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Summary. Digital nets are very important representatives in the family of low-
discrepancy point sets which are often used as underlying nodes for quasi-Monte
Carlo integration rules. Here we consider a special sub-class of digital nets known
as cyclic nets and, more general, hyperplane nets. We show the existence of such
digital nets of good quality with respect to star discrepancy in the classical as well
as weighted case and we present effective search algorithms based on a component-
by-component construction.

1 Introduction

For a finite point set P consisting of N (not necessarily distinct) points
x0, . . . ,xN−1 in the s-dimensional unit-cube [0, 1)s the star discrepancy is
defined by

D∗
N (P) = sup

B

∣∣∣∣
|{0 ≤ n < N : xn ∈ B}|

N
− λs(B)

∣∣∣∣ (1)

where the supremum is extended over all subintervals B of [0, 1)s of the form
B =

∏s
i=1[0, bi), 0 < bi ≤ 1 for all 1 ≤ i ≤ s. This is a quantitative measure

for the deviation of the empirical distribution of P from uniform distribution
modulo one. The star discrepancy is also intimately connected with the er-
ror of a quasi-Monte Carlo (QMC) rule via the well-known Koksma-Hlawka
inequality ∣∣∣∣∣

∫

[0,1]s
f(x) dx −

1

N

∑

x∈P

f(x)

∣∣∣∣∣ ≤ D∗
N(P)V (f), (2)

where V (f) denotes the variation of f in the sense of Hardy and Krause and
P consists of N points in [0, 1)s. See [4, 8, 11] for further informations.

⋆ The authors are supported by the Austrian Science Foundation (FWF), Project
S9609, that is part of the Austrian National Research Network ”Analytic Com-
binatorics and Probabilistic Number Theory”.
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Apart from the above (classical) concept one often studies a “weighted
version” of the star discrepancy. This concept has been introduced by Sloan
and Woźniakowski [19] with the idea that different coordinates of integrands
may have different influence on the quality of approximation of an integral by
a QMC rule.

Let D = {1, . . . , s} be the set of coordinate indices and let γ = (γi)i≥1

denote a sequence of non-negative real numbers, the so-called “weights” as-
sociated to the coordinate directions i = 1, 2, . . .. To avoid a trivial case, we
will always assume that not all weights are 0. For ∅ 6= u ⊆ D let γu =

∏
i∈u

γi
be the weight associated to the coordinate directions given by u, let |u| the
cardinality of u, and for a vector z ∈ [0, 1]s or a subset B ⊆ [0, 1]s let z(u)
or B(u) denote the projection of the vector or the subset to the components
given by u. Hence z(u) ∈ [0, 1]|u| and B(u) ⊆ [0, 1]|u|.

For a point set P of N points x0, . . . ,xN−1 in [0, 1)s and given weights γ,
the weighted star discrepancy is defined by

D∗
N,γ(P) = sup

B

max
∅6=u⊆D

γu

∣∣∣∣
|{0 ≤ n < N : xn(u) ∈ B(u)}|

N
− λ|u|(B(u))

∣∣∣∣ ,

where the supremum is extended over all subintervals B of [0, 1)s of the form
B =

∏s
i=1[0, bi), 0 < bi ≤ 1 for all 1 ≤ i ≤ s.

This is a generalization of the classical star discrepancy (1) which is re-
covered if we choose γi = 1 for all i ≥ 1. Furthermore, the error bound (2)
can also be generalized by replacing the star discrepancy with the weighted
star discrepancy and the variation by a weighted version of the variation (see
[19] for more details).

The best constructions of finite point sets with low star discrepancy are
based on the concept of (t,m, s)-nets in base q. A detailed theory of (t,m, s)-
nets was developed by Niederreiter [10] (see also [11, Chapter 4] and [14] for
surveys of this theory). We refer to [11] and [14] for the definition of (t,m, s)-
nets. The crucial fact is that (t,m, s)-nets in a base q provide sets of qm points
in the s-dimensional unit cube [0, 1)s which are extremely well distributed if
the quality parameter t is “small”. Explicit constructions of (t,m, s)-nets are
based on the digital construction scheme which we recall in the following.

