A lower bound for the b-adic diaphony

Ligia L. Cristea and Friedrich Pillichshammer^{*}

Abstract

La diafonia *b*-adica è una misura quantitativa della irregularità di distribuzione di un insieme di punti nel cubo unità *s*-dimensionale. In questi appunti mostriamo che la diafonia *b*-adica (per un numero primo *b*) di un insieme di *N* punti nel cubo unità di dimensione *s* è sempre almeno di ordine $(\log N)^{(s-1)/2}/N$. Questo limite inferiore è il migliore possibile.

Abstract

The *b*-adic diaphony is a quantitative measure for the irregularity of distribution of a point set in the *s*-dimensional unit cube. In this note we show that the *b*-adic diaphony (for prime *b*) of a point set consisting of *N* points in the *s*-dimensional unit cube is always at least of order $(\log N)^{(s-1)/2}/N$. This lower bound is best possible.

Keywords: b-adic diaphony, \mathcal{L}_2 discrepancy, uniform distribution of sequences. *MSC 2000:* 11K06, 11K38.

1 Introduction

As the (classical) diaphony (see [25] or [8, Definition 1.29] or [16, Exercise 5.27, p. 162]) the *b*-adic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the *s*-dimensional unit cube. This notion was introduced by Hellekalek and Leeb [15] for b = 2 and later generalized by Grozdanov and Stoilova [11] for general integers $b \ge 2$. The main difference to the classical diaphony is that the trigonometric functions are replaced by *b*-adic Walsh functions. Before we give the exact definition of the *b*-adic diaphony we recall the definition of Walsh functions.

Let $b \geq 2$ be an integer. For a non-negative integer k with base b representation $k = \kappa_{a-1}b^{a-1} + \cdots + \kappa_1b + \kappa_0$, with $\kappa_i \in \{0, \ldots, b-1\}$ and $\kappa_{a-1} \neq 0$, we define the Walsh function $_b \operatorname{wal}_k : [0, 1) \to \mathbb{C}$ by

$$_{b}$$
wal_k $(x) := e^{2\pi i (x_1 \kappa_0 + \dots + x_a \kappa_{a-1})/b}$.

for $x \in [0, 1)$ with base b representation $x = \frac{x_1}{b} + \frac{x_2}{b^2} + \cdots$ (unique in the sense that infinitely many of the x_i must be different from b - 1).

^{*}The authors are supported by the Austrian Research Foundation (FWF), Project S9609, that is part of the Austrian National Research Network "Analytic Combinatorics and Probabilistic Number Theory".

For dimension $s \geq 2, x_1, \ldots, x_s \in [0,1)$ and $k_1, \ldots, k_s \in \mathbb{N}_0$ we define ${}_b \operatorname{wal}_{k_1, \ldots, k_s} : [0,1)^s \to \mathbb{C}$ by

$$_b$$
wal _{k_1,\ldots,k_s} $(x_1,\ldots,x_s) := \prod_{j=1}^s {}_b$ wal _{k_j} $(x_j).$

For vectors $\boldsymbol{k} = (k_1, \ldots, k_s) \in \mathbb{N}_0^s$ and $\boldsymbol{x} = (x_1, \ldots, x_s) \in [0, 1)^s$ we write

$$_b$$
wal $_{\boldsymbol{k}}(\boldsymbol{x}) := {}_b$ wal $_{k_1,\ldots,k_s}(x_1,\ldots,x_s).$

If it is clear which base we mean we simply write $\operatorname{wal}_{k}(\boldsymbol{x})$. It is clear from the definitions that Walsh functions are piecewise constant. It can be shown that for any integer $s \geq 1$ the system {wal_k : $\boldsymbol{k} \in \mathbb{N}_{0}^{s}$ } is a complete orthonormal system in $L_{2}([0, 1)^{s})$, see for example [1, 17] or [20, Satz 1]. For more information on Walsh functions we refer to [1, 20, 24].

Now we give the definition of the *b*-adic diaphony (see [11] or [15]).

