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Extensible (polynomial) lattice point sets have the property that
the number N of points in the node set of a quasi-Monte
Carlo algorithm may be increased while retaining the existing
points. Explicit constructions for extensible (polynomial) lattice
point sets have been presented recently by Niederreiter and
Pillichshammer. It is the aim of this paper to establish extensibility
for a powerful generalization of polynomial lattice point sets, the
so-called hyperplane nets.
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1. Introduction

In the field of quasi-Monte Carlo methods, digital nets have been established as a group of point
sets with particularly favorable properties such as a low-discrepancy bound of the best possible
asymptotic order. Furthermore, methods of algebraic geometry proved fruitful in achieving even opti-
mality in the constant (with respect to the asymptotic order in the dimension) amongst all currently
known constructions. However, for practice it may be more favorable to look for simpler constructions
which are easier to implement (efficiently) while still performing well under the discrepancy criterion
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or the worst-case integration error criterion. Lattice point sets (see [14,27]) and polynomial lattice
point sets (see [6,13,14]) are well-known examples of this. Although they can and have been intro-
duced independently of net theory, they are also special cases of digital (t,m, s)-nets. A convenient
feature of (polynomial) lattice point sets is their ability to extend the cardinality of a given point set
in a very natural way, which is called ‘extensibility’ (see [3,6–10,15,20]). It is the aim of this paper to
establish extensibility for a powerful generalization of polynomial lattice rules, the hyperplane nets.
In doing so we will also provide a generalization of extensible polynomial lattice rules in that we
allow for steps using variable and reducible polynomials instead of having only one fixed, irreducible
polynomial.

The paper is organized as follows: in the next section we present the definition of hyperplane nets
and we introduce the quality criterion – the worst-case integration error in a certain function space
of Walsh-series – with respect to which we want to optimize the hyperplane nets. In Section 3 we
state the construction algorithm for hyperplane nets and show that the constructed hyperplane nets
are in fact extensible and ‘good’ with respect to our quality criterion. In Section 4 we state some pure
existence results for extensible hyperplane nets of ‘good’ quality with respect to the worst-case error
criterion or the (weighted) star discrepancy. In Section 5 we provide some numerical results and a
discussion thereof.

2. Definitions

2.1. Hyperplane nets

Good constructions of finite point sets for quasi-Monte Carlo algorithms are based on the concept
of (t,m, s)-nets in base q which were developed by Niederreiter [12] (for basic reference see also
[6,14,17]).

Definition 1 ((t,m, s)-nets in base q). Let q � 2,m, s � 1 be integers. A multiset of qm points in the
s-dimensional unit cube [0,1)s is called a (t,m, s)-net in base q if every interval of the form

s∏
i=1

[
ai

qdi
,

ai + 1

qdi

)
⊆ [0,1)s, ai,di ∈ N0,

s∑
i=1

di = m − t,

contains bt points (i.e., it contains the exact proportion of points according to its volume).

A (t,m, s)-net is well distributed if the quality parameter t is ‘small’. Explicit constructions of
(t,m, s)-nets are based on the digital construction scheme (see again [6,12,14,17]) which we recall in
the following.

Throughout the paper let q be a prime-power and let Fq be the finite field of q elements. For a
positive integer r let Zr = {0, . . . , r −1}. Let ϕ1 : Zq → Fq be a fixed bijection with ϕ1(0) = 0. The map
ϕ1 is extended to a map ϕ : Zqm → F

m
q by setting

ϕ(k) := (
ϕ1(κ0), . . . ,ϕ1(κm−1)

)�
(1)

for k = κ0 + κ1q + · · · + κm−1qm−1 with κ0, . . . , κm−1 ∈ Zq . Here x� means the transpose of the vec-
tor x. (Later, the symbol � is used not only for row vectors but also for any matrix. Hence in general,
A� means the transpose of a matrix A.)

Definition 2 (Digital (t,m, s)-nets). Let s � 1 and m � 1 be integers. Let C1, . . . , Cs be m × m matrices
over Fq . Now we construct qm points in [0,1)s: For 1 � i � s and for k ∈ Zqm multiply the matrix Ci
by the vector ϕ(k), i.e.,

Ciϕ(k) =: (yi,1(k), . . . , yi,m(k)
)� ∈ F

m
q ,
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and set

xk,i := ϕ−1
1 (yi,1(k))

q
+ · · · + ϕ−1

1 (yi,m(k))

qm
.

If for some integer t with 0 � t � m the point set consisting of the points

xk = (xk,1, . . . , xk,s)
� for k ∈ Zqm ,

is a (t,m, s)-net in base q, then it is called a digital (t,m, s)-net over Fq , or, in brief, a digital net
(over Fq). The Ci are called its generator matrices.

Many constructions of digital nets are inspired by a close connection between coding theory
and the theory of digital nets (see, for example, Niederreiter [16,18]). Examples are the so-called
(u, u + v)-construction (see [2,21]), the matrix-product construction (see [19]) and the Kronecker-
product construction (see [2,22]). Here we deal with a construction for digital nets which is an analog
to a special type of codes, namely to cyclic codes which are well known in coding theory. This con-
struction has been introduced by Niederreiter in [16] who used the fact that cyclic codes can be
defined by prescribing roots of polynomials. Later this construction has been generalized by Pirsic,
Dick and Pillichshammer [26] to so-called hyperplane nets, whose definition will be given now.