From now on let q denote a prime-power, let Fq be the finite field of q
elements and let F

∗
q := Fq \ {0}, where 0 is the neutral element with respect

to addition. For a positive integer r let Zr = {0, . . . , r − 1}. Let ϕ : Zq → Fq

be a fixed bijection with ϕ(0) = 0. We extend ϕ to integers in Zqm by setting

ϕ(k) := (ϕ(κ0), . . . , ϕ(κm−1))
⊤ (3)

for k = κ0 + κ1q + · · · + κm−1q
m−1 with κ0, . . . , κm−1 ∈ Zq. Here x⊤ means

the transpose of the vector x.

Definition 1 (digital (t,m, s)-nets). Let s ≥ 1 and m ≥ 1 be integers. Let
C1, . . . , Cs be m×m matrices over Fq. Now we construct qm points in [0, 1)s:
For 1 ≤ i ≤ s and for k ∈ Zqm multiply the matrix Ci by the vector ϕ(k), i.e.,
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Ciϕ(k) =: (yi,1(k), . . . , yi,m(k))⊤ ∈ F
m
q ,

and set

xk,i :=
ϕ−1(yi,1(k))

q
+ · · · +

ϕ−1(yi,m(k))

qm
.

If for some integer t with 0 ≤ t ≤ m the point set consisting of the points

xk = (xk,1, . . . , xk,s) for k ∈ Zqm ,

is a (t,m, s)-net in base q, then it is called a digital (t,m, s)-net over Fq, or,
in brief, a digital net (over Fq). The Ci are called its generating matrices.

Many constructions of digital nets are inspired by a close connection be-
tween coding theory and the theory of digital nets (see, for example, Nieder-
reiter [13] or [15]). The construction considered here has been introduced by
Niederreiter [13] and it is an analogue to a special type of codes, namely to
cyclic codes which are well known in coding theory. Later this construction
has been generalized by Pirsic, Dick and Pillichshammer [18] to so-called hy-
perplane nets.

Definition 2 (hyperplane nets). Let integers m ≥ 1, s ≥ 2 and a prime-
power q be given. Let Fqm be a finite field with qm elements and fix an element
α = (α1, . . . , αs) ∈ F

s
qm . Let F be the space of linear forms

F := {f(x1, . . . , xs) = x1γ1 + · · ·+xsγs : γ1, . . . , γs ∈ Fqm} ⊆ Fqm [x1, . . . , xs]

and consider the subset

Fα := {f ∈ F : f(α1, . . . , αs) = 0}.

For each 1 ≤ i ≤ s choose an ordered basis Bi of Fqm over Fq and define the
mapping φ : F → F

ms
q by

f =

s∑

i=1

γix
i−1 ∈ F 7→ (γ1,1, . . . , γ1,m, . . . , γs,1, . . . , γs,m) ∈ F

ms
q ,

where (γi,1, . . . , γi,m) is the coordinate vector of γi with respect to the chosen
basis Bi.

We denote by Cα the orthogonal subspace in F
ms
q of the image Nα :=

φ(Pα). Let
Cα = (C⊤

1 · · ·C⊤
s ) ∈ F

m×sm
q

be a matrix whose row space is Cα. Then C1, . . . , Cs are the generating matri-
ces of a hyperplane net over Fq with respect to B1, . . . ,Bs and Cα is its overall
generating matrix. This hyperplane net will be denoted by Pα and we say
Pα is the hyperplane net associated to α. We shall from now on assume a
fixed choice of bases B1, . . . ,Bs and will therefore not explicitly mention them
anymore.
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Remark 1. In Definition 2 above, if α ∈ F
s
qm is of the special form α = α(s) :=

(1, α, α2, . . . , αs−1) with some α ∈ Fqm , then we obtain a cyclic digital net as
introduced initially by Niederreiter [13]. This cyclic net will be denoted by
Pα(s) and we say Pα(s) is the cyclic net associated to α.

For a concise representation of the generator matrices C1, . . . , Cs of a hy-
perplane net in terms of α = (α1, . . . , αs) we refer to [18]. We remark here
that polynomial lattice point sets can be considered as a (proper) sub-class of
hyperplane nets. This has been shown in [17].