Definition 1 Let $b \ge 2$ be an integer. The b-adic diaphony of a point set $P_{N,s} = \{x_0, \ldots, x_{N-1}\} \subset [0,1)^s$ is defined as

$$F_{b,N}(P_{N,s}) := \left(\frac{1}{(1+b)^s - 1} \sum_{\substack{\boldsymbol{k} \in \mathbb{N}_0^s \\ \boldsymbol{k} \neq \boldsymbol{0}}} r_b(\boldsymbol{k}) \left| \frac{1}{N} \sum_{\substack{h=0 \\ h=0}}^{N-1} {}_b \operatorname{wal}_{\boldsymbol{k}}(\boldsymbol{x}_h) \right|^2 \right)^{1/2}.$$

where for $\mathbf{k} = (k_1, \ldots, k_s) \in \mathbb{N}_0^s$, $r_b(\mathbf{k}) := \prod_{j=1}^s r_b(k_j)$ and for $k \in \mathbb{Z}$,

$$r_b(k) := \begin{cases} 1 & \text{if } k = 0, \\ b^{-2a} & \text{if } b^a \le k < b^{a+1} \text{ where } a \in \mathbb{N}_0. \end{cases}$$
(1)

Note that the b-adic diaphony is scaled such that $0 \leq F_{b,N}(P_{N,s}) \leq 1$ for all $N \in \mathbb{N}$, in particular we have $F_{b,1}(P_{1,s}) = 1$. If b = 2 we also speak of dyadic diaphony.

The *b*-adic diaphony is a quantitative measure for the irregularity of distribution of a sequence: a sequence ω in the *s*-dimensional unit cube is uniformly distributed modulo one if and only if $\lim_{N\to\infty} F_{b,N}(\omega_N) = 0$, where ω_N is the point set consisting of the first N points of ω . This was shown in [15] for the case b = 2 and in [11] for the general case. Further it is shown in [5] that the *b*-adic diaphony is—up to a factor depending on b and *s*—the worst-case error for quasi-Monte Carlo integration of functions from a certain Hilbert space of functions.

More general notions of diaphony can be found in [10, 13, 14].

Stoilova [22] proved that the b-adic diaphony of a (t, m, s)-net in base b is bounded by

$$F_{b,N}(P) \le c(b,s)b^t \frac{(m-t)^{\frac{s-1}{2}}}{b^m},$$

where c(b, s) > 0 only depends on b and s. For the definition of (t, m, s)-nets in base b we refer to Niederreiter [18, 19]. These are point sets consisting of $N = b^m$ points in the s-dimensional unit cube with outstanding distribution properties if the parameter $t \in \{0, \ldots, m\}$ is small. However, the optimal value t = 0 is not possible for all parameters $s \ge 1$ and $b \ge 2$. Niederreiter [18] proved that if a (0, m, s)-net in base b exists, then we have $s - 1 \le b$. Faure [9] provided a construction of (0, m, s)-nets in prime base $p \ge s - 1$

and Niederreiter [18] extended Faure's construction to prime power bases $p^r \ge s - 1$. Hence if $b \ge s - 1$ is a prime power we obtain for any $m \in \mathbb{N}$ the existence of $N = b^m$ points in $[0, 1)^s$ whose b-adic diaphony is bounded by

$$F_{b,N}(P) \le c'(b,s) \frac{(\log N)^{\frac{s-1}{2}}}{N},$$

with c'(b,s) > 0. See also [6] where a similar bound on the dyadic diaphony of digital (t, m, s)-nets in base 2 (a subclass of (t, m, s)-nets) is shown.

The question for a general lower bound for the *b*-adic diaphony was pointed out in [22], see also [12]. In the following section we show that for prime *b*, the *b*-adic diaphony of an *N*-element point set in $[0, 1)^s$ is always at least of order $\frac{(\log N)^{\frac{s-1}{2}}}{N}$, which shows that the above given upper bounds are best possible.

2 A general lower bound for the *b*-adic diaphony

In the following we prove a lower bound on the *b*-adic diaphony for prime *b*. This is done using Roth's lower bound on the \mathcal{L}_2 discrepancy, which is another measure for the distribution properties of a point set.