Definition 3 (Hyperplane nets). Let integers m � 1, s � 2 and a prime-power q be given. Let Fqm be a
finite field with qm elements and fix an element α = (α1, . . . ,αs)

� ∈ F
s
qm \ {0}. Let F be the space of

linear forms

F := {
f (x1, . . . , xs) = x1γ1 + · · · + xsγs: γ1, . . . , γs ∈ Fqm

} ⊆ Fqm [x1, . . . , xs]

and consider the subset

Fα := {
f ∈ F : f (α1, . . . ,αs) = 0

}
.

For each 1 � i � s choose an ordered basis Bi of Fqm over Fq and define the mapping θ : F → F
ms
q by

f (x) =
s∑

i=1

γi xi ∈ F �→ (γ1,1, . . . , γ1,m, . . . , γs,1, . . . , γs,m)� ∈ F
ms
q ,

where (γi,1, . . . , γi,m)� is the coordinate vector of γi with respect to the chosen basis Bi .
We denote by Cα the orthogonal subspace in F

ms
q of the image Nα := θ(Fα). Let

Cα = (
C�

1 · · · C�
s

) ∈ F
m×sm
q

be a matrix whose row space is Cα . Then we call the digital net with the generating matrices
C1, . . . , Cs a hyperplane net over Fq with respect to B1, . . . , Bs and Cα is its overall generating matrix.
This hyperplane net will be denoted by Pα and we say Pα is the hyperplane net associated with α.

Remark 1. In Definition 3 above, if α ∈ F
s
qm is of the special form α = (1,α,α2, . . . ,αs−1)� with some

α ∈ Fqm , then we obtain a cyclic digital net as introduced initially by Niederreiter [16].
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Remark 2. Another construction of digital nets goes by the name of polynomial lattices which have
been introduced by Niederreiter [13] (see also [6,14]). It has been shown by Pirsic [25] that polyno-
mial lattices appear as special cases of hyperplane nets when we choose the ordered bases B1, . . . , Bs

all equal to {1,ω, . . . ,ωm−1} if Fqm = Fq[ω].
Further examples in [25] show that the introduction of different bases significantly enhances the

range of generator matrices that are constructable by this method in comparison to polynomial lat-
tices. Sometimes it is therefore even suggested to use primarily basis sets from certain subclasses,
e.g., constant bases Bi = B1 or bases with a triangular structure.

We shall from now on assume a fixed choice of bases B1, . . . , Bs and will therefore not explicitly
mention them anymore.

For more information on cyclic nets and hyperplane nets we refer to [6, Chapter 11].

2.2. The quality criterion

Our aim is to construct a sequence of αn ∈ F
s
qmn such that Pαn ⊆ Pαn+1 and such that all Pαn are

of ‘good quality’. Following [20] we use the worst-case error for quasi-Monte Carlo integration in a
weighted Hilbert space of functions as quality criterion. This Hilbert space of functions is based on
Walsh functions.

Definition 4 (Walsh functions). Let q = pr , p prime, r ∈ N0 and let Fq and Zq with ring operations
modulo q and ϕ1 be defined as in the first lines of Section 2.1. Moreover denote by ψ the isomor-
phism of additive groups ψ : Fq → Z

r
p and define η := ψ ◦ϕ1. For 1 � i � r denote by πi the projection

πi : Z
r
p → Zp , πi(x1, . . . , xr) = xi .

Zq
ϕ1

η

Fq

ψ

Z
r
p

πi
Zp

Let now k ∈ N0 with base q representation k = κ1 +κ2q+· · ·+κmqm−1 where κl ∈ Zq and let x ∈ [0,1)

with base q representation x = x1q−1 + x2q−2 + · · · . Then the kth Walsh function over the finite field
Fq with respect to the bijection ϕ1 is defined by

Fq,ϕ1 walk(x) :=
m∏

l=1

r∏
i=1

exp

(
2πi

(πi ◦ η)(κl)(πi ◦ η)(xl)

p

)
.

For convenience we will in the rest of the paper omit the subscript and simply write walk .
Multivariate Walsh functions are defined by multiplication of the univariate components, i.e., for

x = (x(1), . . . , x(s)) ∈ [0,1)s , k = (k1, . . . ,ks) ∈ N
s
0, s > 1, we set

walk(x) =
s∏

j=1

walk j

(
x( j)).

It is well known that for any integer s � 1 the system {walk: k ∈ N
s
0} is a complete orthonormal

system in L2([0,1]s). For a proof and further details see [6, Appendix A].
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In the following we define the weighted Hilbert function space Hwal,s,β,γ in base q which is
based on Walsh functions. For prime bases q this Hilbert function space has been introduced in
[5, Section 2.2]. First we consider the one-dimensional case. The s-dimensional space will then be
defined as the tensor product of those one-dimensional spaces.

