ 2N2 + 4N

K∑

k=1

|ΨN−k−1(k)|.

Lemma 4 makes the connection to the correlation functions Φ1.

Lemma 4 For arbitrary Ru > K, 1 ≤ u ≤ s of the form Ru = Q
(u)
t , we have

|ΨN−k−1(k)| = N
s∏

u=1

|ΦRu

1,u(k)| + O
(
NF2 + F1(1 + F2)

)
.

Proof. (Cf. [12, Prop.2]) We start by observing that, for ru := n mod Ru (i.e., ru ≡
n (modRu), 0 ≤ ru < Ru), whenever ru + k < Ru we can reduce the argument in the
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following expression to its remainder modulo Ru (cf. [12, Lemma 6], this is the place
where we use the Qu-additivity of fu). We have

g(n)g(n + k) = exp

(
2πi

s∑

u=1

fu(n + k) − fu(n)

)

= exp

(
2πi

s∑

u=1

fu(ru + k) − fu(ru)

)
=

s∏

u=1

gu(ru)gu(ru + k) =: G(r),

with r = (r1, . . . , rs). Our aim is now to bound the terms in ΨN−k−1(k) where this is not
possible. We define

R := {r : 0 ≤ rj < Rj for all 1 ≤ j ≤ s},
R0 := {r : 0 ≤ rj < Rj − K for all 1 ≤ j ≤ s}, R1 := R \R0.

Then

ΨN−k−1(k) =

N−k−1∑

n=1

g(n)g(n + k)

=
∑

r∈R0

N−k−1∑′

n=1

g(n)g(n + k) +
∑

r∈R1

N−k−1∑′

n=1

g(n)g(n + k)

(here and in the following the primed sums denote summation over those n, where ru =
n mod Ru, for all u ∈ {1, . . . , s})

=
∑

r∈R
G(r)

N−k−1∑′

n=0

1 +
∑

r∈R1

N−k−1∑′

n=0

(
g(n)g(n + k) − G(r)

)

=: Σ1 + Σ2.

Now by the Chinese remainder theorem, using the condition that the Cantor bases are
coprime in the sense given previously, the number of summands of the primed sums is
(N − k − 1)/F1 + O(1) so that

|Σ1| ≤
∑

r∈R

s∏

u=1

|gu(ru)gu(ru + k)|
(

N

F1
+ O(1)

)

=

s∏

u=1

Ru|ΦRu

1,u(ru)|
(

N

F1
+ O(1)

)
= N

s∏

u=1

|ΦRu

1,u(ru)| + O(F1).

It remains to estimate |Σ2|, for which we need a bound on the size of |R1|. We have

|R1| ≤
s∑

u=1

|{r : 0 ≤ ru < Ru, Rj − K ≤ rj < Rj}| ≤
s∑

u=1

K

s∏

j=1
j 6=u

Rj = F1F2,

so, using trivial estimates,

|Σ2| ≤
∑

r∈R1

N−k−1∑′

n=0

2 ≤ 2|R1|
(

N

F1

+ O(1)

)
≤ 2F2N + O(F1F2).
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Altogether,

|ΨN−k−1(k)| ≤ N
s∏

u=1

|ΦRu

1,u(ru)| + 2NF2 + O(F1(1 + F2)),

which concludes the proof. 2

We have now arrived at an inequality of the form

∣∣∣∣∣

N−1∑

n=0

g(n)

∣∣∣∣∣

2

≤ 2N2

K
+

4N2

K

K∑

k=1

s∏

u=1

|ΦRu

1,u(k)| + O(N2F2 + NF1(1 + F2))

=:
4N2

K

(
Σ3 +

1

2

)
+ O(N2F2 + NF1(1 + F2)).

Lemma 4 brought the product in front of the inner sum, we now bring it in front of the
outer sum using Hölder’s inequality.

Σ3 ≤ K1/(s+1)

s∏

u=1

(
K∑

k=1

|ΦRu

1,u(k)|s+1

)1/(s+1)

≤ K

s∏

u=1

(
1

K

K∑

k=1

|ΦRu

1,u(k)|2
)1/(s+1)

(since |Φ1| ≤ 1)

≤ K
s∏

u=1

(∣∣∣ΦK,Ru

2,u (0)
∣∣∣+

2

K

)1/(s+1)

.

