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Abstract

La diafonia b-adica & una misura quantitativa della irregularita di distribuzione
di un insieme di punti nel cubo unita s-dimensionale. In questi appunti mostriamo
che la diafonia b-adica (per un numero primo b) di un insieme di N punti nel cubo
unita di dimensione s ¢ sempre almeno di ordine (log N)~1/2/N. Questo limite
inferiore e il migliore possibile.

Abstract

The b-adic diaphony is a quantitative measure for the irregularity of distribution
of a point set in the s-dimensional unit cube. In this note we show that the b-adic
diaphony (for prime b) of a point set consisting of N points in the s-dimensional
unit cube is always at least of order (log N)(*~1/2/N. This lower bound is best
possible.
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1 Introduction

As the (classical) diaphony (see [25] or [8, Definition 1.29] or [16, Exercise 5.27, p. 162])
the b-adic diaphony is a quantitative measure for the irregularity of distribution of a
sequence in the s-dimensional unit cube. This notion was introduced by Hellekalek and
Leeb [15] for b = 2 and later generalized by Grozdanov and Stoilova [11] for general
integers b > 2. The main difference to the classical diaphony is that the trigonometric
functions are replaced by b-adic Walsh functions. Before we give the exact definition of
the b-adic diaphony we recall the definition of Walsh functions.

Let b > 2 be an integer. For a non-negative integer k£ with base b representation
k= ke 10"+ + K1b+ Ko, with k; € {0,...,b—1} and k,_; # 0, we define the Walsh
function ywaly, : [0,1) — C by

bwalk(x) — eQﬂ'i(CClli()-i-"'-i-xalia_l)/b’
for x € [0,1) with base b representation z = % + 7 + --- (unique in the sense that
infinitely many of the z; must be different from b — 1).
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For dimension s > 2, xy,...,x, € [0,1) and ky,..., ks € Ny we define ywalg, .
[0,1)* — C by

s

pwalg, g (T1,...,25) 1= H pwaly, ().

=1
For vectors k = (k1,...,ks) € Nj and & = (x1,...,25) € [0,1)® we write
bwalk(a:) = bwalkl ..... ks (:L’l, Ce ,xs).

If it is clear which base we mean we simply write walg(x). It is clear from the definitions
that Walsh functions are piecewise constant. It can be shown that for any integer s > 1
the system {walg : kK € N5} is a complete orthonormal system in Ly([0, 1)), see for
example [1, 17] or [20, Satz 1]. For more information on Walsh functions we refer to
[1, 20, 24].

Now we give the definition of the b-adic diaphony (see [11] or [15]).

Definition 1 Let b > 2 be an integer. The b-adic diaphony of a point set Py, =
{zo,...,xNn_1} C[0,1)° is defined as

1/2
1 | V-1 2
EFyn(P, = — — L (
s —
k£0
where for k = (k... k) € N§, (k) == [[;_ ro(k;) and for k € Z,
1 if k=0
(k) = { b=2% 4f b* < k < b**! where a € Ny. (1)

Note that the b-adic diaphony is scaled such that 0 < F, y(Pys) < 1 for all N € N, in
particular we have F}, (P ) = 1. If b = 2 we also speak of dyadic diaphony.

The b-adic diaphony is a quantitative measure for the irregularity of distribution of a
sequence: a sequence w in the s-dimensional unit cube is uniformly distributed modulo
one if and only if limy_,o Fy y(wy) = 0, where wy is the point set consisting of the first
N points of w. This was shown in [15] for the case b = 2 and in [11] for the general
case. Further it is shown in [5] that the b-adic diaphony is—up to a factor depending on b
and s—the worst-case error for quasi-Monte Carlo integration of functions from a certain
Hilbert space of functions.

More general notions of diaphony can be found in [10, 13, 14].

Stoilova [22] proved that the b-adic diaphony of a (¢, m, s)-net in base b is bounded by

s—1

Fyn(P) < c(b, s)bt(m;#,

where ¢(b,s) > 0 only depends on b and s. For the definition of (¢,m, s)-nets in base
b we refer to Niederreiter [18, 19]. These are point sets consisting of N = b™ points
in the s-dimensional unit cube with outstanding distribution properties if the parameter
t € {0,...,m} issmall. However, the optimal value ¢t = 0 is not possible for all parameters
s > 1 and b > 2. Niederreiter [18] proved that if a (0,m, s)-net in base b exists, then we
have s —1 < b. Faure [9] provided a construction of (0,m, s)-nets in prime base p > s —1
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and Niederreiter [18] extended Faure’s construction to prime power bases p" > s — 1.
Hence if b > s — 1 is a prime power we obtain for any m € N the existence of N = b™
points in [0, 1)° whose b-adic diaphony is bounded by

Fun(P) < (b, 51BN 7
’ N
with ¢/(b,s) > 0. See also [6] where a similar bound on the dyadic diaphony of digital
(t,m, s)-nets in base 2 (a subclass of (t,m, s)-nets) is shown.
The question for a general lower bound for the b-adic diaphony was pointed out in
[22], see also [12]. In the following section we show that for prime b, the b-adic diaphony

s—1
M, which shows that

of an N-element point set in [0, 1)* is always at least of order * ~
the above given upper bounds are best possible.