Theorem 1 Let b be a prime. For any dimension $s \ge 1$ there exists a constant $\overline{c}(s,b) > 0$, depending only on the dimension s and b, such that the b-adic diaphony of any point set $P_{N,s}$ consisting of N points in $[0,1)^s$ satisfies

$$F_{b,N}(P_{N,s}) \ge \overline{c}(s,b) \frac{(\log N)^{\frac{s-1}{2}}}{N}$$

In the proof of our theorem below we use the generalized notion of weighted \mathcal{L}_2 discrepancy, which was introduced in [23]. In the following let D denote the index set $D = \{1, 2, \ldots, s\}$ and let $\gamma = (\gamma_1, \gamma_2, \ldots)$ be a sequence of non-negative real numbers. For $\mathfrak{u} \subseteq D$ let $|\mathfrak{u}|$ be the cardinality of \mathfrak{u} and for a vector $\boldsymbol{x} \in [0, 1)^s$ let $\boldsymbol{x}_{\mathfrak{u}}$ denote the vector from $[0, 1)^{|\mathfrak{u}|}$ containing all components of \boldsymbol{x} whose indices are in \mathfrak{u} . Further let $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$, $d\boldsymbol{x}_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} dx_j$, and let $(\boldsymbol{x}_{\mathfrak{u}}, 1)$ be the vector from $[0, 1)^s$ with all components whose indices are not in \mathfrak{u} replaced by 1. Then the weighted \mathcal{L}_2 discrepancy of a point set $P_{N,s} = \{\boldsymbol{x}_0, \ldots, \boldsymbol{x}_{N-1}\}$ is defined as

$$\mathcal{L}_{2,\gamma}(P_{N,s}) = \left(\sum_{\substack{\mathfrak{u} \subseteq D\\\mathfrak{u} \neq \emptyset}} \gamma_{\mathfrak{u}} \int_{[0,1]^{|\mathfrak{u}|}} \Delta((\boldsymbol{x}_{\mathfrak{u}},1))^2 \, \mathrm{d}\boldsymbol{x}_{\mathfrak{u}}\right)^{1/2},$$

where

$$\Delta(t_1,\ldots,t_s) = \frac{A_N([0,t_1)\times\ldots\times[0,t_s))}{N} - t_1\cdots t_s,$$

where $0 \leq t_j \leq 1$ and $A_N([0, t_1) \times \ldots \times [0, t_s))$ denotes the number of indices n with $\boldsymbol{x}_n \in [0, t_1) \times \ldots \times [0, t_s)$. We can see from the definition of the weighted \mathcal{L}_2 discrepancy that the weights $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$ modify the importance of different projections (see [7, 23] for more information on weights).

In [3] the authors considered point sets which are randomized in the following sense: for $b \geq 2$ let $x = \frac{x_1}{b} + \frac{x_2}{b^2} + \cdots$ and $\sigma = \frac{\sigma_1}{b} + \frac{\sigma_2}{b^2} + \cdots$ be the base *b* representation of *x* and σ . Then the digitally shifted point $y = x \oplus_b \sigma$ is given by $y = \frac{y_1}{b} + \frac{y_2}{b^2} + \cdots$, where $y_i = x_i + \sigma_i \in \mathbb{Z}_b$. For vectors \boldsymbol{x} and $\boldsymbol{\sigma}$ we define the digitally shifted point $\boldsymbol{x} \oplus_b \boldsymbol{\sigma}$ component wise. Obviously, the shift depends on the base *b*. Now for $P_{N,s} = \{\boldsymbol{x}_0, \dots, \boldsymbol{x}_{N-1}\} \subseteq [0, 1)^s$ and $\boldsymbol{\sigma} \in [0, 1)^s$ we define the point set $P_{N,s,\boldsymbol{\sigma}} = \{\boldsymbol{x}_0 \oplus_b \boldsymbol{\sigma}, \dots, \boldsymbol{x}_{N-1} \oplus_b \boldsymbol{\sigma}\}$.