In this paper we investigate the (weighted) star discrepancy of hyperplane
nets. We show by an average argument that there exist hyperplane nets and
even cyclic nets with “low” (weighted) star discrepancy. Furthermore, such
point sets can be constructed with a component-by-component algorithm.
For the weighted star discrepancy, under certain conditions on the weights,
it turns out that our discrepancy bounds do not depend on the dimension s.
Such a behavior is known as strong tractability (see [19]). We remark here
that similar results are already known for polynomial lattice point sets but
only in prime bases q (see [1, 2]). However, we point out that our results are
valid for the much more general class of hyperplane nets. Beside this, here we
consider arbitrary prime-power bases q instead of prime base only as done so
far ([1, 2, 3]). For cyclic nets we further show that they can be extended in
the dimension s.

2 Prerequisites

Let q = pr, p prime, r ∈ N0 and let Fq be the finite field with q elements. Let
Zq = {0, 1, . . . , q− 1} ⊆ Z with ring operations modulo q and let ϕ : Zq → Fq

be a bijection such that ϕ(0) = 0, the neutral element of addition in Fq.
Moreover denote by ψ1 the isomorphism of additive groups ψ1 : Fq → Z

r
p and

define η := ψ1 ◦ ϕ. For 1 ≤ i ≤ r denote by πi the projection πi : Z
r
p → Zp,

πi(x1, . . . , xr) = xi.
Let Fqm = Fq[ω], such that {1, ω, . . . , ωm−1} forms a basis of Fqm over

Fq. If we have the representation of α ∈ Fqm as α =
∑m−1

l=0 alω
l, where

a0, . . . , am−1 ∈ Fq, define

ψ(α) := (a0, . . . , am−1) ∈ F
m
q .

Furthermore, for k =
∑m−1

l=0 κlq
l ∈ Zqm let

ϕ′(k) :=

m−1∑

l=0

ϕ(κl)ω
l and ψ′(k) := ψ(ϕ′(k)).

We have the following commutative diagrams:
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ϕ
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η
��

@

@

@

@

@

@

@
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Z
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πi
// Zp

Zqm

ϕ′

//

ψ′
!!D

D

D

D

D

D

D

D

Fqm

ψ

��

F
m
q

For 1 ≤ i ≤ s we define the permutations τi : Zqm → Zqm by
τi(k) = ψ′−1(Biψ

′(k)), where Bi = (ψ(bi,1), . . . , ψ(bi,m)))−1, and where the
bi,l constitute the chosen basis Bi.

Proposition 1. Let α ∈ F
s
qm . For the star discrepancy of the hyperplane net

Pα we have

D∗
qm(Pα) ≤ 1 −

(
1 −

1

qm

)s
+ 2Rq(α) ≤

s

qm
+ 2Rq(α), (4)

where
Rq(α) =

∑

k∈Zs
qm \{0}

Ps
j=1

αjϕ′(τj(kj ))=0

rq(k),

where for k = (k1, . . . , ks) ∈ Z
s
qm we write rq(k) = rq(k1) · · · rq(ks) and for

k ∈ Zqm ,

rq(k) =

{
1 if k = 0,
C
qr+1 if k = κ0 + κ1q + · · · + κrq

r, κr 6= 0.

Furthermore, C := 1 + max
1≤x<q

max
1≤y<q

∣∣∣
∑y−1

a=0

∏r
i=1 exp

(
2πi (πi◦η)(x)(πi◦η)(a)

p

)∣∣∣.
(Note that C = C(q) ≤ q.)

Proof. This result follows from [5, Theorem 1] in combination with [18, Corol-
lary 2.12]. ⊓⊔

For the weighted star discrepancy D∗
N,γ of a point set P of N points in

[0, 1)s we find from the definition (or see [3]) that

D∗
N,γ(P) ≤

∑

∅6=u⊆D

γuD
∗
N (P(u)),

where P(u) denotes the projection of the point set P to the coordinates given
by u. If we consider the hyperplane net Pα, α ∈ F

s
qm , then (4) yields

D∗
qm(Pα(u)) ≤ 1 −

(
1 −

1

qm

)|u|

+ 2Rq(αu)

for u 6= ∅, where αu = (αj)j∈u ∈ F
|u|
qm . Hence for the weighted star discrepancy

of the hyperplane net Pα, α ∈ F
s
qm , we get
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D∗
qm,γ(Pα) ≤ Γs,qm,γ + 2R̃q,γ(α), (5)

where

Γs,qm,γ :=
∑

∅6=u⊆D

γu

(
1 −

(
1 −

1

qm

)|u|
)

and R̃q,γ(α) :=
∑

∅6=u⊆D

γuRq(αu).