For k ∈ N0 for γ > 0 and for β > 1 we define

rk,γ =
{

1 if k = 0,

γ q−β	logq k
 if k ∈ N.

Note that rk,γ also depends on q and β . But as we consider these parameters as fixed we do not
mention them explicitly.

We define the inner product of two functions F and G as

〈F , G〉wal,γ :=
∞∑

k=0

r−1
k,γ F̂wal(k) Ĝwal(k),

where F̂wal(k) = ∫ 1
0 F (x) walk(x) dx. The norm is given by ‖F‖wal,γ := 〈F , F 〉1/2

wal,γ . Then the weighted
Hilbert space Hwal,β,γ consists of all functions with finite norm, that is,

Hwal,β,γ := {
F ∈ L2

([0,1]): ‖F‖wal,γ < ∞}
.

As in [5, Section 2.2] for the prime base case it can be shown that the function Kwal,γ defined by

Kwal,γ (x, y) :=
∞∑

k=0

rk,γ walk(x) walk(y)

is the reproducing kernel of Hwal,β,γ . (We refer to [1] for more information on reproducing kernel
Hilbert spaces.)

We now turn to the s-dimensional case. For a sequence of non-increasing weights γ = (γ1, . . . , γs),
γ j > 0, we define the s-dimensional weighted Hilbert space Hwal,s,β,γ as a tensor product space, that
is,

Hwal,s,β,γ = Hwal,β,γ1 ⊗ · · · ⊗ Hwal,β,γs .

Let k ∈ N
s
0, x, y ∈ [0,1]s , with components denoted by k j , x j , y j , respectively. The space Hwal,s,β,γ is

again a reproducing kernel Hilbert space with reproducing kernel given by

Kwal,s,γ (x, y) =
s∏

j=1

Kwal,γ j (x j, y j)

=
s∏

j=1

∞∑
k j=0

rk j,γ j walk j (x j) walk j (y j)

=
∑

k∈N
s
0

rk,γ walk(x) walk(y),

where rk,γ = ∏s
j=1 rk j ,γ j and the inner product is given by
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〈F , G〉wal,s,γ =
∑

k∈N
s
0

r−1
k,γ F̂wal(k) Ĝwal(k),

and F̂wal(k) := ∫
[0,1]s F (x)walk(x)dx.

We are interested in approximating the integrals of functions F from Hwal,s,β,γ ,

Is(F ) =
∫

[0,1]s

F (x)dx.

Multivariate integration in the space Hwal,s,β,γ in the special case that q is a prime has been consid-
ered in many papers as, for example, [4–6,11].

Here we approximate the integral Is(F ) by so-called quasi-Monte Carlo (QMC) algorithms. A QMC
algorithm is an equal weight quadrature rule of the form

Q N,s(F ) = 1

N

N−1∑
n=0

F (xn) (2)

with deterministic sample points x0, . . . , xN−1 ∈ [0,1)s .
We define the worst-case error for integration in the space Hwal,s,β,γ by

eN,s := sup
F∈Hwal,s,β,γ ,‖F‖wal,s,γ �1

∣∣Is(F ) − Q N,s(F )
∣∣.

If {x0, . . . , xqm−1}, where xn = (xn,1, . . . , xn,s), is a digital net over Fq generated by the matrices
C1, . . . , Cs ∈ F

m×m
q , then it can be shown as for the prime base case in [5, Theorem 2] that

e2
qm,s =

∑
k∈D

rk,γ = −1 + 1

qm

qm−1∑
n=0

s∏
i=1

(
1 + γiρwal,β(xn,i)

)
, (3)

where D is the so-called dual net defined as

D := {
k = (k1, . . . ,ks) ∈ N

s
0 \ {0}: C�

1 k1 + · · · + C�
s ks = 0

}
.

Here for k ∈ N0 with q-adic expansion k = κ0 + κ1q + · · · we write k := (ϕ1(κ0),ϕ1(κ1), . . . ,

ϕ1(κm−1))
� . Furthermore, ρwal,β (0) := μq(β) and for x = ξi0 q−i0 + ξi0+1q−i0−1 + · · · , i0 ∈ N, with

ξi ∈ {0, . . . ,q − 1} for i � i0 and ξi0 �= 0 we have

ρwal,β(x) = μq(β) − q(i0−1)(1−β)
(
μq(β) + 1

)
,

where μq(β) := qβ (q−1)

qβ−q
. In particular, the worst-case error e2

qm,s can be computed with a cost of

O (sqm) operations. We exploit this fact for a computer search algorithm of extensible hyperplane
nets (see Algorithm 1).

Let α ∈ (Fq[x]/( f (x)))s where deg f = m. Further let the matrices Bi (i = 1, . . . , s) be the transfor-
mation matrices from the bases Bi to the basis {1,ω,ω2, . . . ,ωm−1}, where ω is the residue class of
x in Fq[x]/( f (x)). I.e., if Bi = {bi,1, . . . ,bi,s} and bi, j = ∑m

k=1 bi, j,kω
k−1, then Bi = (bi, j,k)

�
j,k=1,...,m .