Proof. In [3] it was shown that if one chooses $\boldsymbol{\sigma}$ uniformly from $[0,1)^s$, then the expected value of the weighted \mathcal{L}_2 discrepancy of a point set $P_{N,s,\boldsymbol{\sigma}}$ is given by

$$\mathbb{E}(\mathcal{L}^2_{2,\boldsymbol{\gamma}}(P_{N,s,\boldsymbol{\sigma}})) = \sum_{\substack{\boldsymbol{k} \in \mathbb{N}^s_0 \\ \boldsymbol{k} \neq \boldsymbol{0}}} \rho_b(\boldsymbol{\gamma}, \boldsymbol{k}) \left| \frac{1}{N} \sum_{h=0}^{N-1} \operatorname{wal}_{\boldsymbol{k}}(\boldsymbol{x}_h) \right|^2$$

where $\boldsymbol{k} = (k_1, \ldots, k_s) \in \mathbb{N}_0^s$, $\boldsymbol{\gamma} = (\gamma_1, \ldots, \gamma_s) \in \mathbb{N}_0^s$, $\rho_b(\boldsymbol{\gamma}, \boldsymbol{k}) = \prod_{j=1}^s \rho_b(\gamma_j, k_j)$, and

$$\rho_b(\gamma, k) = \begin{cases} 1 + \frac{\gamma}{3} & \text{if } k = 0, \\ \frac{\gamma}{2b^{2(a+1)}} \left(\frac{1}{\sin^2\left(\frac{\kappa_a \pi}{b}\right)} - \frac{1}{3}\right) & \text{if } b^a \le k < b^{a+1} \text{ and } \kappa_a = \left\lfloor \frac{k}{b^a} \right\rfloor, \text{ where } a \in \mathbb{N}_0. \end{cases}$$

If we take $\gamma_j = 3b^2$, for j = 1, ..., s we have, $\rho_b(\gamma_j, 0) = (1+b^2) = (1+b^2)r_b(0)$ and for $k \ge 1$ we have $\rho_b(\gamma_j, k) = \frac{3}{2}r_b(k)\left(\frac{1}{\sin^2(\frac{\kappa_a\pi}{b})} - \frac{1}{3}\right)$. Let us denote $d_b := \max_{1 \le \kappa \le b-1}\left(\frac{1}{\sin^2(\frac{\kappa\pi}{b})} - \frac{1}{3}\right)$ and $c_b := \max\{1+b^2, \frac{3}{2}d_b\}$.

For the above choice of the weights we have

$$\rho_b((3b^2), \mathbf{k}) = \prod_{i=1}^s \rho_b(3b^2, k_i) \le c_b^s \prod_{i=1}^s r_b(k_i) = c_b^s r_b(\mathbf{k})$$

Hence from the definition of *b*-adic diaphony we obtain the inequality

$$\mathbb{E}(\mathcal{L}^{2}_{2,(3b^{2})}(\widetilde{P}_{N,s})) \leq c^{s}_{b}((1+b)^{s}-1)F^{2}_{b,N}(P_{N,s}).$$
(2)

Roth [21] proved that for any dimension $s \ge 1$ there exists a constant $\hat{c}(s) > 0$ such that for any point set consisting of N points in the s-dimensional unit cube $[0, 1)^s$ the classical \mathcal{L}_2 discrepancy of a point set satisfies

$$\mathcal{L}_2^2(P_{N,s}) \ge \widehat{c}(s) \frac{(\log N)^{s-1}}{N^2}.$$

Here we just note that the weights only change the constant $\hat{c}(s)$, but do not change the convergence rate of the bound (see [2, 4, 23] for more information). Hence, for any point set $P_{N,s}$ consisting of N points in the s-dimensional unit cube there is a constant $\tilde{c}(s, b)$, depending only on the dimension s, such that

$$\mathcal{L}^{2}_{2,(3b^{2})}(P_{N,s}) \ge \widetilde{c}(s,b) \frac{(\log N)^{s-1}}{N^{2}}.$$

From (2) it follows that there is a constant $\overline{c}(s, b)$, depending only on the dimension and the prime number b, such that

$$F_N^2(P_{N,s}) \ge \overline{c}^2(s,b) \frac{(\log N)^{s-1}}{N^2},$$

which completes the proof.