Remark 2. It was proven by Joe [7] that if the sequence of weights (γi)i≥1

satisfies
∑∞
i=1 γi <∞, then, with Λ :=

∑∞
i=1

γi

1+γi
, we have

Γs,qm,γ ≤
max(1, Λ)e

P∞
i=1 γi

qm
for all m, s ≥ 1.

In the following proposition we obtain a formula for R̃q,γ(α).

Proposition 2. We have

R̃q,γ(α) =
∑

k∈Zs
qm \{0}

Ps
j=1

αjϕ′(τj (kj ))=0

r̃q(k,γ),

where for k = (k1, . . . , ks) ∈ Z
s
qm we write r̃q(k,γ) = r̃q(k1, γ1) · · · r̃q(ks, γs)

and for k ∈ Zqm ,

r̃q(k, γ) =

{
1 + γ if k = 0,
γrq(k) if k 6= 0.

Proof. The proof of this result is nearly the same as that of [2, Proposition
3.2]. ⊓⊔

Proposition 2 shows that Rq and R̃q,γ only differ by the definitions of rq
and r̃q. For this reason we will provide the proofs of the forthcoming results
only for the unweighted case. The proofs for the weighted case apply accord-
ingly. In the Appendix (Proposition 3) it is shown how for α ∈ F

s
qm one can

compute Rq(α) and R̃q,γ(α) at a cost of O(sqm) operations.

3 The Results

First we determine the average value of Rq(α) resp. R̃q,γ(α) over all possible
α ∈ (F∗

qm)s. We denote cq := C q−1
q

≤ q − 1 where C is as in Proposition 1.

Theorem 1. We have

1

|F∗
qm |s

∑

α∈(F∗
qm )s

Rq(α) =
1

qm − 1
((1 +mcq)

s − 1 − smcq)

and

1

|F∗
qm |s

∑

α∈(F∗
qm )s

R̃q,γ(α) =
1

qm − 1

∑

u⊆D
|u|≥2

∏

i∈u

(γimcq)
∏

i6∈u

(1 + γi) .
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Proof. First observe that |F∗
qm | = qm − 1. We have

1

|F∗
qm |s

∑

α∈(F∗
qm )s

Rq(α) =
1

(qm − 1)s

∑

α∈(F∗
qm )s

∑

k∈Zs
qm \{0}

Ps
j=1

αjϕ′(τj (kj ))=0

rq(k)

=
1

(qm − 1)s

∑

k∈Z
s
qm\{0}

rq(k)
∑

α∈(F∗
qm )s

Ps
j=1

αjϕ′(τj (kj ))=0

1,

where we inserted for Rq(α) and changed the order of summation. Note that
the τj ’s are permutations and that τj(k) = 0 if and only if k = 0.

If k ∈ Z
s
qm \ {0} is of the form k = (0, . . . , 0, ki, 0, . . . , 0) with ki 6= 0,

then there is no α ∈ (F∗
qm)s such that α1ϕ

′(τ1(k1)) + · · · + αsϕ
′(τs(ks)) =

αiϕ
′(τi(ki)) = 0, since Fqm is an integral domain. Otherwise, the number of

α ∈ (F∗
qm)s which satisfy α1ϕ

′(τ1(k1)) + · · · + αsϕ
′(τs(ks)) = 0 is exactly

(qm − 1)s−1. Therefore we have (note that rq(0) = 1)

1

|F∗
qm |s

∑

α∈(F∗
qm )s

Rq(α) =
1

qm − 1




∑

k∈Z
s
qm\{0}

rq(k) −
s∑

i=1

∑

ki∈Z
∗
qm

rq(ki)


 .