A combination of (3) with [24, Lemma 1] shows that the squared worst-case error of integration
in Hwal,s,β,γ using a hyperplane net Pα (with bases Bi) is given by
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e2
qm,s(α) =

∑
k∈N ′

α

rk,γ ,

where

N ′
α =

{
k ∈ N

s
0 \ {0}: α · ϕ′(τ (k)

) =
s∑

i=1

α(i)ϕ′(τi(ki)
) ≡ 0 (mod f )

}
,

with τ (k) = (τ1(k1), . . . , τs(ks)) and permutations τi(k) := ϕ−1(Biϕ(k)). The bijection ϕ′ will in this
context be considered as going from N0 to Fq[x] by mapping q-adic digits to polynomial coefficients:

ϕ′
( ∞∑

i=0

κiq
i

)
:=

∞∑
i=0

ϕ1(κi)xi,

where the bijection ϕ1 : Zq → Fq is arbitrary, just ϕ1(0) = 0 is required. Note that in the definition of
N ′

α the application of mod f implicitly effects a truncation of the ki in the argument to the deg f
least significant q-adic digits.

Choosing the bases such that all their transformation matrices are upper triangular allows us to
disregard the permutations τi : we get

e2
qm,s(α) =

∑
k∈N ′

α

rk,γ =
∑

k∈Nα

rτ−1(k),γ ,

where

Nα = {
k ∈ N

s
0 \ {0}: α · ϕ′(k) ≡ 0 (mod f )

}
,

with ϕ′(k) = (ϕ′(k1), . . . , ϕ
′(ks)). Since τ−1

i (ki) = ϕ−1(B−1
i ϕ(ki)), we see that the q-adic length of

the ki , which equals the maximal index j such that the jth component of ϕ(ki) is nonzero, is not
changed if the Bi are upper triangular. The term 	logq ki
 in the formula for rk,γ expresses just this
length, i.e., rk,γ = rτ−1(k),γ . Thus

e2
qm,s(α) =

∑
k∈Nα

rk,γ .

This means we get exactly the same results for any choice of ‘upper triangular’ bases, especially for
Bi equalling the identity matrices. Hyperplane nets with these parameters are just polynomial lattice
point sets, except for ordering, which does not come into account here; see [6,25].

3. Construction of extensible hyperplane nets

We will now consider extensible hyperplane nets with changing extension steps, i.e., not just pow-
ers f (x)n . For polynomial lattice point sets over Fp , p a prime, changing extension steps have been
considered in [15].

Before we proceed to present and assess the algorithm in Theorem 1 we investigate what fur-
ther restrictions need to be imposed on the bases so that we indeed will get ‘extended’ nets, i.e.,
a sequence of subnets. We will do this in some small, easy lemmas which might be of independent
interest.

Let us denote by P (C) the digital (t,m,1)-net associated to a generator matrix C ∈ F
m×m
q . (The re-

striction to s = 1 is actually without limitation of generality and only for convenience’s sake.)
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Lemma 1. Let m1 < m2 , C1 ∈ F
m1×m1
q , C2 ∈ F

m2×m2
q , where C1 is regular. An inclusion P (C1) ⊆ P (C2) holds

iff there exists a regular matrix T such that C1 is the upper left submatrix of C2T , i.e., more exactly,

C2T =
(

C1 U
0 D

)
for some matrices U , D.

Proof. The ‘if ’ part is obvious. (Consider the first qm1 points of P (C2T ) and note that P (C2T ) is just
a reordering of P (C2).)

For the ‘only if ’ part, let c1, . . . , cm1 be the column vectors of C1. The inclusion P (C1) ⊆ P (C2)

implies there are vectors t1, . . . , tm1 such that C2ti = ι(ci), i = 1, . . . ,m1 (here ι : F
m1
q → F

m2
q is the

natural injection mapping into the first m1 coordinates). Since C1 is regular, the matrix (t1 · · · tm1 ) ∈
F

m2×m1
q is of full rank m1 and can be completed to a square regular matrix T ∈ F

m2×m2
q which then

fulfils the requirements. �
Remark 3. If the inclusion is only required to be up to truncation, i.e., if there is a subset of P (C2) that
equals P (C1) after truncating to m1 fractional q-adic digits, the lower left submatrix of C2T does not
need to be the zero matrix but can be arbitrary.

Lemma 2. Let m1 < m2 , C1 ∈ F
m1×m1
q , C2 ∈ F

m2×m2
q and let B1 ∈ F

m1×m1
q , B2 ∈ F

m2×m2
q be regular matrices

where B2 is of the form

B2 =
(

B1 U
L D

)
.

Then, if L = 0,

P(C1) ⊆ P(C2) iff P(B1C1) ⊆ P(B2C2).

If L �= 0 but U = 0, then the inclusions hold only up to truncation.

Proof. If P (C1) ⊆ P (C2), by Lemma 1 there exists a regular matrix T such that C1 is the upper left
submatrix of C2T .