2 A general lower bound for the b-adic diaphony

In the following we prove a lower bound on the b-adic diaphony for prime b. This is
done using Roth’s lower bound on the £, discrepancy, which is another measure for the
distribution properties of a point set.

Theorem 1 Letb be a prime. For any dimension s > 1 there exists a constant ¢(s,b) > 0,
depending only on the dimension s and b, such that the b-adic diaphony of any point set
Py ¢ consisting of N points in [0,1)* satisfies

(log N)*="

Fyn(Pns) > (s, b) N

In the proof of our theorem below we use the generalized notion of weighted L, dis-
crepancy, which was introduced in [23]. In the following let D denote the index set
D ={1,2,...,s} and let 7 = (71,72,...) be a sequence of non-negative real numbers.
For u C D let |u| be the cardinality of u and for a vector € [0,1)® let x, denote the
vector from |0, 1)‘“‘ containing all components of  whose indices are in u. Further let
Y = [Ljew s duw = [1;c, dzj, and let (2, 1) be the vector from [0,1)* with all compo-
nents whose indices are not in u replaced by 1. Then the weighted Lo discrepancy of a

point set Py s = {xo,...,xn_1} is defined as
1/2
LaoPr) = [ X [ Al da|
uCD [0,1]‘”"
u#0
where Yy 0t
Alty, ... t) = v((0.1) X ... x [0,1,)) byt

N
where 0 < t; < 1 and An([0,¢;) X ... x [0,1)) denotes the number of indices n with
x, €[0,t1) X ...x[0,t5). We can see from the definition of the weighted £y discrepancy
that the weights v, = [];c,7; modify the importance of different projections (see [7, 23]
for more information on weights).



In [3] the authors considered point sets which are randomized in the following sense:
forb>2letz =% +3+--- and o = G+ % +--- be the base b representation of x and
0. Then the dlgltally shlfted point y = x @b o is given by y = % 4+ % + ..., where y; =
x; +0; € Zy. For vectors  and o we define the digitally shifted pomt x P, o component
wise. Obviously, the shift depends on the base b. Now for Py, = {x,...,xny_1} C [0,1)*
and o € [0,1)* we define the point set Pyso = {xo Bp0,...,TN_1 By O}.

Proof. In [3] it was shown that if one chooses o uniformly from [0, 1)®, then the expected
value of the weighted L, discrepancy of a point set Py s is given by

1 N-—1
) N ;walk(ajh)

2

E(/CQ PNscr Zpb v,

kENg

Y

k20

where k = (k1,...,ks) € Ng, v = (71,-..,7) € N§, po(v, k) = [I52, po(75, k), and
1+3 if k =0,

v k) = B (Smg(l%w) - %) if b* < k <0 and K, = | £, where a € N,.

If we take v; = 3b%, for j = 1,..., s we have, py(v;,0) = (1+0?) = (1+?)r,(0) and for

k > 1 we have py(v;, k) = %rb(k) (SIHQ(%M) — = |. Let us denote d, := maxj<,<p—1 <% -
b

3 sin (%)

W=
N—

and ¢, := max{1 + 0%, 3d,}.
For the above choice of the weights we have

s

ps((30%), K Hpb (36% ki) < ¢ [ ro(ka) = cirol(ke).

=1 =1

Hence from the definition of b-adic diaphony we obtain the inequality
E(L3 2y (Prv.s) < (1 +0)" = D) Fyn(Prv,s)- (2)

Roth [21] proved that for any dimension s > 1 there exists a constant ¢(s) > 0 such that
for any point set consisting of N points in the s-dimensional unit cube [0, 1)* the classical
Lo discrepancy of a point set satisfies
., (log N)*~!

E%(P]\Ls) Z C(S)T.
Here we just note that the weights only change the constant ¢(s), but do not change the
convergence rate of the bound (see [2, 4, 23] for more information). Hence, for any point
set Py s consisting of N points in the s-dimensional unit cube there is a constant ¢(s, b),
depending only on the dimension s, such that

(log N)**

N2 '
From (2) it follows that there is a constant (s, b), depending only on the dimension and
the prime number b, such that

‘Cg,(3b2)(PN,S) > ¢(s,b)

(log N)**
N2
which completes the proof. O

Fy(Py.s) > 2(s,b)
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