Now the result follows from

qm−1∑

k=0

rq(k) = 1 +mcq (6)

which is easily verified. ⊓⊔

The following consequence of Theorem 1 gives an improvement of [16,
Corollary 2].

Corollary 1. Let 0 ≤ ε < 1. Then there are more than ε|F∗
qm |s vectors α ∈

(F∗
qm)s such that

D∗
qm(Pα) ≤

s

qm
+

2

(1 − ε)(qm − 1)
(1 +mcq)

s

resp.

D∗
γ,qm(Pα) ≤ Γs,qm,γ +

2

(1 − ε)(qm − 1)

s∏

i=1

(1 + γi (1 +mcq)) .

Proof. Let δ > 0, then we obtain from Theorem 1,

1

qm − 1
(1 +mcq)

s ≥
1

|F∗
qm |s

∑

α∈(F∗
qm )s

Rq(α)

>
δ

qm − 1
(1 +mcq)

s 1

|F∗
qm |s

∣∣∣∣
{

α ∈ (F∗
qm)s : Rq(α) >

δ

qm − 1
(1 +mcq)

s

}∣∣∣∣ .
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Hence
∣∣∣∣
{

α ∈ (F∗
qm)s : Rq(α) ≤

δ

qm − 1
(1 +mcq)

s

}∣∣∣∣ > |F∗
qm |s

(
1 −

1

δ

)
,

and the result follows from Proposition 1 by substituting δ = (1 − ε)−1. ⊓⊔

From the previous results it follows that there exists a sufficient large
amount of vectors α ∈ (F∗

qm)s which yield hyperplane nets of good quality
with respect to (weighted) star discrepancy. As for polynomial lattices (see
[1, 2]), such vectors can be found by computer search using a component-by-
component construction. We state the algorithm for the star- and the weighted
star discrepancy.

Algorithm 2 Given a prime-power q, a sequence of ordered bases (Bi)i≥1 of
Fqm over Fq (and a sequence γ = (γi)i≥1 of weights).

1. Choose α1 = 1, the one element in Fqm .
2. For d > 1, assume we have already constructed α1, . . . , αd−1. Then

find αd ∈ F
∗
qm which minimizes Rq(α1, . . . , αd−1, αd) (or alternatively

R̃q,γ(α1, . . . , αd−1, αd) in the weighted case) as a function of αd.

The cost of the algorithm is of O(s2q2m) operations. In the following theo-
rem we show that Algorithm 2 is guaranteed to find a good vector α ∈ (F∗

qm)s.

Theorem 3. Let q be prime-power, m ≥ 1 and γ = (γi)i≥1 be a sequence
of weights. Suppose α = (α1, . . . , αs) ∈ (F∗

qm)s is constructed according to

Algorithm 2 using Rq (resp. R̃q,γ). Then for all d = 1, 2, . . . , s we have

D∗
qm(Pα) ≤

s

qm
+

2

qm − 1
(1 +mcq)

s
,

resp.

D∗
qm,γ(Pα) ≤ Γs,qm,γ +

2

qm − 1

s∏

i=1

(1 + γi (1 +mcq)) .

Proof. By Proposition 1 it is enough to show that

Rq((α1, . . . , αd)) ≤
1

qm − 1
(1 +mcq)

d
for all d = 1, . . . , s. (7)

Since ϕ′(τ1(k)) = 0 if and only if k = 0 it follows that Rq(1) = 0 and (7)
is true for d = 1. Suppose now that for some 1 ≤ d < s we have already
constructed α = (α1, . . . , αd) ∈ (F∗

qm)d such that Rq(α) ≤ 1
qm−1 (1 +mcq)

d .
Then we have
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Rq((α, αd+1)) =
∑

(k,kd+1)∈Z
d+1
qm \{0}

Pd+1
j=1

αjϕ′(τj (kj ))=0

d+1∏

i=1

rq(ki)

=
∑

k∈Zd
qm \{0}

Pd
j=1

αjϕ′(τj(kj ))=0

d∏

i=1

rq(ki) + θ(αd+1) = Rq(α) + θ(αd+1),

where

θ(αd+1) =
∑

kd+1∈Z
∗
qm


rq(kd+1)

∑

k∈Zd
qm

Pd
j=1

αjϕ′(τj(kj ))=−αd+1ϕ′(τd+1(kd+1))

d∏

i=1

rq(ki)


 .