References

- Chrestenson H.E.: A class of generalized Walsh functions. Pacific J. Math. 5: 17–31, 1955.
- [2] Cristea L.L., Dick J. and Pillichshammer F.: On the mean square weighted \mathcal{L}_2 discrepancy of randomized digital nets in prime base. J. Complexity, to appear 2006.
- [3] Dick J., Kuo F., Pillichshammer F. and Sloan I.H.: Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comp.74: 1895–1921, 2005.
- [4] Dick J. and Pillichshammer F.: On the mean square weighted L_2 discrepancy of randomized digital (t, m, s)-nets over \mathbb{Z}_2 . J. Complexity **21**: 149–195, 2005.
- [5] Dick J. and Pillichshammer F.: Diaphony, discrepancy, spectral test and worst-case error. Math. Comput. Simulation 70: 159–171, 2005.
- [6] Dick J. and Pillichshammer F.: Dyadic diaphony of digital nets over Z₂. Monatsh. Math. 145: 285–299, 2005.
- [7] Dick J., Sloan I.H., Wang X. and Woźniakowksi H.: Liberating the weights. J. Complexity 20: 593–623, 2004.
- [8] Drmota M. and Tichy R.F.: Sequences, discrepancies and applications. Lecture Notes in Mathematics **1651**. Berlin Heidelberg New York: Springer.
- [9] Faure H.: Discrépance de Suites Associées à un Système de Numération (en Dimension s). Acta Arith. 41: 337–351, 1982.
- [10] Grozdanov V.: The weighted *b*-adic diaphony. J. Complexity, to appear 2006.
- [11] Grozdanov V. and Stoilova S.: On the theory of b-adic diaphony. C. R. Acad. Bulgare Sci. 54: 31–34, 2001.
- [12] Grozdanov V. and Stoilova S.: The b-adic diaphony. Rendiconti di Matematica 22: 203–221, 2002.
- [13] Grozdanov V. and Stoilova S.: The general diaphony. C. R. Acad. Bulgare Sci. 57: 13–18, 2004.
- [14] Grozdanov V., Nikolova E. and Stoilova S.: Generalized b-adic diaphony. C. R. Acad. Bulgare Sci. 56: 23–30, 2003.
- [15] Hellekalek P. and Leeb H.: Dyadic diaphony. Acta Arith. 80: 187–196, 1997.
- [16] Kuipers L. and Niederreiter H.: Uniform Distribution of Sequences. John Wiley, New York, 1974.
- [17] Niederdrenk K.: Die endliche Fourier- und Walshtransformation mit einer Einführung in die Bildverarbeitung. Vieweg, Braunschweig, 1982.

- [18] Niederreiter H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104: 273–337, 1987.
- [19] Niederreiter H.: Random Number Generation and Quasi-Monte Carlo Methods. No.63 in CBMS-NSF Series in Applied Mathematics. SIAM Philadelphia, 1992.
- G.: konvergierende [20] Pirsic Schnell Walshreihen über Gruppen. Masgerman) ter's Thesis, University of Salzburg, 1995. (in (Available athttp://www.ricam.oeaw.ac.at/people/page/pirsic/)
- [21] Roth K.F.: On irregularities of distribution. Mathematika 1: 73–79, 1959.
- [22] Stoilova S.: The *b*-adic diaphony of an arbitrary (t, m, s)-net. preprint 2004. (Available at http://www1.jinr.ru/Preprints/2004/107(e5-2004-107).pdf)
- [23] Sloan I.H. and Woźniakowski H.: When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity. 14: 1–33, 1998.
- [24] Walsh J.L.: A closed set of normal orthogonal functions. Amer. J. Math. 55: 5–24, 1923.
- [25] Zinterhof P.: Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Sitzungsber. Österr. Akkad. Wiss. Math.-Natur. Kl. II 185: 121–132, 1976. (in german)

Author's Addresses:

Ligia L. Cristea, Institut für Finanzmathematik, Universität Linz, Altenbergstraße 69, A-4040 Linz, Austria. Email: ligia-loretta.cristea@jku.at

Friedrich Pillichshammer, Institut für Finanzmathematik, Universität Linz, Altenbergstraße 69, A-4040 Linz, Austria. Email: friedrich.pillichshammer@jku.at