First consider L = 0. Then, by the following calculation, the same matrix transforms the two pairs
of nets:

B2(C2T ) =
(

B1 U
0 D

)(
C1 U2
0 D2

)
=

(
B1C1 U3

0 D3

)
,

for some matrices Ui , Di . Similarly for U = 0,

B2(C2T ) =
(

B1 0
L D

)(
C1 U2
L2 D2

)
=

(
B1C1 U3

L3 D3

)
,

for some matrices Ui , Li , Di . �
Remark 4. In the higher-dimensional case we can take different B1,i , B2,i for each i = 1, . . . , s, i.e.,
there is no restriction to just one transformation matrix for all coordinates.

Corollary 1. Let f , g ∈ Fq[x] and let K1 := Fq[x]/( f ) and K2 := Fq[x]/( f g). Consider

α1 ∈ K1, α2 ∈ K2, such that α2 ≡ α1 (mod f ).
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Further choose bases B1 ⊆ K1 , B2 ⊆ K2 such that for their transformation matrices B1 , B2 we have

B2 =
(

B1 L
U D

)
,

with some matrices L, U , D, where at least one of L and U is a null matrix. Then the hyperplane net Pα1 with
basis B1 is a subset of the hyperplane net Pα2 with basis B2 . The inclusion is in the strict sense if L = 0 and
only up to truncation if L �= 0, U = 0.

Proof. First supposing that the B j are identity matrices we have by [25] that the corresponding hy-
perplane nets are (reordered) polynomial lattice rule point sets for which we know that the inclusion
relation holds. Also from [25] we know that in this case the generator matrices are of the form
Ψ1(α1)

�,Ψ2(α2)
� with appropriate maps Ψ1 : K1 → F

m1×m1
q ,Ψ2 : K2 → F

m2×m2
q , whereas if we in-

clude the bases in the construction, the matrices are (Ψ1(α1)B1)
�, (Ψ2(α2)B2)

� . Application of the
previous lemma leads to the result. �

From here on we are considering a special subclass of hyperplane nets, namely polynomial lattice
rules with the added generality of basis transformation matrices that are block diagonal with specific
upper triangular blocks. By the previous corollary we know that a stepwise extension of the generat-
ing and transformation matrices leads to an inclusion chain of nets. (Furthermore, for slightly more
general transformation matrices we still have a weaker inclusion chain, that holds up to truncation.)

As quality criterion we use the worst-case error of quasi-Monte Carlo integration in Hwal,s,β,γ . In
the notation we henceforth omit the sub-indices qm and s, i.e., we write simply e2(α). Algorithm 1 is
inspired by an idea of Korobov [10] for lattice point sets.

Algorithm 1 Construction of extensible hyperplane nets.
Require: Let fk ∈ Fq[x], k � 1, be a sequence of polynomials and set Fn := ∏n

k=1 fk and mn := deg Fn for n � 1. For each
i ∈ {1, . . . , s} and all n � 1 choose a basis Bn,i = {bn,i,1, . . . ,bn,1,mn } of the polynomial residue class ring Rn := Fq[x]/(Fn)

over Fq such that the transformation matrices between any Bn,i , Bn,i′ are upper triangular.
1: Find α1 by minimizing e2(α1) over all α1 ∈ Rs

1.
2: for n > 1 do
3: find αn := αn−1 + zFn−1 by minimizing e2(αn−1 + zFn−1) over all z ∈ Fq[x]s with deg zi < deg fn for all i ∈ {1, . . . , s}.
4: return αn

5: end for

Now we state and prove the main result of this paper:

Theorem 1. Let fk ∈ Fq[x], k � 1, be a sequence of polynomials and set Fn := ∏n
k=1 fk and mn := deg Fn for

n � 1. For each i ∈ {1, . . . , s} and all n � 1 choose a basis Bn,i = {bn,i,1, . . . ,bn,i,mn } of the polynomial residue
class ring Rn := Fq[x]/(Fn) over Fq such that bn,i, j = bn+1,i, j and the transformation matrices between any
Bn,i , Bn,i′ are upper triangular and block diagonal, with the blocks consisting of transformation matrices be-
tween Bn+1,i \ Bn,i , Bn+1,i′ \ Bn,i′ (i.e., the matrices have the appropriate form to apply Corollary 1).

Assume that αn is constructed according to Algorithm 1. Define μq(β) := qβ (q−1)

qβ−q
. Then we have

e2(α1) �
(

s∏
i=1

(
1 + γiμq(β)

) − 1

)
2

qdeg f1
,

e2(αn) � e2(α1)

( ∑
d|(Fn/ f1)

q−(β−1) deg d
)

qdeg f1

qdeg Fn

�
(

s∏
i=1

(
1 + γiμq(β)

) − 1

)( ∑
d|(F / f )

q−(β−1) deg d
)

2

qmn
.

n 1
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In the case of irreducible fi = f for all i, we can replace the second factor in the previous two lines (i.e., the
sum over all divisors of Fn/ f1) by

min
{
n,1 + (

q(β−1) deg f − 1
)−1}

,

which is less than n for β � 1 + logq(2)/deg f .