Since αd+1 is a minimizer of Rq((α, ·)) it follows that αd+1 is also a mini-
mizer of θ(·) and hence we obtain

θ(αd+1) ≤
1

qm − 1

∑

z∈F
∗
qm

θ(z)

=
1

qm − 1

∑

z∈F
∗
qm

∑

kd+1∈Z
∗
qm

rq(kd+1)
∑

k∈Zd
qm

Pd
j=1

αjϕ′(τj (kj ))=−zϕ′(τd+1(kd+1))

d∏

i=1

rq(ki)

=
1

qm − 1

∑

kd+1∈Z
∗
qm

rq(kd+1)
∑

k∈Z
d
qm

d∏

i=1

rq(ki)
∑

z∈F∗
qm

zϕ′(τd+1(kd+1))=−
Pd

j=1
αjϕ′(τj (kj ))

1.

The equation zϕ′(τd+1(kd+1)) = −(α1ϕ
′(τ1(k1)) + · · · + αdϕ

′(τd(kd))) has
exactly one solution z ∈ F

∗
qm if α1ϕ

′(τ1(k1)) + · · · + αdϕ
′(τd(kd)) 6= 0 and no

solution if α1ϕ
′(τ1(k1)) + · · · + αdϕ

′(τd(kd)) = 0. Therefore we obtain

θ(αd+1) ≤
1

qm − 1

∑

kd+1∈Z
∗
qm

rq(kd+1)
∑

k∈Z
d
qm

d∏

i=1

rq(ki)

=
1

qm − 1
(1 +mcq)

d
∑

kd+1∈Z
∗
qm

rq(kd+1).

Now we obtain

Rq((α, αd+1)) ≤ Rq(α) +
1

qm − 1
(1 +mcq)

d
∑

kd+1∈Z
∗
qm

rq(kd+1)

≤
1

qm − 1
(1 +mcq)

d
∑

kd+1∈Zqm

rq(kd+1) =
1

qm − 1
(1 +mcq)

d+1
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where we have used Eq. (6). Now (7) follows by induction on d. ⊓⊔

The following result follows from Theorem 3 and can be proved in the
same way as [3, Corollary 8].

Corollary 2. Let q be a prime-power, s ≥ 2, m ≥ 1 and γ = (γi)i≥1 be a
sequence of weights. If

∑∞
i=1 γi <∞, then for any δ > 0 there exists a c̃q,γ,δ >

0, independent of s and m, such that the weighted star discrepancy of the
hyperplane net Pα where α ∈ (F∗

qm)s is constructed according to Algorithm 2

using R̃q,γ satisfies

D∗
qm,γ(Pα) ≤

c̃q,γ,δ
qm(1−δ)

. (8)

Let N ∈ N have q-adic expansion N = ν1q
m1 + · · · + νrq

mr with digits
1 ≤ νi < q for 1 ≤ i ≤ r. For each 1 ≤ i ≤ r construct a vector αi ∈ F

s
qmi

according to Algorithm 2 and let PN,s be the superposition of νi copies of
the hyperplane net Pαi

for all 1 ≤ i ≤ r. Hence PN,s contains N elements in
[0, 1)s. We point out that for any N, s the point set PN,s can be constructed
explicitly. Using Corollary 2 and the same arguments as used in the proof of
[6, Theorem 3] we obtain the following result.

Corollary 3. Let N, s ∈ N and assume that
∑∞
i=1 γi < ∞. Then for the

weighted star discrepancy of the point set PN,s ⊆ [0, 1)s of cardinality N
constructed above, for any δ > 0 we have

D∗
N,γ(PN,s) ≤

Cq,δ,γ
N1−δ

,

where Cq,δ,γ > 0 is independent of s and N . Hence the weighted star discrep-
ancy of PN,s achieves a strongly tractability bound with ε-exponent equal to
1.

Obviously we can restrict the search space for α ∈ (F∗
qm)s when we search

for cyclic nets only. The subsequent theorem, which improves the second part
of [16, Corollary 2], shows that there is a sufficient large amount of good α’s in
Fqm . The cost of a full search for the best α ∈ Fqm is of O(sq2m) operations.