The final lemma of the proof will use the recursions of Lemma 2 to give the asymptotics
of |Φ2(0)|.

Lemma 5 Let u ∈ {1, . . . , s} be fixed and set

s(m) = su(m) :=
1

2

m−1∑

l=0

τ
(l)
u (hu)

q2
u,l

.

Then, for any K, Ru, t ≥ 0, Q
(u)
2t =: Q ≤ K ≤ Ru, we have

|ΦK,Ru

2,u (0)| = O(e−su(t)) + O(Q/K).

Proof. Setting

s(i)(m) :=
m−1∑

l=0
l≡i(2)

τ
(l)
u (hu)

q2
u,l

, i ∈ {0, 1},

at least one of exp(−s(i)(t)) ≤ exp(−s(t)), i = 0, 1 holds. We first assume it is s(0)(t).
Let t ≥ 0. First we apply Lemma 3 to reduce the expression to |ΦQL,QM

2,u (0)|+O(Q/K),
with L, M ≥ 1 as in Lemma 3.
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Now, with S2t := |ΦQL,QM
2,u (0)|, T2t := |ΦQL,QM

2,u (1)|, the two-step recursion of Lemma 2
can be written in matrix form as

(
S2t

T2t

)
≤
(

ρ
(2t)
0 σ

(2t)
0

ρ
(2t)
1 σ

(2t)
1

)(
S

(2)
2t−2

T
(2)
2t−2

)
+

7

Q
(u)
2t−2L

(
1
1

)
=: M(2t)

(
S

(2)
2t−2

T
(2)
2t−2

)
+

7

Q
(u)
2t−2L

(
1
1

)

(and by applying the recursion repeatedly:)

≤
t−1∏

l=0

M(2l)

(
S

(2t)
0

T
(2t)
0

)
+

t∑

j=1

7

Q
(u)
2j−2L

t−j−1∏

l=0

M(2l)

(
1
1

)
.

By the bound on ρr + σr in Lemma 2, by [12, Lemma 5] and 1 − x ≤ exp(−x) and also
the trivial bounds S, T ≤ 1 we altogether get

S2t ≤ e−s(t) +

t∑

j=1

7

Q
(u)
2(j−1)L

e−s(t−j) ≤ e−s(t)

(
1 +

7

L

t∑

j=1

es(t)−s(t−j)

Q
(u)
2(j−1)

)

and so S2t = O
(
e−s(t)

)
, since

∣∣∣∣∣
es(t)−s(t−j)

Q
(u)
2j

∣∣∣∣∣ ≤
(

e1/4

minu,l q2
u,l

)j

<
1

3j
,

which proves the claim.
In the case that exp(−s(1)(t)) ≤ exp(−s(t)), we can proceed analogously, after initially

applying a one-step recursion from Lemma 3. This does not change the asymptotics. 2

Collecting all the results, altogether we get, for t0 > 0,

∣∣∣∣∣

N−1∑

n=0

g(n)

∣∣∣∣∣

2

= O


N2


min

u

(
e−su(t0) +

Q
(u)
2t0

+ 2

K

)1/(s+1)

+
1

2K
+ F2


+ N(F1(1 + F2))


 ,

where we can take the minimum over all u since we can use the trivial bound 1 for the
remaining factors in Σ3.

Now we return to fixing the quantities K, Ru and t0. Since the goal is to have o(N2)
on the right side of the last equation, F2 should be o(1), considering the N2 term, hence
F1 = o(N). This can be achieved by choosing Ru = o(N1/s) and K = o(minu Ru), e.g.,
by setting

Ru := max{Q(u)
t : Q

(u)
t ≤ N1/s−ε, t ≥ 0} and K := min

u
⌊R1−ε

u ⌋,

for some fixed ε > 0. Finally, t0 is determined by Q
(u)
2t0

/K = o(1) for all u, e.g., we can set

t0 := max{t : max
u

Q
(u)
2t ≤ K1−ε}.

Since t0 is ultimately an increasing function in N and su(t) diverges, the sum N−1
∑N−1

n=0

exp(2πih · f(n)) is o(1) and thus f(n) is uniformly distributed modulo one by Weyl’s
criterion. This closes the proof of Proposition 1. 2
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