If α1 is chosen arbitrarily, the first inequality for e2(αn) still holds. For fi = f , Remarks 10 and 11 in [20]
apply analogously, i.e., the bounds hold with minor adaption if the algorithm is started with an arbitrary vector
and/or at a later iteration level n.

Proof. The theorem will be proven using an inequality recursion of e2(αn) in n. We start by deriving
an inhomogeneous recursion and will then step by step resolve it.

Let n � 2. We set Zn = { f ∈ Fq[x]: deg f < deg fn}s and Ñ
s = N

s
0 \ {0}. Define

Ak := {z ∈ Zn: k ∈ Nαn−1+Fn−1 z}
= {

z ∈ Zn: Fn−1ϕ
′(k) · z ≡ −ϕ′(k) · αn−1 (mod Fn)

}
.

Then we have

e2(αn) � 1

#Zn

∑
z∈Zn

e2(αn−1 + Fn−1z)

= 1

#Zn

∑
z∈Zn

∑
k∈Nαn−1+Fn−1 z

rk,γ

� 1

#Zn

∑
k∈Nαn−1

rk,γ #Ak,

since Nαn−1 ⊇ ⋃
z∈Zn

Nαn−1+Fn−1 z (note that in Nαn−1 the modulus is Fn−1 while in Nαn−1+Fn−1 z it
is Fn). For any k ∈ Nαn−1 , i.e., ϕ′(k) · αn−1 ≡ 0 (mod Fn−1), we can cancel Fn−1 and get

Ak = {
z ∈ Zn: ϕ′(k) · z ≡ −ϕ′(k) · αn−1/Fn−1 (mod fn)

}
.

The sets Ak are solution spaces of linear equation systems over Zn . Their size depends on k in the fol-
lowing way: if the GCD of fn and the coefficients ϕ′(k) on the left-hand side, call it d = gcd(ϕ′(k), fn),
does not divide the right-hand side, or put differently, if ϕ′(k) · αn−1 �≡ 0 (mod dFn−1) the system
has no solution and Ak is empty. Else, after cancelling the common factor d from the equation we
get a solution space of dimension s − 1 over the polynomial residue class ring Fq[x]/( fn/d), i.e.,
q(s−1)deg( fn/d) solutions which lift to #Ak = q(s−1)deg( fn/d)qs deg d = (qdeg d/qdeg fn )#Zn solutions z in Zn .

We partition those k ∈ Nαn−1 with nonempty solution spaces into distinct sets Mn−1,d associated
to the divisors of fn:

Nαn−1 ⊃
⋃
d| fn

Mn−1,d,

where

Mn−1,d := {
k ∈ Nαn−1 : gcd

(
ϕ′(k), fn

) = d, ϕ′(k) · αn−1 ≡ 0 (mod dFn−1)
}
.
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Another partition, but of the complete set Nαn−1 , associated to the divisors of fn is

Nαn−1 =
⋃
d| fn

M+
n−1,d,

where

M+
n−1,d := {

k ∈ Nαn−1 : gcd
(
ϕ′(k), fn

) = d
}
.

Clearly Mn−1,1 = M+
n−1,1 and Mn−1,d ⊆ M+

n−1,d ⊆ dNαn−1 . (Here in the term dNαn−1 and in the

following the action of d ∈ Zn on k ∈ Nαn−1 is understood to be (ϕ′)−1(dϕ′(k)).)
Then

e2(αn) � 1

qdeg fn

∑
d| fn

qdeg d
∑

k∈Mn−1,d

rk,γ

= 1

qdeg fn

(
e2(αn−1) +

∑
d| fn,d �=1

(
qdeg d

∑
k∈Mn−1,d

rk,γ −
∑

k∈M+
n−1,d

rk,γ

))

� 1

qdeg fn

(
e2(αn−1) +

∑
d| fn,d �=1

qdeg d
∑

k∈Mn−1,d

rk,γ

)
(4)

and this holds for all n � 2.
For the last sum in (4) we get

∑
k∈Mn−1,d

rk,γ �
∑

k∈dNαn−1

rk,γ =
∑

k∈Nαn−1

rdk,γ � 1

qβ deg d

∑
k∈Nαn−1

rk,γ = e2(αn−1)

qβ deg d
. (5)

So from (4) and (5) we get the inequality

e2(αn) � e2(αn−1)
1

qdeg fn

(
1 +

∑
d| fn,d �=1

1

q(β−1) deg d

)

� e2(α1)

n∏
k=2

1

qdeg fk

∑
d| fk

q−(β−1) deg d

= e2(α1)
qdeg f1

qdeg Fn

∑
d|(Fn/ f1)

q−(β−1) deg d. (6)

For the recursion start n = 1, we get the same estimate of the ‘initial error’ as in [20, Theorem 3].
We rewrite the derivation of the bound in our notation

e2(α1) � 1

qs deg f1

∑
z∈Z1

e2(z)