Theorem 4. Let q be a prime-power, s ≥ 2, m ≥ 1 and γ = (γi)i≥1 be
a sequence of weights. For 0 ≤ ε < 1 there are more than ε|F∗

qm | elements
α ∈ F

∗
qm such that

D∗
qm(Pα(s)) ≤

s

qm
+

2(s− 1)

(1 − ε)(qm − 1)
(1 +mcq)

s
,

resp.

D∗
qm,γ(Pα(s)) ≤ Γs,qm,γ +

2(s− 1)

(1 − ε)(qm − 1)

s∏

i=1

(1 + γi (1 +mcq)) .
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Proof. We have

1

qm − 1

∑

α∈F
∗
qm

Rq(α
(s)) =

1

qm − 1

∑

z∈F
∗
qm

∑

k∈Zs
qm \{0}

Ps
j=1

zj−1ϕ′(τj (kj ))=0

s∏

i=1

rq(ki)

=
1

qm − 1

∑

k∈Z
s
qm\{0}

s∏

i=1

rq(ki)
∑

z∈F∗
qm

Ps
j=1

zj−1ϕ′(τj (kj ))=0

1.

As the polynomial
∑s
j=1 z

j−1ϕ′(τj(kj)) over the finite field Fqm of degree at
most s− 1 has at most s− 1 zeros z ∈ F

∗
qm we obtain

1

qm − 1

∑

α∈F
∗
qm

Rq(α
(s)) ≤

s− 1

qm − 1

∑

k∈Z
s
qm

s∏

i=1

rq(ki) =
s− 1

qm − 1
(1 +mcq)

s. (9)

For the rest of the proof one just has to follow the proof of Corollary 1. ⊓⊔

There even exists an α such that Pα(s) is of low star discrepancy for arbi-
trary dimensions s ≥ 1. One says that Pα(s) is extensible in the dimension s.
In the special case of polynomial lattices this was shown by Niederreiter [12,
Theorem 9].

Corollary 4. Let q be a prime-power, m ≥ 1, (Bi)i≥1 a sequence of ordered
bases of Fqm over Fq and γ = (γi)i≥1 be a sequence of weights. Then for
c >

∑∞
s=1

1
s(log(s+1))2 there exists an element α ∈ F

∗
qm such that for all s ≥ 1

we have

D∗
qm(Pα(s)) ≤

s

qm
+

2cs(s− 1)(log(s+ 1))2

qm − 1
(1 +mcq)

s

resp.

D∗
qm,γ(Pα(s)) ≤ Γs,qm,γ +

2cs(s− 1)(log(s+ 1))2

qm − 1

s∏

i=1

(1 + γi (1 +mcq)) .

In fact, in both cases for arbitrary small ε > 0 we can get at least (1−ε)(qm−1)
such elements α by choosing c > 0 large enough.

Proof. The proof uses arguments from [12]. Let

Es :=

{
α ∈ F

∗
qm : Rq(α

(s)) >
cs(s− 1)(log(s+ 1))2

qm − 1
(1 +mcq)

s

}

where the constant c > 0 is chosen such that c >
∑∞

s=1
1

s(log(s+1))2 . Using (9)

we obtain for any s ≥ 1,
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(s− 1)(1 +mcq)
s ≥

∑

α∈F
∗
qm

Rq(α
(s)) ≥ |Es|

cs(s− 1)(log(s+ 1))2

qm − 1
(1 +mcq)

s

and hence |Es| ≤
qm−1

cs(log(s+1))2 . For E :=
⋃
s≥1Es we hence obtain

|E| ≤
∞∑

s=1

|Es| ≤
qm − 1

c

∞∑

s=1

1

s(log(s+ 1))2
< qm − 1 = |F∗

qm |.

Especially, there exists an element α ∈ F
∗
qm \ E and for this element we have

Rq(α
(s)) ≤

cs(s− 1)(log(s+ 1))2

qm − 1
(1 +mcq)

s for all s ≥ 1.

Now the result follows from Proposition 1. ⊓⊔

Appendix: Calculation of Rq and R̃q,γ

We will give an explicit form of the quantities Rq and R̃q,γ which can be
computed efficiently. For this computation we will employ Walsh function
which we briefly recall in the following (notations are defined as in Section 2).

Definition 3 (Walsh functions). Let q = pr with a prime p and a positive
integer r, let k ∈ N0 with base q representation k = κ0+κ1q+ · · ·+κm−1q

m−1

where κl ∈ Zq and let x ∈ [0, 1) with base q representation x = x1/q+x2/q
2+

· · · . Then the k-th Walsh function over the finite field Fq with respect to the
bijection ϕ is defined by

Fq,ϕwalk(x) :=

m−1∏

l=0

r∏

i=1

exp

(
2πi

(πi ◦ η)(κl)(πi ◦ η)(xl)

p

)
.

For convenience we will in the rest of the paper omit the subscript and simply
write walk if there is no ambiguity.

Multivariate Walsh functions are defined by multiplication of the univari-
ate components, i.e., for x = (x1, . . . , xs) ∈ [0, 1)s, k = (k1, . . . , ks) ∈ N

s
0

where s > 1, we set

walk(x) =

s∏

j=1

walkj
(xj).

Specifically we will need the following lemma that gives an important
indicator function.

Lemma 1. Let α ∈ F
s
qm and let Pα be the hyperplane net associated to α.

Then for any k ∈ Z
s
qm we have

1

qm

∑

x∈Pα

walk(x) =

{
1 if α1ϕ

′(τ1(k1)) + · · · + αsϕ
′(τs(ks)) = 0,

0 else.
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For a proof of this result see [18, Corollary 2.12].

Proposition 3. Let α ∈ (F∗
qm)s and let Pα be the associated hyperplane net.

Then for the quantities Rq(α) and R̃q,γ(α) we get the formulas

Rq(α) = −1 +
1

qm

∑

x∈Pα

s∏

i=1

(
1 + C

(
q − 1

q
m0(xi) − 1

))
,

R̃q,γ(α) = −
s∏

i=1

(1 + γi) +
1

qm

∑

x∈Pα

s∏

i=1

(
1 + γi + γiC

(
q − 1

q
m0(xi) − 1

))
,

with C as in the definition of rq in Proposition 1 and for x ∈ q−mZqm \ {0},
m0(x) := max{l ≤ m : x < q−(l−1)} = ⌈− logq x⌉ and m0(0) := m+q/(q−1).

Hence Rq(α) and R̃q,γ(α) can be computed at a cost of O(sqm) operations.

Proof. We set λ(k) := α1ϕ
′(τ1(k1))+ · · ·+αsϕ

′(τs(ks)). By definition we have

1 +Rq(α) =
∑

k∈Z
s
qm ,λ(k)=0

s∏

i=1

rq(ki).

Using Lemma 1 we can let the sum range over all k ∈ Z
s
qm . We get

1 +Rq(α) =
∑

k∈Zqm

1

qm

∑

x∈Pα

walk(x)

s∏

i=1

rq(ki)

=
1

qm

∑

x∈Pα

∑

k∈Z
s
qm

s∏

i=1

rq(ki)walki
(xi)

=
1

qm

∑

x∈Pα

s∏

i=1


1 +

∑

k∈Zqm\{0}

rq(k)walk(xi)


 . (10)

Since rq(k) depends only on the “digit length” of k we get for x ∈ [0, 1), by
[9, Lemma 4] (note that it is enough to consider x ∈ q−mZqm only)

∑

k∈Zqm\{0}

rq(k)walk(x) =

m∑

l=1

C

ql

ql−1∑

k=ql−1

walk(x)

=

m∑

l=1

C

ql
ql−1 ×





q − 1 if x < q−l,

−1 if q−l ≤ x < q−(l−1),
0 else,

=
C

q

(
(q − 1)

(
m0(x) − 1

)
− 1
)
,

where for x ∈ q−mZqm the quantity m0(x) is defined in Proposition 3. Insert-
ing the formula into (10) gives the claimed result for Rq(α).

The derivation of the weighted case from the unweighted one can be carried
out as in [2]. ⊓⊔
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