= 1

qs deg f1

∑
˜s

rk,γ #
{

z ∈ Z1: ϕ′(k) · z ≡ 0 (mod f1)
}

k∈N
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=
∑
k∈Ñ

s

ϕ′(k)≡0 (mod f1)

rk,γ + 1

qdeg f1

∑
k∈Ñ

s

ϕ′(k) �≡0 (mod f1)

rk,γ

=
(

1 − 1

qdeg f1

) ∑
k∈Ñs

r f1k,γ + 1

qdeg f1

∑
k∈Ñs

rk,γ

� 2

qdeg f1

∑
k∈Ñs

rk,γ

= 2

qdeg f1

(
s∏

i=1

(
1 + γiμq(β)

) − 1

)
, (7)

where μq(β) = qβ (q−1)

qβ−q
. This proves the theorem for f i nonconstant in i. For irreducible f i = f , i > 0,

proceeding analogously as in the proof of [20, Theorem 3], we can improve (6) to

e2(αn) � q−(n−1) deg f e2(α1) + q−β deg f e2(αn−1)

which, by the same calculations as there, leads to the stated result. �
Remark 5. Observe that in the case of fk nonconstant in k, we get the same bound for any refine-
ment or coarsening of the steps, i.e., regardless whether we take irreducible fk or some consecutive
products of the same sequence. Since the search space for composite fk is larger, an improvement
might have been expected, but unfortunately this does not show up with the methods used here.

Also, perhaps for a related reason, it does not seem possible to deduce an improvement for the
case of fk = f1 for all k, with composite f1.

4. Existence results

We can also give pure existence results similar to the one in [15] for polynomial lattices. Using
definitions and notation from [15], see also [6, Ch. 10.4], let the divisibility chain F be given by
(Fn)n�1, i.e., the cumulative products of the fk as we consider them in this paper. Furthermore let a
sequence of bases be given, such that the initial s terms of the sequence form an s-dimensional basis
of the same kind as for Theorem 1.

The existence results state that out of a parameter space that is infinite in m and s (this space is
in fact Fq[[x]]∞ , the space of sequences of formal power series over Fq) we can pick a nonempty but

arbitrarily small subspace (the size being expressed by a measure μ
(∞)
F ) such that for the hyperplane

nets constructed with α taken from outside of this exceptional subspace certain bounds hold.
Let λF be the measure induced by the map from Fq[[x]] to [0,1) defined by ϕ−1

1 and the map
x �→ q−1, and let U F denote the subset of power series whose reductions modulo any Fn are invertible
modulo Fn , i.e., U F = { f ∈ Fq[[x]], ∀n � 1: gcd( f mod Fn, Fn) = 1}. Then, assuming λF (U F ) > 0, we

define the measure μF on U F by restricting and normalizing: μF = (λF |U F )/λF (U F ). Finally, μ
(∞)
F is

the complete product measure on U∞
F induced by μF .

Corollary 2. Let F be a divisibility chain such that λF (U F ) > 0. Then for every ε > 0, there exists a μ
(∞)
F -

measurable set E ⊆ U∞
F ⊆ Fq[[x]]∞ such that for all α ∈ U∞

F \ E we have

e2(α(s)) � (2cεs(log(s + 1))1+εk(log(k + 1))1+ε)1/λ

qdeg(Fk)/λ

(
s∏(

1 + γ λ
i μq(λβ)

) − 1

)1/λ

,

i=1
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for all 1/β < λ � 1, all k ∈ N and s ∈ N, where α(s) is the projection to the first s coordinates and the constant
cε > 0 depends only on ε and a bound on the size of the exceptional set E (i.e., μ(∞)

F (E) can be made arbitrarily
small at the cost of larger cε).

Proof. Using Jensen’s inequality (i.e. (
∑

ak)
λ �

∑
aλ

k for any 0 < λ � 1) we obtain

e2λ
γ ,β(α) � e2

γ λ,λβ
(α),

where γ λ denotes the sequence γ λ
1 , γ λ

2 , . . . .
Let 1/β < λ � 1 (for this choice μb(λβ) is well defined). Averaging over all α = (α1, . . . ,αs) where

deg(αi) < deg(Fk) for 1 � i � s and using the same arguments as in (7) we obtain

1

qs deg Fk

∑
α

e2λ
γ ,β(α) � 1

qs deg Fk

∑
α

e2
γ λ,λβ

(α)

� 2

qdeg Fk

(
s∏

i=1

(
1 + γ λ

i μq(λβ)
) − 1

)
. (8)

For k, s ∈ N and c ∈ (0,1] define the set

Q(∞)

s,k (c) :=
{
α ∈ U∞

F : e2
γ ,β

(
α(s)) � (2c)1/λ

q(deg Fk)/λ

(
s∏

i=1

(
1 + γ λ

i μb(λβ)
) − 1

)1/λ}
.

From (8) and an application of Markov’s inequality, we obtain

μ
(∞)
F

(
Q(∞)

s,k (c)
)
> 1 − 1

c
,

and this holds for any 1/β < λ � 1.
In order to obtain an α ∈ U∞

F which works well for all choices of k, s ∈ N, we need to show that

the intersection
⋂

s,k∈N
Q(∞)

s,k (c) has measure greater than zero. This however follows with the same
arguments as used in [6, Proof of Theorem 10.41]. �
Remark 6. Similar as in [6, Remark 10.43] we observe that the cost for the existence of a parameter
that holds for all k, s ∈ N compared to fixed k and s (i.e., the bound in (8)) is a factor (s(log(s +
1))1+εk(log(k + 1))1+ε)1/λ .

In Theorem 1 we cannot immediately get a similar result with the same method using Jensen’s
inequality, since the minimization step may lead to different α for different choices of λ.

The quantities Rq(α) and R̃q,γ (α) defined in [23] are of a very similar nature to the worst-case
error e2(α). They are related to the star discrepancy and weighted star discrepancy, i.e., we have for
the hyperplane net Pα , with α ∈ (F∗

qm )s ,

D∗
qm (Pα) � s

qm
+ 2Rq(α)

and similarly for the weighted case. For more information we refer to [23] or to [6, Section 11.3].
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Corollary 3. Let F be a divisibility chain such that λF (U F ) > 0. Then for every ε > 0, there exists a μ
(∞)
F -

measurable set E ⊆ U∞
F ⊆ Fq[[x]]∞ such that for all α ∈ U∞

F \ E we have

Rq
(
α(s)) � cεs(log(s + 1))1+εk(log(k + 1))1+ε

qdeg(Fk) − 1

(
1 + deg(Fk)q

)s

and

R̃q,γ
(
α(s)) � cεs(log(s + 1))1+εk(log(k + 1))1+ε

qdeg(Fk) − 1

s∏
i=1

(
1 + γi

(
1 + deg(Fk)q

))

for all k ∈ N and s ∈ N. Again, α(s) is the projection to the first s coordinates and the constant cε > 0 depends
only on ε and a bound on the size of the exceptional set E (i.e., μ(∞)

F (E) can be made arbitrarily small at the
cost of larger cε).

Again, the assertions of this corollary follow by an easy adaption of the proof technique of
[6, Theorem 10.41], using the bound [23, Theorem 1] in place of [6, Lemma 10.42].

5. Numerical investigation

Using an implementation of the algorithms in the computer algebra system Mathematica [28],
we tried to analyze the behavior with respect to different types of parameters. Specifically, we com-
pared sequences with constant vs. varying, irreducible vs. compound polynomials up to degree 3, in
base 2, for point sizes up to 212. As bases the following were used, described by their transformations
matrices Bi : the identity matrix, upper triangular block diagonal matrices with all nonzero entries
equal to 1 (we henceforth call this the ‘constant-1’ matrix), with Pascal matrices (i.e., the binomial
coefficients modulo p) in the blocks and also with random entries.

Our investigations focused on e2
γ (α), the squared worst-case error of integration in Hwal,s,β,γ .

Plots of the dyadic logarithm of the error (against the dyadic logarithm of the point size) exhibited a
very close approximation of all cases to an asymptotic of roughly log2(N−1.3), this to such an extent
that all plots blended into a single line. To improve the visibility of the differences a ‘normalized’ log-
arithmic error, i.e., log2(N1.3e2

γ (α)), is shown. Also, in the presentation of the results the ‘constant-1’
matrix was chosen exemplarily, other bases showed similar behavior.

The parameters in detail:

• Basic parameters: s = 5, q = 2, β = 2, γi = i−2.
• f i = (x + 1)i , i = 1,2,3; f4 = x2 + x + 1.
• Transformation matrices: identity; constant 1 in upper triangular blocks (also tested, not pre-

sented here: Pascal and random matrices in upper triangular blocks).
• Test lines (the labels refer to the legends in the figures):

1: constant deg 1 steps: { f1, f1, f1, f1, f1, f1, f1, f1, f1, f1, f1, f1},
2: constant deg 2 steps: { f2, f2, f2, f2, f2, f2},

2′: constant irr. deg 2 steps: { f4, f4, f4, f4, f4, f4},
3: constant deg 3 steps: { f3, f3, f3, f3},

123: mixed steps A: { f1, f2, f3, f1, f2, f3},
321: mixed steps B: { f3, f2, f1, f3, f2, f1}.

Our results were not fully conclusive, perhaps owing to the still comparatively small number of steps
we could carry out in the tests. We observed the following:
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Fig. 1. Different step sizes.

Fig. 2. Different bases.

• Iteration steps where we extend by a polynomial that is a product perform better than several
single steps associated to its factors (see Fig. 1) – heuristically, this would be expected, since the
search space is larger for the compound polynomial.

• Iteration steps with compound polynomials performed better than those with irreducible polyno-
mials of the same degree (see Fig. 2), which seems to contradict the theoretical bounds, although
it must be said that the difference is very small.

• Different transformation matrices actually only effect small differences (see Figs. 2, 3, a + in-
dicates use of the ‘constant-1’ matrix). Sometimes there are gains, but in this test series no
pronounced overall improvement could be seen.

• There seems to be still some room for improvement from the upper bounds, possibly even in
asymptotics. E.g., for the cases 1 and 2 the order of the theoretical bounds are N−0.4 and N−0.85

respectively, compared to the observed order of N−1.3 in both cases.
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Fig. 3. Mixed steps and different bases.
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